
PHYSICAL REVIEW A 98, 063604 (2018)

Quantum reflection of rare-gas atoms and clusters from a grating
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Quantum reflection is a universal property of atoms and molecules when scattered from surfaces in ultracold
collisions. Recent experimental work has documented the quantum reflection and diffraction of He atoms,
dimers, trimers, and neon atoms when reflected from a grating. Conditions for the observation of emerging
beam resonances have been discussed and measured. In this paper, we provide a theoretical simulation of the
quantum reflection from a grating for those systems. We confirm the universal dependence on the incident de
Broglie wavelength with the threshold angles where the emerging beam resonances are observed. However, the
angular dependence of the reflection efficiencies, that is, the ratio of scattered intensity into specific diffraction
channels relative to the total intensity is found to be dependent on the details of the particle surface interaction.
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I. INTRODUCTION

Optical effects (such as refraction, diffraction, and in-
terferometry) observed in matter waves instead of light are
determined by the interaction between the corresponding par-
ticles and measuring devices. The particle-specific interaction
leads to some distortion and reduction of their visibility. The
so-called Talbot effect [1] or near-field interference effect is
a good illustration of the differences between optical and
matter wave effects. Quantum carpets are observed in the
near field when gratings are illuminated by coherent light and
particle beams. However, the patterns observed when using
particles is distorted as compared to the same effect when
using photons due to the particle grating specific interaction
(Talbot-Beeby [2]) which is typified by a well in the inter-
action potential close to the surface of the grating. When
heavy particles such as big molecules and clusters are used,
diffraction patterns are governed mainly by van der Waals
interactions and a strong reduction of the fringe visibility is
observed [3].

It is thus of interest to reduce such matter-wave-related
distortions as much as possible. Recently, Zhao et al. [4]
proposed and demonstrated that this is possible thanks to the
well-known effect of quantum reflection which is a key effect
in many cold and ultracold gas-phase collisions as well as
the scattering of particles by solid surfaces. Lennard-Jones
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and Devonshire [5] first recognized this behavior in the atom-
surface context and Kohn [6] showed later on that quantum
reflection leads to a zero sticking probability at threshold,
pointing out that this effect is a clear quantum interference
effect between the incoming and reflected waves.

It is well understood that at threshold the maximum of
the scattered wave function is observed far away from the
grating, due to the very long de Broglie wavelength of the
particle at the low energies involved. This has led to the notion
that quantum reflection takes place far away from the grating
or surface, with a distance of typically tens or hundreds of
nanometers where the surface-induced forces are too weak to
dissociate fragile bonds such as in He2 [7] and one cannot
consider a classical turning point for such reflection, which
would immediately dissociate a weakly bound molecule such
as the He dimer [8,9]. This large distance then presumably
weakens the distortions in the diffraction patterns due to the
short-range interactions with the surface. In this context, Zhao
et al. [4], in their experimental study of the scattering of
He, He2, and D2 by an echelette or blazed ruled grating,
observed a “universal” dependence of the so-called emerging
beam resonances (or threshold resonances in atom-surface
scattering [10]) which occur when a diffraction channel just
becomes open or closed. The “universality” expresses itself
in the fact that the threshold depends only on the de Broglie
wavelength of the incident beam but not on the character-
istics of the particle-surface interaction. The threshold inci-
dent angles are called Rayleigh angles. In this same study
it was claimed that not only the threshold was universal
but also the incident angle dependence of the “efficiency”
(the ratio of the diffraction peak to the total intensity) is
universal.
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As discussed more recently [11,12], the fact that the
maximal density in the scattered wave function appears far
away from the surface does not mean that the details of the
quantum reflection really are universal and independent of
the moiety observed. Quantum reflection is mainly governed
by the long-range attractive van der Waals (vdW)-Casimir
potential tail which falls off faster than r−2. [13]. Senn [14]
showed that for general one-dimensional potentials which
vanish as the coordinate goes to ±∞, the reflection proba-
bility goes to unity at threshold conditions except when the
potential supports a zero-energy resonance state. The reflec-
tion coefficient decreases from unity as the incident kinetic
energy increases according to |R| ∼ 1 − 2kb ∼ exp(−2kb),
where k is the incident wave vector and b a characteristic
length which depends on the specifics of the particle-grating
interaction. This universal behavior is a direct result of bound-
ary conditions and continuity of the wave function and its
derivative [12,14].

In the semiclassical framework, however, the analysis of
quantum reflection has concentrated on the fact that in the
regime of linear dependence on k there is a failure of the
semiclassical description of the scattering dynamics [15]. Far
away from the grating or surface the long-range attractive
potential exhibits a region in which the local de Broglie
wavelength is not slowly varying, invalidating a semiclassical
description in this so-called badlands region of the interaction
potential. Quantum reflection was thus associated with this
badlands region where “quantality” is high [16]. For He
atoms, the badlands region of the potential is typically located
at distances of several hundreds of atomic units from the
grating or surface and thus would depend only on the long-
range part of the interaction potential.

Recently, we have shown theoretically [11] that the quan-
tum reflection of He atoms from a grating is determined not
only by the long-range interaction potential but also by its
short-range properties. We emphasized that this short-range
region is critical for obtaining theoretical reflection probabil-
ities and diffraction patterns which are in fairly good agree-
ment with the experimental results. These calculations were
carried out by using the close-coupling (CC) formalism [17],
which is numerically exact when convergence is reached.
To distinguish between quantum reflection and “classical”
reflection due to the turning point of the repulsive part of the
interaction, absorbing boundary conditions which prevented
the classical reflection from occurring were employed. In
Ref. [12] we also showed that the badlands region of the
interaction potential is immaterial since the wavelength of
the scattering particles at threshold is much longer than the
spatial extension of the badlands region. In other words, this
region does not provide a qualitative guide to the occurrence
of quantum threshold reflection.

Quantum reflection thus presents theory with a number of
challenges. One is to show that measured quantum reflection
probabilities may be simulated by theory using the well-
known long-range interaction potential but also considering
the periodicity of the grating. A second challenge is to display
the universality of the Rayleigh angles and their dependence
on the incident wavelength only. A third question is the extent
of this universality, does it also include the dependence of the
efficiency on the incident scattering angle?

The purpose of this present work is to answer these
challenges. To set the stage we show that with reasonable
interaction potentials it is possible to simulate rather well the
quantum reflection of He, He2, He3, and Ne on a “standard” or
regular grating. Comparison with experiment where possible
is good, the quantum reflection of He2 has only been measured
for a blazed grating so the theoretical results for He2 have
yet to be validated experimentally. As expected, for all sys-
tems considered we observe the universality of the Rayleigh
angles in their dependence on the incident wavelength only.
However, the dependence of the efficiency on the incident
angle is not universal and does depend on the specifics of
the interaction. Although we are considering here only a
“standard” grating rather than the ruled grating used in the
experiments [4] this specificity is general and a consequence
of the theory of quantum reflection and its dependence on
energy in the linear regime. In Sec. II we review the theory
needed to implement the computations, in Sec. III we present
the results. The paper ends with a discussion of the various
aspects of the quantum reflection phenomenon.

II. THEORY

The experiment we want to analyze has been described in
detail in Ref. [18]. The reflection grating is assumed to be in
the x direction and consists of a 56-mm-long microstructured
array of 110-nm-thick, 10-μm-wide, and 5-mm-long parallel
chromium strips on a flat quartz substrate. The period of the
strips d is 20 μm. With this geometry, the quartz surface
between the strips is completely shadowed by them for all
the incidence angles used. Quantum reflection probabilities
as well as diffraction patterns were measured at different
source temperatures T0 (ranging typically from 8 to 40 K)
and pressures around P0 = 6–8 bar. In the cryogenic free jet
expansion of incident particles, the kinetic energy is given
by Ei = (5/2)kBT0 where kB is the Boltzmann constant [19].
The incident grazing angle θi is usually varied between 0.4
and 15 mrad and measured with respect to the grating surface
plane. The diffraction angles θn are given by the conservation
of the momentum or Bragg’s law

cos θi − cos θn = nλ

d
, (1)

where λ is the de Broglie wavelength of the incident particle
and the diffraction order is given by n. Negative diffraction
orders correspond to diffraction angles close to the surface
grating; that is, energy in the perpendicular direction is trans-
ferred to the parallel direction. Final results are very often
plotted as a function of the corresponding perpendicular wave
vector along the z direction

kperp �
√

5mkBT0

h̄
sin θi, (2)

where m is the atomic mass of the incident particle. When
considering clusters such as He2 and He3, this expression is
rewritten as

kperp � N

√
5mkBT0

h̄
sin θi, (3)

with N = 2, 3, respectively [20].
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As previously used [11], the two-dimensional model poten-
tial between the incoming particles and the grating is assumed
to be a product of two functions

U (x, z) = V (z) h(x), (4)

where V (z) describes the interaction along the perpendicular
coordinate z and h(x) the periodic grating along the horizontal
coordinate x. In all our computations we do not take into
consideration the internal motion of the approaching molecule
which is considered to be structureless. The first factor is
taken to be a Morse potential VM (z), at short distances, and
an attractive van der Waals-Casimir tail VC , at large distances,

V (z) =
{
VM (z) = D[e−2χz − 2e−χz], z < z̄,

VC (z) = − C4
(l+z)z3 , z � z̄,

(5)

where C4 = C3l, C3 being the vdW coefficient and l a charac-
teristic length which determines the transition from the vdW
(z � l) to the Casimir (z � l) regime. The matching point
z̄ is determined by imposing the continuity condition for the
interaction potential [VM (z̄) = VC (z̄)] and its first derivative
[V ′

M (z̄) = V ′
C (z̄)]. The range of variation of the C3 parameter

is usually known so that the only real free parameter of the
Morse potential in this model is the stiffness parameter χ (D
is determined from the matching point z̄).

The periodic function describing the grating is written as

h(x) =
+∞∑

n=−∞

∏ (
x − nd

a

)
, (6)

where a is the width of the strips and d the period with a < d.
The

∏
(y) function is the so-called unit impulse function: 0 for

|y| > 1/2, 1 for |y| < 1/2, and 1/2 for |y| = 1/2. In terms of
a Fourier series, h(x) is expressed as

h(x) =
+∞∑

n=−∞
cne

i2πnx/d , (7)

with c0 = a/d, c−n = cn, and cn = (a/d ) sinc (na/d ), and
sinc(x) = sin(πx)/πx. When d = 2a (as in the experimental
grating of Ref. [18]), the terms beyond the sixth order are
in practice no longer significant. The periodic interaction
potential can then be expressed as

U (x, z) =
+∞∑

n=−∞
Vn(z)ei 2πnx

d , (8)

where the first term (n = 0) is the interaction potential
V0(z) = V (z) [see Eq. (5)] and the coupling terms (n 	= 0)
are given by

Vn(z) = 2sinc
(
n

a

d

)
V (z). (9)

As has been recently shown [11], the elastic scattering of
the incident particles with the grating is theoretically well de-
scribed by the CC formalism which accounts for the quantum
reflection probabilities as well as diffraction patterns. The CC
equations are[

h̄2

2m

d2

dz2
+ h̄2

2m
k2
n,z − V0(z)

]
ψn(z) =

∑
n	=n′

Vn−n′ (z)ψn′ (z),

(10)

with h̄2

2m
k2
n,z being the z component of the kinetic energy of

the scattered particles. The square z component of the wave
vector is written as a kinematic relation according to

k2
n,z = k2

i −
(

ki sin θi + 2πn

d

)2

, (11)

with θi measured with respect to the normal to the surface.
Thus, when comparing with experimental results, theoreti-
cal positive n diffraction orders correspond to experimental
negative ones. For every n, the effective potential V0(z) +
h̄2

2m
(ki sin θi + 2πn/d )2 in Eq. (10) represents a diffraction

channel, whose asymptotic energy is given by the second
term. This energy depends on n and the incident scattering
conditions (incident energy and polar angle). Open (closed)
diffraction channels have a positive (negative) normal kinetic
energy h̄2k2

n,z/(2m). The coupling between channels Vn−n′ (z)
is given by Eq. (9) since n − n′ is always an integer number.
The diffraction probabilities are obtained by solving the CC
equations [Eq. (10)] with the corresponding boundary condi-
tions [17].

The diffraction intensities or probabilities, obtained by
solving the CC equations given by Eq. (10) with the usual
boundary conditions [11], are expressed as

In = |Sn0|2, (12)

where Snn′ are the elements of the scattering matrix, which
give the amplitude of probability for an incident wave at the
specular channel (n′ = 0) and exiting by any of the open
diffraction channels labeled by n. By construction, the S

matrix is unitary. It should be stressed, contrary to some
claims in the literature [21], that one should not ignore the
closed channels in the computation. Although they are not
important in the asymptotic region where the coupling to them
vanishes, they do affect strongly the diffraction probabilities
as well as the total reflection probability. This is but another
indication that quantum reflection is determined by the global
potential and not only by the asymptotic form. This implies
that numerical convergence needs to be verified with respect
to not only the grid size and integration step but also the
number of closed channels.

In diffracting systems, when a diffraction channel be-
comes just open or closed, an emerging or evanescent beam
is observed, respectively. Due to the unitarity condition of
the S matrix, the diffraction intensities undergo, in general,
some abrupt variations. The corresponding kinematic condi-
tion (11) fulfills k2

n,z = 0. For a given incident energy and
n value, the corresponding incident angle θi is called the
nth-order Rayleigh angle and this abrupt variation of the in-
tensity is called emerging beam resonance or Rayleigh-Wood
anomaly [22] in grating scattering (or threshold resonance in
atom-surface scattering [10,23]).

The interaction potential given by Eq. (5) displays classical
turning points due to the repulsive part of the Morse potential.
To distinguish between quantum reflection and the “normal”
reflection from the inner repulsive part of the Morse potential,
we impose absorbing boundary conditions [24,25] in the inner
part. For this purpose, a Woods-Saxon (WS) potential is
introduced as an imaginary part of the diffraction channel
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TABLE I. Parameters of the interaction potential V (z) for the
incident particles He, He2, He3, and Ne. The stiffness parameter
of the Morse potential, χ , is a free parameter fitted to reproduce
the corresponding experimental results and D is the well depth.
The characteristic lengths l and parameters C3 are based on values
reported in previous works [4].

Parameters He He2 He3 Ne

χ (Å−1) 0.5 0.43 0.405 0.5
D (meV) 9.8 12.28 15.3 19.8
l (Å) 93 93 93 118.4
C3(10−50Jm3) 3.5 7.0 10.5 7.0

potentials

VWS = A

1 + eαχ (z−zi )
, (13)

which is essentially zero in the physically relevant interaction
region and turns on sufficiently rapidly but smoothly at the
left edge of the numerical grid for the integration to absorb the
flux. The free parameters A and α of the WS potential depend
on the system under consideration. Due to this numerical pro-
cedure, the resulting scattering matrix S̄ is no longer unitary.
The diffraction intensities are then given by Īn = |S̄n0|2 and
the total quantum reflection probability is calculated from

P QR =
∑

n

|S̄n0|2 < 1 (14)

for each initial condition. Due to the absorbing potential the
theoretical diffraction efficiencies are defined as the ratio of
the diffraction intensity Īn to the total quantum reflection
probability P QR rather than to the total incident flux.

III. RESULTS AND DISCUSSION

As previously discussed [11], numerical convergence when
solving the CC equations is reached in two steps. First, the
grid parameters have to be established. For the four incident
particles under study, the initial grid point is between −10 Å
(for He) and −20 Å (for He3) and the final integration point
is between 500 Å (for He) and 1000 Å (for He3) and 2000 Å
(for Ne), the number of points of the grid ranging between
10 000 and 20 000. In the second step, the maximum number
of open and closed diffraction channels are chosen to be 61
(from n = −30 to + 30). Only one free potential parameter
must be fitted for each diffractive system to reproduce the
experimental reflection probabilities. The different potential
parameters are listed in Table I for each incident particle.

The C3 and l values are adapted from the expected range
for He, He2, He3, and Ne interacting with a transition metal
surface [4,18]. According to Refs. [4,18], C3 for He is
∼3.2–4.3 (10−50 J m3) since this is the expected range for
the interaction with a transition metal surface. For He2, one
expects l to be the same as He but C3 to be two times larger.
The same proportionality for C3 is expected for He3. This has
been our guide to fit the interaction potentials for the three He
clusters. For the Ne case, one expects larger values for l and
C3 but our only guide has been the fitting to the corresponding
experimental results. The different potential parameters for

FIG. 1. Vertical interaction potentials V (z) between the incident
particles and the grating. The black dashed curve is the WS absorbing
potential used. This potential is added as an imaginary part for all
diffraction channels with slightly modified parameters (see text).

the four systems used here seem to be plausibly close to values
obtained from ab initio arguments or calculations [4,18]. The
vertical interaction potentials V (z) for the four systems and
the WS potential are plotted in Fig. 1. As expected, the well
depth of the Morse potential increases with the mass of the
incident particle.

The WS potential (the dashed black curve in Fig. 1) is
“turned on” in the region of the classical turning point of
the interaction potential, in particular, at the initial value of
the grid zi . Quantum reflection is not observed when the
absorbing potential is placed far to the right of the potential
well, where the vdW-Casimir tail of the interaction potential
is prevalent. In other words, the inner part of the interaction
potential has a profound effect on the reflection probability,
showing that this region cannot be omitted from the z-grid
integration. This is again confirmed by the different values
of the Morse potential parameters for the different incident
particles. All of the diffraction channels are modified by
adding the imaginary WS potential. The couplings among
them do not involve any imaginary part. The two parameters A

and α needed to define the WS potential for every diffraction
channel are chosen after several runs of the CC code. In
a first run, those parameters are varied by including only
three diffraction channels: the specular channel (n = 0) and
the two diffraction channels labeled by n = ±1, with the
demand being that the specular reflection probability is similar
to that of the one-channel calculation. In a second run, the
next two diffraction channels n = ±2 are added by using the
same criterion. This general numerical procedure is relatively
straightforward to implement because the corresponding pa-
rameters of the remaining channels are much less sensitive
to the total quantum reflection. The resulting parameters are
listed in Table II.

In Fig. 2, the quantum reflection probabilities are plot-
ted versus the perpendicular incident wave vector kperp

(in nm−1) for (i) He and He2 with incident energy T0 = 20 and
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TABLE II. Parameters A and α of the WS potential used for the incident particles He, He2, He3, and Ne. The initial grid points are
zi = −10, −20, −21, −12 Å, respectively. The parameters for each system are written as (An, αn) where the subindices 0 and 1 are used
for the specular channel (n = 0) and the first-order diffraction channels n = ±1, respectively, and the subindex 2 is used for the remaining
diffraction channels. A values are in atomic units. Numbers in parentheses mean powers of 10; for example 7.0(−4) ≡ 7.0 × 10−4.

Parameters He He2 He3 Ne

(A0, α0) (7.0 (−4), 0.5) (2.0 (−6), 0.1) (2.0 (−3), 0.3) (2.0 (−2), 0.9)
(A1, α1) (9.0 (−5), 0.1) (9.0 (−5), 0.1) (2.0 (−1), 0.5) (2.0 (−2), 1.5)
(A2, α2) (7.0 (−3), 0.3) (4.0 (−2), 0.3) (2.0 (−4), 0.1) (2.0 (−2), 0.12)

T0 = 15 K, respectively, with θi = 3.4, 5.2, 7.6, 9.1,12.1,
15.1, 18.9 mrad, (ii) He3 with incident energy T0 = 8.7 K and
θi = 0.8, 1.1, 1.2, 1.4, 1.6 mrad, and (iii) Ne with incident
energy T0 = 40 K and θi = 0.5, 0.6, 0.7, 0.8, 1.1, 1.3 mrad.
Circles, triangles and squares labels represent the experimen-
tal values of Ref. [18] and color curves correspond to the mul-
tichannel calculation. The overall agreement between theory
and experiment is fairly good. The results corresponding to the
He dimer are a prediction since no experimental information
exists in the literature for the regular grating used in our
computations. The absorbing potential has negligible effects
on the theoretical quantum reflection probabilities.

As clearly seen in this figure, the reflection probabilities at
a given value of kperp are much smaller for massive incident
particles. They are quite similar for He and He2 on the one
hand and He3 and Ne, on the other hand. Experimental con-
firmation would be highly desirable to validate the theoretical
behavior of the He dimer. As previously reported [11], the
full interaction region (inner and external regions) contributes
coherently and equally to the reflection probabilities. In partic-
ular, at higher perpendicular wave vectors, incident particles
explore deeper and deeper regions of the potential well, the
attractive part is no longer described by the vdW-Casimir tail.

FIG. 2. Theoretical (multichannel calculations) quantum reflec-
tion probabilities for He (T0 = 20 K), He2 (T0 = 15 K), He3 (T0 =
8.7 K), and Ne (T0 = 40 K) vs the perpendicular incident wave
vector kperp (in nm−1). The results for the He dimer are not compared
with experiment since they have been measured only for scattering
from a blazed grating rather than the regular grating used here. The
experimental points have been provided by the authors of Refs. [4,7].

This part is considered in our model by means of a Morse
potential which is much more appropriate.

The expected linear dependence of the quantum reflection
probability on the incident perpendicular wave vector is re-
vealed only at very small incident perpendicular wave vectors
as seen in Fig. 3. The theoretical (multichannel calcula-
tions) quantum reflection probabilities are plotted versus kperp

(in nm−1) for He, He2, He3, and Ne but keeping the same inci-
dent de Broglie wavelength fixed at λ = 0.179 nm. The source
temperature T0 used for each incident particle is given in
parentheses. Here too, the slopes in the linear regime depend
on the incident mass, the lighter the particle the smaller is
the slope. As previously mentioned, the characteristic length
b governing the slope of the linear regime is determined in a
region where the potential differs appreciably from zero. The
linear behavior is a direct result of boundary conditions and
continuity of the wave function and its derivative and is thus
“universal.” However, the magnitude of the slope is system
specific and depends globally on the interaction potential.
The linear regime is no longer observed when increasing
the perpendicular wave vector, showing a new functional
dependence with the wave vector [12,14]

When the same incident wave vector is used for the four
diffractive systems, it is also quite illustrative to demonstrate

FIG. 3. Quantum reflection probabilities vs kperp (in nm−1) for
He, Ne, He2, and He3 at the same de Broglie wavelength, 0.179 nm.
The source temperature T0 used for each system is given in paren-
theses. Note that the reflection probabilities only display a universal
linear behavior at very small kperp. At higher values of kperp, the
behavior is quite similar for the heavier masses (He3, Ne) and lighter
particles (He, He2).
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FIG. 4. Diffraction efficiencies vs the incident angle (in mrad)
for He, Ne, He2, and He3 at the same de Broglie wavelength of λ =
0.179 nm. The Rayleigh angles are plotted as dashed vertical lines to
indicate the opening or closing of a given diffraction channel.

the universal dependence of the Rayleigh angles on the inci-
dent angle [4]. In Fig. 4, diffraction efficiencies are plotted
as a function of the incident angle (in mrad) for the different
incoming particles as well as the Rayleigh angles (in dashed
vertical lines) showing when the diffraction channels -1, -2,
-3 just become open. This occurs for any integer value of n

at which the kinematic relation [Eq. (11)] exactly vanishes.
As may be inferred from the kinematic relation, the Rayleigh
angles are then functions of the de Broglie wavelength of the
incident particle and the lattice length only. Therefore, when
scattering different particles on the same grating, one should
expect that the threshold angles are only a function of the
de Broglie wavelength. This is clearly seen in Fig. 4. At the
Rayleigh angles, abrupt changes of the diffraction intensities
are observed for the four systems (four panels) due to the
redistribution of the intensities among the open channels.
This is also the typical behavior displayed in atom-surface
scattering [10].

It has also been observed in Ref. [4] that when plotting the
efficiency of the n = −1 diffraction peak as a function of the
incident angle on a logarithmic scale that it is only a function
of the de Broglie wavelength of the incident particle. This was
observed using a blazed grating. In Fig. 5 we plot the efficien-
cies we obtained for the diffraction channel n = −1 on a lin-
ear scale as a function of the incidence angle, keeping the in-
cident de Broglie wavelength fixed and normalizing the plots

FIG. 5. Diffraction efficiencies of the open n = −1 diffraction
channel vs the incident angle (in mrad) for He, Ne, He2, and He3

at the same de Broglie wavelength of λ = 0.179 nm. The Rayleigh
angles are plotted as dashed vertical lines to indicate the opening or
closing of a given diffraction channel.

for the different particles to unity at their maximum. It is clear
that our theoretical results do not show any universal behavior
in this context. The dependence on the angle of incidence
changes when using different particles and is determined by
the overall potential and identity of the incident particle.

IV. CONCLUDING REMARKS

We have demonstrated, using the close-coupling formula-
tion for scattering and employing absorbing boundary con-
ditions, that it is possible to account theoretically for the
quantum reflection probabilities found experimentally when
scattering He, He3, and Ne from a regular grating. We have
also used the same to predict the quantum reflection proba-
bilities expected for the He2 dimer. The same computations
were then used to verify the universal dependence of the
so-called emerging resonances, or Rayleigh angles and their
dependence on the incident de Broglie wavelength alone, as
also observed experimentally in Ref. [4]. Finally, we have
shown that one should not expect a universal dependence
of the diffraction efficiency on the incident angle and wave
number.

We believe the physics underlying these results is quite
clear. Quantum reflection is a coherent, nonlocal phenomenon
where all the regions (inner and outer) of the interaction
potentials must be considered on an equal footing. In par-
ticular, the boundary condition which imposes the vanishing
of the wave function for sufficiently small distances from the
grating implies that the quantum reflection has very little to do
with the so-called badlands region of the long-range attractive
potential. The de Broglie wavelength of the incident particle is
much longer than the spatial extent of the badlands region. It
is this large wavelength which is critical for understanding the
quantum reflection phenomenon. The wave function covers
all regions of the potential so that all of them affect the final
reflection probability. The Morse potential used for describing
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the short-range interaction is a convenient way to cover the
whole interaction region. Quantum reflection does not occur
at tens or hundreds of nanometers away from the grating.
Although the maximal density of the outgoing wave function
is found very far from the surface, as in many other quantum
phenomena, the wave function at any position is affected by
any other position. Just as in the two-slit problem, the wave
function far away from any of the slits is affected by the
wave function at the slits; so here, the wave function at its
maximum, which is far from the surface, is affected by the
wave function close to the surface.

The implication of this is that, as observed in our com-
putations, the magnitude of the linear slope of the reflec-
tion probability as a function of the incident perpendicular
wavelength is system and potential specific. Similarly, the
diffraction efficiencies are found to be system specific. Only
the emerging resonances are universal since they are a kine-
matic effect, which signals the opening up of new diffraction
channels. The main difference between our computations and
the experimental results presented in Ref. [4] is that we use a

regular grating rather than a blazed grating. Only quantitative
differences in the final results are expected when using a
blazed surface. In this context we note that the theoretical
results presented here for the He2 dimer are a prediction which
could be validated using new experiments with a regular
grating rather than a blazed one. There is no reason a priori to
prevent using more sophisticated interaction potentials in this
formalism as used in Ref. [26].
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