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Quantum fluctuations of a resonantly interacting p-wave Fermi superfluid in two dimensions
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Using the Gaussian pair fluctuation theory, we investigate quantum fluctuations of a strongly interacting
two-dimensional chiral p-wave Fermi superfluid at the transition from a Bose-Einstein condensate (BEC) to
a topologically nontrivial Bardeen-Cooper-Schrieffer superfluid. Near the topological phase transition at zero
chemical potential, μ = 0, we observe that quantum fluctuations strongly renormalize the zero-temperature
equations of state, sound velocity, pair-breaking velocity, and Berezinskii-Kosterlitz-Thouless (BKT) critical
temperature of the Fermi superfluid, all of which can be nonanalytic functions of the interaction strength.
The indication of nonanalyticity is particularly evident in the BKT critical temperature, which also exhibits a
pronounced peak near the topological phase transition. Across the transition and towards the BEC limit we
find that the system quickly becomes a trivial interacting Bose liquid, whose properties are less dependent on the
interparticle interaction. The qualitative behavior of composite bosons in the BEC limit remains to be understood.
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I. INTRODUCTION

Unconventional electronic superconductivity and
fermionic superfluidity are of great interest and lie at the
heart of many intriguing quantum materials [1]. One of the
most important examples is the two-dimensional (2D) chiral
p-wave superconductor (superfluid), where the pairing order
parameter has the px + ipy symmetry in its orbital angular
momentum. It was shown to be topologically nontrivial with
vortex excitations that exhibit non-Abelian statistics [2,3].
These so-called Majorana excitations have been suggested
to be a key ingredient for processing topological quantum
computation [4,5]. Unfortunately, in spite of extensive search
for decades, a 2D p-wave superconductor remains elusive in
condensed matter physics. The best-known candidate material
of 2D p-wave superconductors so far is strontium ruthenate,
Sr2RuO4, whose superconductivity was first observed by
Maeno and his group in 1994 [6].

The recent realization of resonantly interacting ultracold
atomic Fermi gases opens a new paradigm to create the
topological p-wave superfluid [7]. By tuning the s-wave in-
terparticle interaction in a two-component Fermi gas through
magnetic Feshbach resonances, the crossover from a Bardeen-
Cooper-Schrieffer (BCS) fermionic superfluid to a Bose-
Einstein condensate (BEC) has now been routinely observed
in laboratories [8,9], confirming the long-sought BEC-BCS
crossover [10–13] in both three and two dimensions. A reso-
nantly interacting p-wave Fermi gas can be realized by either
using p-wave Feshbach resonances or by preparing fermionic
atoms in the same hyperfine pseudospin state, which expe-
rience long-range dipole-dipole interactions. The former has
already been demonstrated for 40K and 6Li atoms [14–25],
although the system suffers a serious loss in atom number
near the p-wave resonance. Nevertheless, in three dimensions
the system can still reach a quasiequilibrium state [22], in

which a number of interesting physical properties of the cloud
can be experimentally examined. More importantly, in lower
dimensions the atom loss has been found to be significantly
reduced [23], as theoretically predicted [26,27]. For a single-
component dipolar Fermi gas [28,29] the s-wave scattering is
completely suppressed by the Pauli exclusion principle. The
p-wave component of the interparticle interaction could then
be significantly enhanced by suitably tuning the strength of
the dipole-dipole interaction. All these recent experimental
advances in ultracold atoms make the realization of a 2D
p-wave Fermi superfluid a very appealing idea.

Theoretically, the many-body physics of strongly interact-
ing p-wave Fermi gases has been studied to some extent [7].
These include the exploration of the phase diagram [30–35],
which becomes richer due to the anisotropy in the different
p-wave channels, determining the transition temperature for
the superfluid transition in three dimensions [36–38] or the
Berezinskii-Kosterlitz-Thouless (BKT) transition in two di-
mensions [39], as well as the calculation of the p-wave contact
parameters [40–46], which characterize the universal short-
distance and large-momentum behavior of the system [47,48].
Most of these theoretical investigations rely on the mean-field
theory, which qualitatively captures the underlying physics of
the p-wave pairing. To describe more accurately a p-wave
Fermi superfluid, in particular in two dimensions, it is nec-
essary to include strong quantum fluctuations beyond mean
field close to the resonantly interacting regime [49,50]. In this
respect, it is convenient to adopt the Gaussian pair fluctuation
(GPF) theory [51,52], which provides a quantitatively reliable
description of an s-wave Fermi superfluid at the BEC-BCS
crossover, in both three [51–53] and two dimensions [54].

In this work, we explore quantum fluctuations in a 2D
chiral p-wave Fermi superfluid using the GPF theory, pay-
ing specific attention to the role played by the topological
phase transition at zero chemical potential. A number of

2469-9926/2018/98(6)/063605(12) 063605-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063605&domain=pdf&date_stamp=2018-12-04
https://doi.org/10.1103/PhysRevA.98.063605


HU, MULKERIN, HE, WANG, AND LIU PHYSICAL REVIEW A 98, 063605 (2018)

physical observables at zero temperature are considered
across the BEC-BCS transition, such as the chemical poten-
tial, total energy, pressure equation of state, sound velocity,
pair-breaking velocity, and also the critical velocity for su-
perfluidity. All these quantities are strongly affected by quan-
tum fluctuations. By assuming the existence of well-defined
fermionic Bogoliubov quasiparticles and bosonic excitations
of phonons, we further calculate the temperature dependence
of superfluid fraction with the approximate Landau formalism
[55]. This leads to an improved determination of the BKT
critical temperature in the strongly interacting regime.

The paper is organized as follows. In the next section
(Sec. II), we present the model Hamiltonian of a 2D spinless
p-wave interacting Fermi gas. In Sec. III, we describe the de-
tails of the GPF theory of the chiral p-wave Fermi superfluid.
In Sec. IV, we first discuss various equations of state as a
function of the interaction strength, including the chemical
potential, pressure, and total energy. We then present the
results of sound velocity, pair-breaking velocity, and critical
velocity. Based on the single-particle fermionic excitation
spectrum and the sound velocity at zero temperature, we
calculate the temperature dependence of superfluid density
within the Landau picture for superfluidity and consequently
determine the BKT critical temperature. Finally, in Sec. V we
give our conclusions and outlook.

II. MODEL HAMILTONIAN

We consider a spinless 2D atomic Fermi gas of density n,
interacting in the dominant p-wave channel near a broad p-
wave Feshbach resonance, as described by a single-channel
Hamiltonian (we set the area A = 1) [30],

H =
∑

k

ξkψ
†
kψk + 1

2

∑
k,k′,q

Vkk′b
†
kqbk′q, (1)

where ψk (ψ†
k) is the annihilation (creation) field operator for

atoms with mass M and the single-particle dispersion ξk ≡
εk − μ = h̄2k2/(2M ) − μ, and bkq ≡ ψ−k+q/2ψk+q/2 is the
composite operator that annihilates a pair of atoms with
a center-of-mass momentum q. We work with the grand-
canonical ensemble and tune the chemical potential μ to make
the average density

∑
k

〈n̂k〉 = n ≡ k2
F

4π
, (2)

where n̂k ≡ ψ
†
kψk and kF is the Fermi wave vector. For the

interparticle interaction, we adopt the following separable
form [12,30,31],

Vkk′ = λ�(k)�∗(k′), (3)

where λ < 0 is the bare interaction strength and the dimen-
sionless regularization function �(k) represents the chiral
px + ipy symmetry of the pairing interaction, i.e.,

�(k) = (k/kF )

[1 + (k/k0)2n]3/2
eiϕk . (4)

Here, k0 is a large momentum cutoff, which is necessary to
make the model Hamiltonian renormalizable, and ϕk is the

polar angle of k. We use the exponent n to tune the shape of
the regularization function �(k) and to confirm the insensitiv-
ity of our results on the form of the interparticle interaction.
The choice of n = 1/2 was used earlier by Noziéres and
Schmitt-Rink [12], and Botelho and Sá de Melo [30]. In this
paper, unless otherwise specified, we follow the work by Ho
and Diener [31] and take n = 1 for the numerical results
presented. Actually, the results depend very weakly on the
exponent n. The use of other values of n only leads to small
quantitative difference.

In principle, the bare interaction strength λ and the cutoff
momentum k0 should be renormalized (i.e., replaced) in terms
of the 2D p-wave scattering area ap and effective range Rp ∼
1/k0 [44]. However, for a better presentation, it turns out to be
more convenient to use a scattering energy Eb [30,39], which
is basically the ground-state energy of two fermions at zero
center-of-mass momentum,

2εkψk +
∑

k′
Vkk′ψk′ = Ebψk. (5)

By inserting the separable interaction potential, it is easy to
obtain

1

λ
= −

∑
k

|�(k)|2
2εk − Eb

. (6)

We note that, unlike the s-wave scattering in two dimensions,
where the scattering energy Eb is always negative, in our
p-wave case Eb can be either negative or positive. A negative
scattering energy indicates the existence of a two-body bound
state (i.e., on the BEC side), with a binding energy εB =
−Eb > 0. On the other hand, the weakly interacting BCS limit
is reached at Eb → +∞. Throughout the paper, we use the
set of parameters Eb, k0, n = 1 to characterize the p-wave
interaction. Their relation to the p-wave scattering area ap and
effective range Rp is briefly discussed in Appendix A.

III. GAUSSIAN PAIR FUNCTION THEORY
AT ZERO TEMPERATURE

In the superfluid phase at zero temperature, it is useful
to introduce the Nambu spinor presentation for the field
operators [51,52],

�k =
(

ψk

ψ
†
−k

)
, (7)

with which the model Hamiltonian can be rewritten as

H = 1

2

∑
k

�
†
k(ξkσz)�k + 1

2λ

∑
q

ρ̂†
qρ̂q, (8)

where

ρ̂q ≡ λ
∑

k

�∗(k)bkq = λ
∑

k

�
†
k− q

2
�∗(k)σ−�k+ q

2
(9)

is a generalized density operator for a pair of fermions and σz

and σ± = (σx ± σy )/2 are the Pauli matrices. In the follow-
ing, we first solve the model Hamiltonian at the mean-field
level and then include Gaussian pair fluctuations on top of the
mean-field solution.
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A. Mean-field theory

The superfluid phase is characterized by a nonzero (real)
pairing order parameter � at zero center-of-mass momentum
q = 0, i.e.,

ρ̂q = �δq,0 + �q, (10)

where �q is the pair fluctuation field around the order param-
eter. Inserting this decoupling into the model Hamiltonian, we
obtain

H = HMF + 1

2λ

∑
q 
=0

�†
q�q, (11)

HMF = 1

2

∑
k

�
†
k

[
ξk ��(k)

��∗(k) −ξk

]
�k − �2

2λ
. (12)

Here, we neglect the fluctuation field at zero momentum,
which gives a vanishing contribution in the thermodynamic
limit. The mean-field Hamiltonian can be straightforwardly
solved by diagonalizing the 2×2 matrix in Eq. (12). This leads
to the following energy of Bogoliubov quasiparticles

Ek =
√

ξ 2
k + �2|�(k)|2, (13)

and quasiparticle wave functions

|uk|2 = 1

2

(
1 + ξk

Ek

)
, (14)

|vk|2 = 1

2

(
1 − ξk

Ek

)
, (15)

ukv
∗
k = ��(k)

2Ek
. (16)

The BCS Green’s function

G0(k, iωm) =
[
iωm − ξk −��(k)
−��∗(k) iωm + ξk

]−1

, (17)

where ωm = (2m + 1)πkBT (m ∈ Z) is the fermionic
Matsubara frequency, is then given by

G11
0 (k, iωm) = uku

∗
k

iωm − Ek
+ vkv

∗
k

iωm + Ek
, (18)

G12
0 (k, iωm) = ukv

∗
k

iωm − Ek
− ukv

∗
k

iωm + Ek
, (19)

G21
0 (k, iωm) = u∗

kvk

iωm − Ek
− u∗

kvk

iωm + Ek
, (20)

G22
0 (k, iωm) = vkv

∗
k

iωm − Ek
+ uku

∗
k

iωm + Ek
. (21)

The pairing order parameter can be determined by minimizing
the mean-field thermodynamic potential,

�MF = 1

2

�2

λ
+ 1

2

∑
k

(ξk − Ek ),

= 1

2

∑
k

[
ξk − Ek − �2|�(k)|2

2εk − Eb

]
. (22)

FIG. 1. The third-order ladder diagram considered in the
Gaussian pair fluctuation theory. The solid line with arrow represents
the 2×2 BCS Green’s functions. The dashed line with two vertices
indicates the interparticle interaction. There are four types of ladders,
�ss′ , depending on the choice of the interaction vertex: s = + for
σ+�(k′) and s = − for σ−�∗(k).

Thus, we obtain the gap equation,

∑
k

[
1

2Ek
− 1

2εk − Eb

]
|�(k)|2 = 0. (23)

At the mean-field level, as mentioned earlier, the chemical
potential μ is adjusted to satisfy the mean-field number
equation,

n = nF ≡ −∂�MF

∂μ
= 1

2

∑
k

(
1 − ξk

Ek

)
. (24)

B. Gaussian pair fluctuation theory

We now take into account the fluctuation terms �
†
q�q/(2λ)

at nonzero center-of-mass momentum. At the lowest Gaussian
level, their contribution to the thermodynamic potential can
be represented by the ladder (or bubble) diagrams [12,51],
one of which (i.e., the third-order diagram) is shown in
Fig. 1, where the dashed lines denote the bare interaction
λ�(k)�∗(k′). Following the standard diagrammatic rules [56],
an nth-order ladder diagram gives the following contribution
to the thermodynamic potential:

�
(n)
GF = (−1)n+1λn

2n

∑
Q

∑
s1,...,s ′

n

[�(Q)]s1s
′
1
· · · [�(Q)]sns ′

n

= (−1)n+1λn

2n

∑
Q

Tr

[
�−+(Q) �−−(Q)
�++(Q) �+−(Q)

]n

, (25)

where we have used the short-hand notations Q = (q, iνn)
with νn = 2nπkBT (n ∈ Z) being the bosonic Matsubara
frequency, and

∑
Q ≡ kBT

∑
iνn

∑
q. The subscript s = −,+

(or s ′) of the pair propagator [�(Q)]s,s ′ stands for the interac-
tion vertices σ−�∗(k) and σ+�(k′), respectively. The different
choice for s and s ′ leads to four kinds of ladders and hence
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four pair propagators:

�−+(Q) = kBT
∑

k,iωm

|�(k)|2Tr

[
σ−G0

(
k + q

2
, iωm

)
σ+G0

(
k − q

2
, iωm − iνn

)]
, (26)

�−−(Q) = kBT
∑

k,iωm

[�∗(k)]2Tr

[
σ−G0

(
k + q

2
, iωm

)
σ−G0

(
k − q

2
, iωm − iνn

)]
, (27)

�++(Q) = [�−−(Q)]∗, and �+−(Q) = [�−+(Q)]∗. However, the summation indices s1, . . . , s
′
n in �

(n)
GF cannot take arbitrary

values. As each interaction line contains the vertex σ−�∗(k) and σ+�(k′) in pairs, we must have s ′
i = −si+1 for i = 1, . . . , n

(we set n + 1 → 1). The summation over the vertex indices therefore leads to the trace of a matrix product, as given in Eq. (25).
The contribution of all the ladder diagrams is then readily calculated, by summing over n. We find that

�GF[μ,�(μ)] = 1

2

∑
Q

Tr ln

[
−1

λ
+

(
�−+(Q) �−−(Q)
�++(Q) �+−(Q)

)]
≡ 1

2

∑
Q

ln det

[
M11(Q) M12(Q)
M21(Q) M22(Q)

]
, (28)

where the explicit expression of M(Q) is given by

M11(Q) =
∑

k

|�k(k)|2
[

(u+u∗
+)(u−u∗

−)

iνn − E+ − E−
− (v+v∗

+)(v−v∗
−)

iνn + E+ + E−
+ 1

2Ek

]
, (29)

M12(Q) =
∑

k

[�∗(k)]2

[
(u+v∗

+)(u−v∗
−)

iνn − E+ − E−
− (u+v∗

+)(u−v∗
−)

iνn + E+ + E−

]
, (30)

M21(Q) = M∗
12(Q), and M22(Q) = M∗

11(Q). Here, we abbreviate u± ≡ uq/2±k, v± ≡ vq/2±k, and E± ≡ Eq/2±k, and rewrite the
bare interaction strength λ using Eqs. (6) and (23). In �GF, we have exchanged the order of the trace and “ln” operators, which
gives rise to the determinant of the pair propagator matrix. Moreover, the summation over the bosonic Matsubara frequency iνn

diverges, as a result of M11(Q) ∼ ν
1/2
n in the limit of νn → ∞. This divergence can be formally cured by imposing a convergence

factor and converting the summation into a contour integral along the real axis [51]. In practice, it is more convenient to adopt
an interesting trick proposed by Diener and his co-workers at zero temperature [52]. We define the regular part of the pair
propagators M11(Q) and M22(Q) [52,54]:

MC
11 =

∑
k

|�(k)|2
[

(u+u∗
+)(u−u∗

−)

iνn − E+ − E−
+ 1

2Ek

]
(31)

and MC
22(Q) = [MC

11(Q)]∗. It is easy to check that MC
11(q, iνn → z) has no singularities or zeros (i.e., poles and branch cuts) in

the left-half complex plane of Re z < 0, as a result of |u±|2 � 1 and E+ + E− � 2Ek. At zero temperature, we obtain

kBT
∑
iνn

ln MC
11(Q) = kBT

∑
iνn

ln MC
22(Q) = 0, (32)

after writing them in terms of a standard contour integral [52]. Therefore, we arrive at [52]

�GF = 1

2

∑
q

kBT
∑
iνn

ln
[M11M22 − M12M21](Q)

MC
11(Q)MC

22(Q)
. (33)

A further simplification can be made by noticing that, at zero temperature (T → 0), we may take νn → ω as a continuous
variable and rewrite the summation kBT

∑
iνn

in the form of an integral,
∫ +∞
−∞ dω/(2π ) [52,54]. By defining the following five

functions [54],

MC
11 = A(q, ω) − iωB(q, ω), (34)

M11 − MC
11 = −�4C(q, ω) + iω�4D(q, ω), (35)

M12 = 2�2F (q, ω), (36)

the Gaussian fluctuation contribution to the thermodynamic potential finally takes the form

�GF[μ,�(μ)] =
∫ ∞

0

dω

2π

∑
q

ln

[
1 − 2�4(μ)

AC + ω2BD + 2F 2

A2 + ω2B2
+ �8(μ)

C2 + ω2D2

A2 + ω2B2

]
. (37)
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The explicit form of the five functions is given by

A(q, ω) = −1

4

∑
k

|�(k)|2
[(

1

E+
+ 1

E−

)
(E+ + ξ+)(E− + ξ−)

ω2 + (E+ + E−)2 − 2

E

]
, (38)

B(q, ω) = +1

4

∑
k

|�(k)|2 1

E+E−

(E+ + ξ+)(E− + ξ−)

ω2 + (E+ + E−)2 , (39)

C(q, ω) = +1

4

∑
k

|�(k)|2
∣∣∣∣�

(
q
2

+ k
)∣∣∣∣

2∣∣∣∣�
(

q
2

− k
)∣∣∣∣

2( 1

E+
+ 1

E−

)
1

(E+ + ξ+)(E− + ξ−)

1

ω2 + (E+ + E−)2 , (40)

D(q, ω) = +1

4

∑
k

|�(k)|2
∣∣∣∣�

(
q
2

+ k
)∣∣∣∣

2∣∣∣∣�
(

q
2

− k
)∣∣∣∣

2 1

E+E−

1

(E+ + ξ+)(E− + ξ−)

1

ω2 + (E+ + E−)2 , (41)

F (q, ω) = −1

4

∑
k

[�∗(k)]2�

(
q
2

+ k
)

�

(
q
2

− k
)(

1

E+
+ 1

E−

)
1

ω2 + (E+ + E−)2 . (42)

For our case with a chiral p-wave interaction (i.e., �(k) ∝
kx + iky), one may show that the above five functions do not
depend on the polar angle of q (see Appendix B), and thus we
can simply set q = qex in the k-integration of A, B, C, D, and
F . This reduces the calculation of �GF to a four-dimensional
integration (over ω, q = |q|, k = |k|, and ϕk).

For a given chemical potential μ, once the fluctuation
thermodynamic potential �GF is obtained, we calculate the
number of Cooper pairs, nB , by using numerical differentia-
tion:

2nB = −∂�GF[μ,�(μ)]

∂μ
. (43)

Within the GPF theory, we then adjust the chemical potential
to satisfy the number equation n = nF + 2nB . It is worth
noting that the pairing gap �(μ) is always determined at the
mean-field level by using the gap equation, Eq. (23), in order
to have a gapless Goldstone phonon mode [51,52].

IV. RESULTS AND DISCUSSIONS

For the convenience of numerical calculations we take
the Fermi wave vector kF as the units of the wave vectors
(k, q), and the Fermi energy εF = h̄2k2

F /(2m) = 2πh̄2n/m

as the units of energy and temperature. This is equivalent to
setting 2m = h̄ = kB = 1. In the following, we mainly choose
a cutoff momentum k0 = 30kF and the dependence of various
properties on k0 is briefly discussed at the end of the section.

A. Equation of state

In Fig. 2, we report the chemical potential μ as a function
of the interaction strength Eb, predicted by the mean-field
theory and GPF theory. To clearly show the many-body effect,
we have subtracted the two-body contribution from the bound
state when the scattering energy Eb < 0, which takes the form
−εB/2 ≡ − max(−Eb, 0)/2. In the BCS limit (Eb 
 εF ),
both mean-field and GPF theories predict μ → εF , as ex-
pected. However, towards the BEC limit (Eb � −εF ), they
show entirely different behavior.

In the BEC limit we anticipate that the system may turn
into a weakly interacting Bose condensate of composite
Cooper pairs of mass mB = 2m, with a bosonic chemical

potential given by

μB = 2μ + εB � gBnB, (44)

where nB � n/2 and gB is the strength of the interaction
between two Cooper pairs. Physically, gB should decrease as
we move to the BEC limit. Using the relation εF = 2πh̄2n/m,
we obtain that

gB �
(

8πh̄2

m

)
μ + εB/2

εF

. (45)

Thus, we observe from Fig. 2 that the mean-field theory in-
correctly predicts an increasing pair-pair interaction strength
when we approach the BEC limit, while the GPF theory gives
a smaller pair-pair interaction,

gB,GF � 0.032

(
8πh̄2

m

)
� 1.6

h̄2

mB

, (46)

FIG. 2. The chemical potential μ as a function of the scattering
energy Eb, calculated by using the mean-field theory (dashed line)
and GPF theory (solid line with circles). The dot-dashed line shows
the asymptotic behavior in the BEC limit predicted by the mean-
field theory in Eq. (47), which corresponds to a constant molecular
scattering length for composite bosons. In the main figure, we have
subtracted the contribution from the two-body bound state with the
binding energy εB ≡ max(−Eb, 0). The inset highlights the chem-
ical potential near the topological phase transition (i.e., μ ∼ 0 or
Eb ∼ 0). Here, we take a cutoff momentum k0 = 30kF .
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which is essentially independent of the scattering energy Eb

[57].
In the mean-field theory, the pair-pair interaction strength

can be analytically calculated using a Ginzburg-Landau
free energy functional for the pair fluctuation field �q
(see Appendix C). We find that

gB,MF = 16πh̄2

m

[ln η + 2η−1 − η−2/2 − 3/2]

(ln η + η−1 − 1)2
, (47)

where η = h̄2k2
0/(m|Eb|) + 1. As η 
 1 for the parameters in

Fig. 2, to a good approximation we have

gB,MF � 16πh̄2

m

1

ln
[
h̄2k2

0/(m|Eb|)
] , (48)

which explains the wrong behavior of stronger pair-pair inter-
action as we decrease Eb (see the dot-dashed line in Fig. 2).

Quite generally, the mean-field theory breaks down in two
dimensions due to enhanced quantum fluctuations. This is
already known for an s-wave Fermi superfluid [54], where
the mean-field theory predicts a constant pair-pair interaction
strength of 4πh̄2/m, instead of a much smaller and chemical-
potential-dependent coupling strength. The renormalization of
the pair-pair interaction due to quantum fluctuations is well
captured by our GPF theory. Indeed, in an s-wave Fermi
superfluid the GPF theory is reliable in predicting an accurate
molecular scattering length for composite bosons [54], in
good agreement with the exact four-body calculation and dif-
fusion quantum Monte Carlo (QMC) simulation. In our case
of a chiral p-wave Fermi superfluid, we anticipate that the
GPF theory will similarly lead to a reliable result for the pair-
pair interaction strength gB . Unfortunately, unlike the s-wave
Fermi superfluid, the existence of the regularization function
�(k) makes it infeasible to derive an analytic expression for
gB . In future studies, the QMC calculation of the ground-state
energy of the system or the exact solution of four resonantly
p-wave interacting fermions in two dimensions would be
very useful to understand the smaller and constant pair-pair
interaction strength gB , as predicted by our GPF theory.

Let us now consider the intermediate coupling regime near
zero scattering energy Eb = 0, where the chemical potential
μ changes sign and the system is expected to undergo a
topological phase transition. In sharp contrast to the s-wave
case, where μ evolves rather smoothly, here we find a dra-
matic change in the slope of the quantity μ + εB/2 at Eb ∼ 0
or μ ∼ 0. This nonanalytic feature at the topological phase
transition has been noticed in previous mean-field studies
[30,35,39] and we see that quantum fluctuations make it even
more pronounced.

Figure 3 presents the evolution of the pairing order param-
eter � as a function of the scattering energy Eb, calculated
using the mean-field theory (dashed line) and the GPF theory
(solid line with circles). Away from the BCS limit, the pair-
ing gap is significantly reduced by quantum fluctuations. In
particular, at resonance, the pairing gap is about a quarter of
the Fermi energy, � ∼ 0.25εF . There is an apparent dip at the
topological phase transition, as a result of the nonanalyticity
of the thermodynamics at the transition.

Theoretically, the significance of quantum fluctuations can
be most easily recognized from the evolution of the number

FIG. 3. The pairing gap � as a function of the scattering energy
Eb, predicted by using the mean-field theory (dashed line) and GPF
theory (solid line with circles). The inset highlights the kink in the
pairing gap near the topological phase transition (i.e., Eb ∼ 0). Here,
we take a cutoff momentum k0 = 30kF .

of Cooper pairs, nB , as a function of the scattering energy
Eb, as shown in Fig. 4. We find a rapid increase in nB when
we move to the topological phase-transition point from the
BCS limit. Upon reaching the transition, the dependence of
the number of Cooper pairs on the scattering energy becomes
nearly flat. Once again, this may be viewed as an indication of
the nonanalyticity at the topological phase transition.

In experiments, on the other hand, the nonanalyticity of
the thermodynamic functions at the transition may be probed
by measuring the homogeneous pressure equation of state
through the density distribution of a harmonically trapped
resonant p-wave Fermi superfluid [58]. In Fig. 5, we report
the pressure P , normalized to its noninteracting value P0 =
nεF /2, as a function of the scattering energy Eb, calculated
with the mean-field theory and the GPF theory. The pressure
P shows almost the same scattering energy dependence as
the chemical potential, with a clear kink at the topological
phase transition. Therefore, the observation of this kink may
be regarded as an indirect proof of the topological phase
transition [59]. Moreover, the measurement of the small and
nearly constant pressure on the BEC side will be useful

FIG. 4. The fraction of fermions nF /n (solid line) and Cooper
pairs nB/n (dashed line), as a function of the scattering energy Eb.
Here, we take a cutoff momentum k0 = 30kF .
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FIG. 5. The pressure (main figure) and total energy (inset), as a
function of the scattering energy Eb, predicted by using the mean-
field theory (dashed line) and GPF theory (solid line with circles).
The pressure and energy are normalized with respect to the ideal gas
values P0 = nεF /2 and E0 = NεF /2, respectively. Here, N is the
total number of particles. For the total energy, we have subtracted the
contribution from the two-body bound state, −NεB/2. As before, we
take a cutoff momentum k0 = 30kF .

to clarify the nature of the resulting weak-interacting Bose
condensate.

To conclude this section, it is worth noting a recent study
of the same system by Jiang and Zhou [50], based on a
two-channel model for a broad p-wave resonance. In that
study, quantum fluctuations from selected two-loop diagrams
are found to destabilize the system at the resonance, in dis-
agreement with our finding of a stable Fermi superfluid at
all interaction strengths. This discrepancy is unlikely from
the different model Hamiltonian (i.e., one channel vs two
channel), since the one-channel model and two-channel model
are known to give the same description for a broad Feshbach
resonance [60,61]. It should come from the treatment of
quantum fluctuations at different levels. The GPF treatment
presented in this work, when it is generalized to the two-
channel model [62], includes the two-loop diagrams selected
by Jiang and Zhou [50,63]. Moreover, it may pick up a set
of marginal diagrams containing higher-order loops, within
the ladder or bubble approximation. A future GPF study of
the two-channel model for a resonantly interacting p-wave
Fermi superfluid will be useful to clarify the discrepancy
and to provide more accurate results for a narrow Feshbach
resonance.

B. Critical velocity for superfluidity

A superfluid loses its superfluidity when it moves faster
than a critical velocity. For an s-wave Fermi superfluid, the
critical velocity in the BCS and BEC limits is given by the
pair-breaking velocity and sound velocity, respectively, and
exhibits a maximum in between [52]. A maximum critical
velocity at the resonance emphasizes the stability of a strongly
interacting Fermi superfluid [64].

The situation for a p-wave Fermi superfluid seems to
be a bit different. In Fig. 6, we present the sound velocity

FIG. 6. The sound velocity and pair-breaking velocity, as a func-
tion of the scattering energy Eb, predicted by using the mean-field
theory (dashed line or dash-dotted line) and GPF theory (solid line
with circles or stars). As the scattering energy decreases (or the in-
teraction strength increases), the critical velocity vc = max{vpb, cs}
slowly increases. Here, we take a cutoff momentum k0 = 30kF .

determined from the equation of state,

cs =
[

n

m

∂μ

∂n

]1/2

=
[

n

m

(
−∂2�

∂μ2

)−1
]1/2

, (49)

and the pair-breaking velocity calculated by using the Landau
criterion,

vpb = min
{k}

Ek

|k| �
{

� if μ � 0√
�2 − 4μ if μ < 0.

(50)

In both mean-field and GPF frameworks, the resulting critical
velocity vc = max{vpb, cs} roughly increases with decreasing
scattering energy Eb. In particular, on the BEC side, the GPF
result of the critical velocity becomes nearly flat, consistent
with a constant pair-pair interaction strength observed earlier.
Typically, the critical velocity at resonance is about 0.1vF ,
smaller than that of an s-wave Fermi superfluid [55,65]. This
means that a p-wave Fermi superfluid could be more easily
destroyed than its s-wave counterpart.

C. BKT transition temperature

In two dimensions, the transition to a superfluid state
at finite temperature is governed by the BKT mechanism
[66,67]. The BKT critical temperature Tc of a chiral p-wave
Fermi superfluid was considered in the previous studies by
using the mean-field theory [39]. Here, we determine Tc with
the inclusion of quantum fluctuations.

For this purpose, we need to calculate the superfluid den-
sity ns and then determine Tc using the so-called Thouless-
Nelson criterion [68],

kBTc = πh̄2

8m
ns (Tc ), (51)

or equivalently,

Tc

TF

= 1

16

ns (Tc )

n
. (52)

A full calculation of superfluid density ns within the GPF
framework is numerically involved. Here, we follow the idea
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FIG. 7. The BKT transition temperature, calculated by using the
mean-field theory (dashed line) and GPF theory (solid line with
circles), as a function of the scattering energy Eb. The inset shows
the normal density fractions contributed by fermions, nn,f /n, and
by pairs, nn,b/n, and the superfluid density fraction ns/n = 1 −
nn,f /n − nn,b/n at zero scattering energy Eb = 0. The cross point
between the superfluid fraction ns/n and the line 16T/TF determines
the BKT temperature at Eb = 0. Here, we take a cutoff momentum
k0 = 30kF .

by Bighin and Salasnich to approximately calculate the su-
perfluid density using the standard Landau formalism [55].
This provides an approximate but convenient way to include
quantum fluctuations [55,65].

To apply the Landau formalism, we assume that the low-
energy excitations of the resonantly interacting p-wave super-
fluid are well described by quasiparticles. This assumption is
excellent in both BCS and BEC limits. Therefore, we antic-
ipate that it may also give some qualitative predictions near
resonance. Following Landau’s quasiparticle picture [69], the
densities of the normal fluid, due to single-particle fermionic
excitations and collective bosonic excitations, are respectively
given by

nn,f = − h̄2

m

∑
k

k2

2

∂

∂Ek

(
1

eEk/kBT + 1

)
, (53)

nn,b = − h̄2

m

∑
q

q2

2

∂

∂ωq

(
1

eωq/kBT − 1

)
, (54)

where we approximate that, as a rough estimation, the
fermionic excitations have the energy spectrum of Ek and
the bosonic excitations have phonon dispersion ωq � csq. The
superfluid density ns then takes the form

ns = n − nn,f − nn,b. (55)

At resonance, the normal densities due to fermionic and
bosonic excitations, nn,f and nn,b, and the superfluid den-
sity ns are shown in the inset of Fig. 7. We find that the
bosonic degree of freedom gives the dominant contribution
to the superfluid density and hence leads to a reduced BKT
critical temperature. Indeed, the mean-field theory predicts
a nearly saturated critical temperature Tc = TF /16 ∼ 0.06TF

at resonance, while our GPF theory with Landau formalism
for superfluid density gives a smaller critical temperature
Tc ∼ 0.04TF .

FIG. 8. The chemical potential μ (with the two-body bound-state
contribution subtracted) as a function of the scattering energy Eb,
at two cutoff momenta k0 = 10kF (dashed line with stars) and k0 =
30kF (solid line with circles). The inset shows the chemical potential
μ and pairing gap � at the zero scattering energy Eb = 0, as a
function of the inverse cutoff momentum k−1

0 . All the results are
predicted by using the GPF theory.

In the main figure of Fig. 7, we present the evolution of the
BKT critical temperature Tc as a function of the scattering
energy Eb. It exhibits a bump near the resonance with a
maximum Tc,max � 0.052TF at Eb ∼ εF . The cusp at Eb � 0
may be viewed as a clear demonstration of the nonanalyticity
of the finite temperature thermodynamics at the topological
phase transition. Towards the BEC limit, we find that the BKT
critical temperature saturates to Tc ∼ 0.047TF .

This smaller BKT critical temperature, compared with the
mean-field prediction of Tc = 0.625TF , could be understood
using the BKT theory of a 2D interacting Bose gas, for which
the Monte Carlo simulation predicts

kBTc = 2πnB

mB ln[ξ h̄2/(mBgB )]
, (56)

where ξ = 380 ± 3 [70]. By recalling εF = 2πh̄2n/m =
8πh̄2nB/mB and using gB � 1.6h̄2/mB in Eq. (46), we find
that

Tc � 1

4 ln (380/1.6)

εF

kB

� 0.046TF , (57)

which is consistent with our GPF prediction
of Tc ∼ 0.047TF .

D. The dependence on the cutoff momentum k0

We now turn to discuss the cutoff momentum dependence
of our results. In the main figure of Fig. 8, we compare the
chemical potentials at the BEC-BCS evolution at two cutoff
momenta, k0 = 10kF (dashed line with stars) and k0 = 30kF

(solid line with circles). A factor of 3 reduction in the cutoff
momentum does not lead to any changes at the qualitative
level. In the inset, we highlight the cutoff momentum depen-
dence of the chemical potential and pairing gap at the reso-
nance. We do not find singular behaviors as we increase the
cutoff momentum and extend it towards infinity. Therefore,
although a cutoff momentum k0 is necessary to make the
p-wave interaction renormalizable (for dimensions d � 2),
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we may still have some universal behaviors that are weakly
(i.e., logarithmically) dependent on k−1

0 .

V. CONCLUSIONS AND OUTLOOKS

In conclusion, we have theoretically investigated the con-
sequence of quantum fluctuations in a resonantly interacting
p-wave Fermi superfluid in two dimensions at the BEC-BCS
evolution, using the Gaussian pair fluctuation theory. We have
found that the zero-temperature equations of state, the critical
velocity for superfluidity, and the BKT critical temperature
are strongly renormalized by quantum fluctuations, and their
nonanalyticity at the topological phase transition is greatly
enhanced. Experimentally, this nonanalyticity could be best
probed by measuring the pressure equation of state at zero
temperature, which shows an apparent kink near resonance,
and the BKT critical temperature, which exhibits a bump
and then a cusp structure. Although the p-wave Fermi su-
perfluid seems to be delicate in superfluidity compared with
its s-wave counterpart due to a smaller critical velocity, it
is thermodynamically stable at all interaction strengths, in
disagreement with a previous theoretical study [50], which
takes into account quantum fluctuations at the level of two-
loop diagrams.

For p-wave interacting fermions in two dimensions,
Nishida and co-workers recently predicted the existence of
a series of three-particle bound states, the so-called super-
Efimov states [71]. The impact of these super-Efimov states
to the many-body properties (i.e., superfluidity) of the system
remains to be understood. It will be an interesting research
topic to be explored in future studies.
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APPENDIX A: TWO-PARTICLE SCATTERING

We use a separable interaction potential to characterize the
chiral p-wave interatomic interaction:

Vkk′ = λ�(k)�∗(k′), (A1)

�(k) = (k/k1)

[1 + (k/k0)2n]3/2
eiϕk , (A2)

where k1—set to be kF in numerical calculations—is a char-
acteristic momentum that makes �(k) dimensionless, k0 is
a large-momentum cutoff, and ϕk is the polar angle of k in
2D momentum space. We use the exponent n to control the
shape of the regularization function �(k). In the large-n limit,
effectively we have a step function.

To obtain the two-body scattering amplitude, we consider
the following two-body T -matrix in vacuum:

T (k, k′; E+) = t (E+)�(k)�∗(k′), (A3)

1

t (E+)
= 1

λ
+

∑
k′′

|�(k′′)|2
2εk′′ − E+

, (A4)

where k′ = |k′| = k and E+ = h̄2k2/m + i0+. The analytic
form of the scattering amplitude or t (E+) in the low-energy
limit (i.e., k → 0) should be independent of the detailed
regularization function. Therefore, we may simply use a step
function (i.e., n → ∞). By introducing a new variable x =
(k′′)2, we find that

1

t (E+)
= 1

λ
+ m

4πh̄2k2
1

∫ k2
0

0
dx

x

x − Ẽ+
, (A5)

where Ẽ+ = k2 + i0+. This leads to (Ẽ = k2)

1

t (E+)
= 1

λ
+ m

4πh̄2k2
1

[
k2

0 + Ẽ ln

(
k2

0

Ẽ
− 1

)
+ iπẼ

]
.

(A6)
By taking the low-energy limit k → 0, we arrive at

1

t (E+)
= − m

4h̄2k2
1

[
− 1

ap

+ 2k2

π
ln(Rpk) − ik2

]
, (A7)

where Rp ∼ 1/k0 is the effective range of the p-wave inter-
action, the term a−1

p collects all the constants in Eq. (A6) and
physically we interpret ap as the p-wave scattering area in two
dimensions. It is easy to see that the full two-body T -matrix
is (k = k′)

T (k, k′; E+) = ei(ϕk−ϕk′ )

(
−4h̄2

m

)

×
[

kk′

−a−1
p + (2k2/π ) ln(Rpk) − ik2

]
. (A8)

According to Levinsen, Cooper, and Gurarie (see Appendix
in Ref. [26]), we may define a two-dimensional p-wave
scattering amplitude

fp(k) = − m

2h̄2(2πk)1/2 T (k, k; E+)

=
√

2

πk

k2

−a−1
p + (2k2/π ) ln(Rpk) − ik2

= 1

gp(k) − i(πk/2)1/2
, (A9)

where

gp(k) =
√

πk

2

−a−1
p + (2k2/π ) ln(Rpk)

k2
(A10)

is a real function of k. The p-wave scattering amplitude may
also be written in terms of the phase shift δp(k) [26]:

fp(k) = 1

i
√

2πk
(e2iδp − 1) =

√
2

πk

1

cot δp − i
, (A11)
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where the phase shift satisfies

k2 cot δp(k) = − 1

ap

+ 2k2

π
ln(Rpk) + · · · . (A12)

We note that the relation between the scattering amplitude fp(k) and phase shift δp(k) defined in Eq. (A11) is slightly different
from that derived by solving the two-body problem (see Eq. (11) in Ref. [44]).

APPENDIX B: THE STRUCTURE OF THE FUNCTIONS A, B, C, D, AND F

Here we demonstrate that the functions A, B, C, D, and F do not depend on the direction of q, and thus we may simply set
q = qex in numerical calculations. Actually, this is pretty clear for A, B, C, and D, since the factor |�(k)| does not depend on the
polar angle ϕk. All the integral functions therefore depend on the angle between q and k only, or more precisely cos(ϕk − ϕq).
For the function F , we now need to check explicitly that the factor

P = �∗(k)�∗(k)�

(
q
2

+ k
)

�

(
q
2

− k
)

(B1)

also depends on ϕk − ϕq only. We may also explicitly show that F is a real function. For this purpose, we examine the following
product:

P = P̃ (k, q; ϕk − ϕq)e−i2ϕk

[(
qx

2
+ kx

)
+ i

(
qy

2
+ ky

)][(
qx

2
− kx

)
+ i

(
qy

2
− ky

)]
, (B2)

= P̃ (k, q; ϕk − ϕq)e−i2ϕk

[(
q2

x − q2
y

)
4

− (
k2
x − k2

y

) + i2

(
qxqy

4
− kxky

)]
, (B3)

= P̃ (k, q; ϕk − ϕq)[cos 2ϕk − i sin 2ϕk]

[(
q2

4
cos 2ϕq − k2 cos 2ϕk

)
+ i

(
q2

4
sin 2ϕq − k2 sin 2ϕk

)]
, (B4)

= P̃ (k, q; ϕk − ϕq)

{[
q2

4
cos(2ϕk − 2ϕq) − k2

]
− i

q2

4
sin(2ϕk − 2ϕq)

}
, (B5)

where in the first line of the equation, we have singled out the chiral px + ipy dependence of the regularization function �

and the function P̃ depends on ϕk − ϕq. It is now clear that, in the calculations of A, B, C, D, and F , ϕq can be removed by
redefining the angle ϕk: ϕk − ϕq → ϕ. The imaginary part of F is strictly zero since∫ 2π

0
dϕh(cos ϕ) sin 2ϕ = 0 (B6)

for any function h(x).

APPENDIX C: GINZBURG-LANDAU FREE ENERGY
FUNCTIONAL FOR THE PAIR FLUCTUATION FIELD

In the BEC limit, we may derive a Gross-Pitaevskii free
energy of composite bosons S[φ(x, τ )], which takes the form

S =
∫

dx

[
φ∗

(
∂

∂τ
− h̄2

2mB

− μB

)
φ + gB

2
|φ|4

]
, (C1)

where mB = 2m is the mass of composite bosons, μB is
the chemical potential, and gB is the pair-pair interaction
strength, and we abbreviate x ≡ (x, τ ). To this end, we first
consider the Ginzburg-Landau free energy functional for the
pair fluctuation field �(x):

S̃ =
∫

dx

[
�∗

(
a

∂

∂τ
− b

h̄2

4m
− c

)
� + d

2
|�|4

]
, (C2)

where the φ field can be obtained by rescaling the pair
fluctuation field �, i.e.,

√
a�(x) → φ(x).

Following the seminal work by Sá de Melo, Randeria, and
Engelbrecht [13], we determine the coefficients a, b, and c

by evaluating the small frequency and momentum expansion
of the pair propagator M0(q, iνn) in the normal state, which
takes the form

M0 = − 1

2λ
+ 1

2

∑
k

|�(k)|2
iνn + 2μ − 2εk − h̄2q2/(4m)

. (C3)

Using the fact that

M0(q → 0, iνn → 0) � −a(iνn) + b
h̄2q2

4m
− c, (C4)

we obtain

a = b = 1

2

∑
k

|�(k)|2
(2εk − 2μ)2 (C5)

and

c = 1

2λ
+ 1

2

∑
k

|�(k)|2
2εk − 2μ

. (C6)

In the BEC limit, we have μB = 2μ − Eb → 0+. By replac-
ing the bare interaction strength λ with the scattering energy
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Eb, it is easy to verify that

c � μB

2

∑
k

|�(k)|2
(2εk + |Eb|)2 � μBa. (C7)

The integral in a can be worked out in the limit of
an infinitely large exponent n → ∞, where �(k) = [(kx +
iky )/k1]�(k0 − k). We find that

a = m2

8πh̄4k2
1

(
ln η + 1

η
− 1

)
, (C8)

where η = h̄2k2
0/(m|Eb|) + 1.

The coefficient d, on the other hand, may be calculated
by Taylor-expanding the mean-field thermodynamic potential
�MF at small pairing gap � ∼ 0, i.e.,

�MF = −c�2 + d

2
�4 + · · · .

This leads to

c = −∂�MF

∂�2
= 1

2λ
+

∑
k

|�(k)|2
2εk − 2μ

(C9)

as anticipated, and

d = ∂2�MF

∂ (�2)2
=

∑
k

|�(k)|4
(2εk − 2μ)3 . (C10)

By replacing −2μ with |Eb| in the equation for d, and
performing the integration, we obtain

d = m3

4πh̄6k4
1

(
ln η + 2

η
− 1

2η2
− 3

2

)
. (C11)

The rescaling of the pair fluctuation field,
√

a�(x) → φ(x),
leads to the desired expression for the pair-pair interaction
strength,

gB = d

a2
= 16πh̄2

m

[ln η + 2η−1 − η−2/2 − 3/2]

(ln η + η−1 − 1)2
, (C12)

which is Eq. (47) in the main text.
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