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In this paper, we study the dynamics of the Bose-Hubbard model with the nearest-neighbor repulsion by using
time-dependent Gutzwiller methods. Near the unit filling, the phase diagram of the model contains density wave
(DW), supersolid (SS), and superfluid (SF). The three phases are separated by two second-order phase transitions.
We study “slow-quench” dynamics by varying the hopping parameter in the Hamiltonian as a function of time. In
the phase transitions from the DW to SS and from the DW to SE, we focus on how the SF order forms and study
scaling laws of the SF correlation length, vortex density, etc. The results are compared with the Kibble-Zurek
scaling. On the other hand from the SF to DW, we study how the DW order evolves with generation of the
domain walls and vortices. Measurement of first-order SF coherence reveals interesting behavior in the DW

regime.
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I. INTRODUCTION

Systems of ultracold atomic gases have the high versatil-
ity and controllability. In the last decades, ultracold atomic
gas systems play an important role for the study on the
quantum many-body physics as quantum simulators [1-5]. In
this paper, we study ultracold Bose gas systems as a quan-
tum simulator for out-of-equilibrium dynamics of many-body
quantum systems. For a finite-temperature quench, from the
view point of the cosmology, Kibble [6,7] studied how the
system exhibits out-of-equilibrium behavior and pointed out
that the phase transitions lead to topological defects as a result
of spontaneous symmetry breaking of continuous symmetries.
After the pioneering work by Kibble, Zurek [8-10] found
that a similar phenomenon is to be observed in experiments
on the condensed matter systems such as the superfluid (SF)
of “He. Furthermore for the second-order phase transition,
it was argued that physical quantities satisfy some kind of
scaling laws with respect to the quench time that measures
the speed of the “slow quench.” The works by Kibble and
Zurek stimulated many physicists, and there appeared many
theoretical and experimental studies to test this conjecture,
which is sometimes called Kibble-Zurek (KZ) mechanism
and KZ scaling [11]. Recent experiments on ultracold atomic
gases in a homogeneous density setup verified the KZ scaling
law for the correlation length and topological defect formation
[12,13].

A similar problem was also studied for quantum systems,
i.e., how low-energy states evolve under a change of the
parameters in the Hamiltonian crossing a quantum phase tran-
sition (QPT), i.e., the quantum quench [14-20]. This problem
has also attracted great interest. Experiments on behaviors of
quantum systems through QPTs have been already done using
the ultracold atomic gases as a quantum simulator [21-25].

In the previous two papers [26,27], we studied the out-of-
equilibrium dynamics of the ultracold Bose atoms on a square
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optical lattice by using the Bose-Hubbard models. In the prac-
tical calculation, we fixed the on-site and nearest-neighbor
(NN) repulsions and varied the hopping amplitude in the
Hamiltonian, and studied how the lowest-energy state evolves.
In Ref. [26], we investigated how the ground state evolves
from the Mott insulator to SF by means of the time-dependent
Gutzwiller (GW) methods. We first showed the behavior of
the SF order parameter, and gave physical pictures of the
out-of-equilibrium behavior of the system. We found that the
physical quantities such as the correlation length of the SF,
vortex density, etc., satisfy scaling laws and compared the
obtained scaling exponents with the predicted values via the
KZ hypothesis. On the other hand in Ref. [27], we considered
an extended Bose-Hubbard model, which includes the NN
repulsion. The phase diagram has the SF, density wave (DW),
and also the supersolid (SS). For fairly weak NN repulsion,
there exists a first-order phase transition directly connecting
the DW and SF phases accompanying a finite jump in physical
quantities [28,29]. We focused on that parameter regime, and
studied the quench dynamics from the DW to SF, and vice
versa.

In this work, we consider the intermediate strength of
the NN repulsion. In this parameter regime, there exist two
second-order phase transitions separating the DW and SS,
and also the SS and SF [28,29]. Therefore, out-of-equilibrium
dynamics of the multiple phase transitions can be studied.
There are two out-of-equilibrium “impulse” regimes in the
quench dynamics, and their locations are rather close with
each other. Then, it is interesting to see if scaling laws similar
to the KZ hold or not, how the existence of the intermediate
SS changes the quench dynamics of the DW and SF, etc. [30].

This paper is organized as follows. In Sec. II, we introduce
the extended Bose-Hubbard model on the square lattice, and
define order parameters used to distinguish various phases.
The equilibrium phase diagram obtained by the static GW
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methods is shown. There are three phases, i.e., DW, SS, and
SE.

In Sec. III, we show the results of the quench dynamics
from the DW to SS, and also from the DW to SF through
the SS. We study the behavior of the SF order parameter in
detail and see if scaling laws of the SF correlation length, etc.,
hold. The results are compared with the KZ mechanism, and
estimation of the critical exponents is given. We also calculate
the SF correlation length in the SF regime and examine what
kind of state forms there.

In Sec. IV, we study quench dynamics from the SF to DW
through SS. Behavior of the SF order parameter depends on
the quench time 7g. For small tq (fast quench), domain walls
of finite-size DWs form and the amplitude of the SF remains
finite. We also show that quantum vortices are bound on
domain walls. On the other hand for large 7g (slow quench),
the individual DW region is large. However, the first-order
correlation of the boson operator has a peculiar behavior. Its
origin is discussed. Section V is devoted for conclusion and
discussion.

II. EXTENDED BOSE-HUBBARD MODEL
AND EQUILIBRIUM PHASE DIAGRAM

We consider the two-dimensional extended Bose-Hubbard
model (EBHM) described by the following Hamiltonian,

U
Hepy = —J ;(aja, +He)+ = Zni(ni -1
i,j !

+V ninj—uZni, (D
(i,) i

where (i, j) denotes a pair of NN sites of a square lattice,
aj (a;) is the creation (annihilation) operator of the boson at
site i, and n; = a;[ a;. J is the hopping amplitude, and pu is
the chemical potential. There are two kind of repulsions in the
model, i.e., U and V terms in Eq. (1), which describe the on-
site and NN repulsions, respectively. For J, V < U, the sys-
tem is in the Mott insulator, whereas for J > U, V, the SF
forms. On the other hand for V > J, U, the DW order is
realized. As we see later on, there exists another phase, i.e.,
SS, which has both the DW and SF orders.

In this paper, we consider the system near the unit filling
p= le > .{n;) = 1, where N; is the number of lattice sites.
In most of the practical calculations, we set Ny = 64 x 64
with the periodic boundary condition. In the previous work
[27], we focused on the system near the half filling p = 1/2
and weak NN repulsion such as V/U = 0.05, and studied the
first-order phase transition between the DW and SF. On the
other hand in this work, we consider the near unit filling case
p ~ 1 and relatively large V, and study the phase transitions
including the DW, SS, and SF.

In the present work, we study quench dynamics of the
system of Hggy. To this end, we employ the time-dependent
GW (tGW) methods [31-37]. The tGW methods approx-
imate the Hamiltonian of the EBHM in Eq. (1) with a
single-site Hamiltonian H; by introducing local expectation

value V; = (a;),
How = Z H;,
i

, U
H =—J Z (aiT\Ilj + H.c.) + Eni(”li -1

jeiNN

+V Y nilng) — pnj, 2)
Jj€iNN
where iNN denotes the NN sites of site i and for NN repulsion
term the Hartree-Fock decoupling has been introduced. To
solve the quantum system Hgw in Eq. (2), we introduce the
following site-factorized wave function,

Ny e
(bw) =[] (X fi@lny). alalny =nin), @
i n=0
where n is the maximum number of particles at each site, and
we take n, = 6 in the present work. In terms of { f;, (¢)}, the SF
order parameter is given as

W= (o) =Y nfi* fi, )

n=1

and {f!(t)} are determined by solving the following
Schrodinger equation for various initial states,

iho;|Pgw) = How ()| Pow). )

The time dependence of Hgw(¢) in Eq. (5) comes from the
quench J — J(¢) with fixed U and V as explained in the
following section. We employ the fourth-order Runge-Kutta
method for study of the time evolution in Eq. (5). In the prac-
tical calculation, we prepare 10 states as the initial state and
study the time evolution of each state. Physical quantities are
obtained by averaging results of the time evolutions with 10
initial states. Applicability and reliability of the GW methods
are discussed rather in detail in Ref. [27].

In order to obtain the phase diagram, we calculate the fol-
lowing order parameters to distinguish the above mentioned
states, i.e., the DW, SF, and SS,

|W|=Ni2|w,-|,

1 .
Bow = 5 lZ(—l)' (ni),

v, = (a;),

1 .
Asp = EZ(—U’I\I&I, (6)

where (—1)' stands for +1 (—1) for even sites (odd sites).
In Eq. (6), ¥; and |V| measure the SF order, and Apw for
the DW, whereas a finite Agg indicates the existence of the
SS, and Agg is called the relative order parameter [38]. In
the study of the nonequilibrium quench dynamics, the above
quantities play an important role and they are measured as a
function of time.

Before going into the out-of-equilibrium dynamics of
the system, we show the equilibrium phase diagram of
the EBHM. To this end, we solve the time-independent
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FIG. 1. Phase diagrams of the EBHM near the unit filling and
V/U = 0.375. There are three phases, (2,0)-type DW, SS, and SF.
These phases are separated by the second-order phase transitions.
In the DW, Apw # 0, Asg =0, |¥|=0. On the other hand in
the SS, ADW # O, ASF 75 O, |\IJ| # 0. In the SF, ADW = O, ASF =
0, V| #0.

Schrodinger equation for the Hamiltonian Hgw. We show the
obtained phase diagram for V/U = 0.375 in Fig. 1 and the
physical quantities in Fig. 2, which are calculated by the static
GW wave functions and used for identification of phases.
There are three phases for V/U = 0.375, i.e., the SF, DW,
and SS. The SS has both the SF and DW order, and is located
between the SF and DW in the phase diagram. There are two
phase boundaries, and both phase transitions are of second
order as the physical quantities in Fig. 2 indicate. This result
is in good agreement with that of the previous study using
quantum Monte Carlo (QMC) simulations [29] although the
obtained region of the SS phase is slightly larger than the
QMC results.

In the subsequent sections, based on the phase diagram in
Fig. 1, we shall study out-of-equilibrium quench dynamics of
the system that takes place when the system crosses the phase
boundaries as a result of temporal change in parameters in
the Hamiltonian in Eq. (2). In the practical calculation, we
fix U =1 as the unit of energy, and also we focus on the
case with V/U = 0.375 as in the static case. In the previous
work [27], we studied the system with V /U = 0.05, in which
the SS does not form near p ~ 0.5 and a first-order phase
boundary exists between the SF and DW. In the present work,
we are interested in how the system evolves when it crosses
the multiple second-order phase transitions, etc.

J — term

|

0 0.65 0.‘1 0.15 O.é 0.25 03
J/U

FIG. 2. Calculations of the physical quantities for the phase
diagrams in Fig. 1. Chemical potential u/U = 1.5 and V/U =
0.375. The J term stands for the expectation value of the hopping
term — Z(m(afa_,- +H.c.). |¥| and Apw are order parameters of
the SF and DW, respectively. p is the mean particle density. Phase
transitions take place at J/U = J.;/U = 0.10, and J/U = J.»/
U ~0.22.

III. TRANSITIONS FROM DW TO SS AND FROM DW TO SF

In this section, we consider the dynamics of the transitions
from the DW to SS and from the DW to SE. As shown in
Fig. 3, the mean particle density p ~ 1 for u/U = 1.5, and
then the DW is the (2,0)-type one. Phase transition from the
DW to SS takes place at J/U = J.1/U 2~ 0.10, and from the
SStoSFat J/U = J.o/U =~ 0.22, respectively.

A. From DW to SS

We study the transition from the DW to SS first. In the
practical calculation, the following quench protocol is used:
J(@)— Ja t

= —, te€[-1, 10l 7
7o - [—70, Tl @)
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FIG. 3. Arrow indicates quench protocol from the DW to SS and
SF in the phase diagram in Fig. 1. For u/U = 1.5, the critical points
are located at J.,; /U = 0.10 and J.,/U = 0.22.

Je1 /U

where 7q is called quench time. The protocol in Eq. (7) indi-
cates that the system crosses the equilibrium phase transition
point J.; at t = 0, and the quench terminates at t = 7 with
J(1q) =2Je1(< J2).

In Fig. 4, we show the order parameters |¥|, Apy, and
Agr as a function of time (¢) for 7o = 300. |¥| exhibits a
similar behavior to that in the transition from the Mott to
SF in the V/U = 0 case studied previously [26]. As in the
previous works, we define the transition time 7, at which the
system evolves from the impulse to adiabatic regimes, by
|W(7)| = 2|W(0)| [39]. On the other hand, feq is the time at
which the oscillating behavior of |W| starts. Physical picture
of the oscillating regime was explained in the previous paper
[26]. The amplitude of SF, |¥|, develops quite rapidly from 7
to toq. On other hand, the correlation length only doubles in
that period. The genuine coarsening process of the long-range
SF coherence takes place between foq and t., where f., is the
time at which the oscillation of || terminates.

The other order parameters, Apw, Asg, and N, [defined by
Eq. (8)] in Fig. 4, show that the system evolves into the SS at
t = f(= 23.5). This result indicates that the present definition
of 7 is a suitable one, that is, the adiabatic development of the
SF order starts at t = 7.

0.3

0.2

||
Agr

0.1

0

1
300 08
200 0.6
04
100 02

0
0
—7Q  -100 0 100 Q 500 700 —7Q -100 0 100 Q 500 700

1 (Units of h/U) { (Units of h/U)

N,
A DW

FIG. 4. Calculations of the physical quantities from the DW to
SS as a function of time. At r = 0, the system passes trough the
equilibrium phase transition point DW — SS. Locations of 7, f,
and t., are indicated.

It is quite interesting and important to see if scaling laws
of physical quantities, such as the SF correlation length and
vortex density, with respect to the quench time 7 hold or not.
Here, the SF correlation length &, and vortex density N,, are
defined as

1
8N,

Y {alaizris) + He) ocexp(=r/E), (r>> 1),

i

N, =) lul,

i

1
Q= Z[Sin(9i+f —0;) +sin(Oi1 545 — Oiyz)

—$inBir45 — Oigg) —sin@ies — )], (®)

where 6; is the phase of ¥; and X (¥) is the unit vector in
the x (y) direction. As the transition from the DW to SS is
of second order, one may expect that the correlation length
and the vortex density satisfy a scaling law with the critical
exponents of the three-dimensional (3D) XY model, which
describes the second-order SF phase transition.

To see the relation between the Bose-Hubbard model and
the 3D XY model, the path-integral quantization is useful [40].
By introducing the time ¢, and complex fields v; and ; for
the operators a; and a;f , respectively, the time evolution of the
system is given by the following path integral,

/[dwlexp [/ dt(— > ity — iHQ, w>ﬂ, ©)

where H (¥, V) is the Bose-Hubbard Hamiltonian with the J
and U terms. In the SF critical region, density fluctuations
are small and the phase degrees of freedom {6;} play an
important role. Therefore, we put ¥; = ./p; €'%, and expand
as p; = po + 8p;i, where p is the mean density controlled by
the chemical potential. [We use the same notation 6; as in
Eq. (8), for it essentially refers to the same thing.] In Eq. (9),

- leiaﬂﬂi —iHW, ¥)

— =iy 8pidit; +iJpo Yy (e¥e® +cc)
i (i,J)

—iU Y (8pi)°. (10)
Integration over §p; can be readily performed as follows:

/dapi exp [—i / dt (8p;9,6; + U(S,oi)z)j|
— pav Jdr 86 (11)

Then, the resultant effective model describing the SF transi-
tion in the Bose-Hubbard model is given by the summation of
the second J term of Eq. (10) and the time-derivative term,
> (8,60:)F = >, (3,e7% - 3,'%), in Eq. (11). By introducing
finite slices for the time direction, the 3D XY model is real-
ized. The critical exponent of the spatial correlation length is
given by the exponent of the 3D XY model, v. Furthermore,
the dynamical exponent z = 1 as the present 3D XY model
describes (2D space + 1D time) dynamics symmetrically, and
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FIG. 5. Observation of scaling laws with respect to 7 for various
quantities at =7 and 7 = f,,. The exponents are indicated with
errors. The error of the exponent in the bottom-left caption is smaller
than 0.01.

therefore the temporal correlation length &, is proportional to
the spatial correlation length &.

However, it is not obvious that the above derivation of the
3D XY model is applicable for the present EBHM with the NN
repulsion. Furthermore, the DW and SS are not homogeneous
and also there exists the NN repulsions, and then a simple
relation between the exponents such as d = 2b may not hold,
where exponent b for £ 7k, and d for N, 754, The above
problems should be examined by the practical numerical
calculations in the present work.

We show the obtained results in Fig. 5 for both r =7
and ¢ = feq. It is obvious that § and N, both satisfy a fairly
good scaling law from 7q = 20 to 7 = 400. Exponents are
estimated as b = 0.32 and d = 0.25 for t =7, and b = 0.28
and d = 0.50 for t = t.q, respectively. The vortex density
at t = fq is smaller compared to that at t = f. Then, the
interactions between vortices are less effective at t = tq, and
as a result, the expected relation d ~ 2b holds for ¢ = 7.

We also show the scaling of 7 and #,q with respect to
7q in Fig. 5. For a second-order phase transition with the
correlation-length exponent v and dynamical exponent z, the
KZ hypothesis predicts 7, feq réz/ "2 and £ o ré/ vz,
From the above results, we can estimate the critical exponents
v and z as v=0.51, z=1.18 from the data at 7, and
v =0.40, z = 1.07 from the data at t, respectively. The
estimated values of z are fairly close to that expected from
the 3D XY model, i.e., z = 1. On the other hand, the estimated
values of v do not coincide with that of the 3D XY model, v =
0.672 [41]. This may imply that the DW-type inhomogeneity
influences the critical behavior of the SF order.

Finally in the above calculation, we have checked that the
exponents, which we extract, are not sensitive to the exact
definition of 7. In other words, in the period between f and leg»
& and N, satisfy the scaling law quite well with the exponent
close to that of 7 and #.q. This result implies that SF droplets
develop without collapsing with each other in that period
[26,27].
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@t = —200

()t = 23.5
R = B
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4 .
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FIG. 6. Slow quench from the DW to SF through the SS. Physical
quantities as a function of time for rg = 300. t = 23.5 corresponds
to 7, =42.5t0 teq and r = 500 to 7. The upper panels show phase
of ; for various times. Lower-right panel shows a profile of | ;| in
the SS. The system pass through J = J;; (J) att =0 (r = 1.27q).

B. From DW to SF

Let us turn to the case from the DW to SF through the SS.
The quench protocol is as follows:

J(@)— Jq t
— = — te[-t0,tf], 12
i % [—7q, tr] (12)

where we take the quench-termination time #; = 700 for the
case of 7g = 300. In Fig. 6, we show the behaviors of ||,
Apw, Asg, and N, as a function of time. We also show snap-
shots of the phase of W; in Fig. 6 (the upper panels). The DW
order parameter decreases smoothly with small oscillations
after the system passes the point J/U = (.1, whereas the
SF order parameter increases very rapidly after 7, and the
coarsening process of the phase of W; takes place smoothly
from #eq to fex. Order parameter Agsr has nonvanishing values
only in the SS. Calculations in Fig. 6 show that the quench
dynamics from the SS to SF is rather smooth compared with
the DW to SS. The phase coarsening process of the SF order in
the SS and SF accompanies fluctuations of the SF amplitude
as discussed in the previous work [26].

It is interesting to see how the correlation length evolves
under the quench, in particular, after the second critical point
J2. The result is shown in Fig. 7. From 7 to feq, the correlation
length doubles, whereas it increases rapidly after fq as a result
of the coarsening process of the phase degrees of freedom
of W;. The calculation in Fig. 7 suggests that the correlation
length diverges for large . This result indicates that a homoge-
neous SF state at a finite temperature forms in that regime and
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FIG. 7. SF correlation length as a function of time. 7o = 200.
After t = 0, £(¢) increases quite rapidly. (The dotted line indicates
the portion in which the correlation lengths exceed the system size.)
This result indicates that a SF at finite temperature forms there.

it has a divergent Kosterlitz-Thouless-type correlation length,
i.e., the quench of the hopping amplitude injects energy into
the system, and an equilibrium finite-temperature SF state is
realized as a result.

Here, it is suitable to comment on the definition of 7. We
employ its definition given in Ref. [39]. Our numerical results
in Fig. 6 (in particular, the upper panels) and Fig. 7 exhibit that
the adiabatic development of the SF order starts at ¢ = 7. In
fact, the phase of the SF order parameter acquires coherence
at t = f as shown in Fig. 6. The correlation length of the SF
order also starts to increase at ¢t = f. Therefore, it is suitable
to think that a nonadiabatic chaotic state terminates at ¢ = 7.
On the other hand, the definition of 7,4 is directly given by
the behavior of |W| for each 7q. In Ref. [26], we discuss that
the genuine coarsening process of local SF domains (bubbles)
starts at f.q [27], although more precise study of the coarsening
process is desired.

IV. TRANSITION FROM SF TO DW

In this section, we shall study dynamical behavior of the
EBHM under the quench from the SF to DW. In the previous
paper, we studied a related problem concerning to the first-
order phase transition from the SF to the DW [27]. In this
work, we consider the case of the multiple second-order phase
transitions, i.e., SF — SS — DW. As we show, the system
exhibits qualitatively different behavior in the resultant DW
state depending on the value of 7q.

The practical protocol is the following;

Jao—J@)  Ji—Jat

= —, t €[—10,1t¢], 13
Jel Ja 1 [=70- 171 (13)

where J; = J(—1q) is the initial value of J(¢), and we choose
as J;/U =0.3(> J,/U). Att =0, J(0) = J. and also we
choose the final value as Jy = J(ty) =0, i.e., the quench
terminates at t =t; = ]i‘lll 7. See Fig. 8. As the initial
state, we use a GW-type wave function, in which small local
fluctuations of the phase of {\V;} are added to the equilibrium
GW ground state. If we start the time evolution with the
genuine SF state with a totally coherent phase, a DW-SF

J/UA

J.)U

J(:l/U
JiJU

FIG. 8. Quench protocol of out-of-equilibrium dynamics in the
precess SF — SS — DW. (J;/U) = 0.3,and (J;/U) =0

heterogeneous state forms as we observed in the previous
work for the first-order phase transition [27]. See Fig. 9 for
the final state of the DW-SF heterogeneity.

We first show the SF amplitude || as a function of J(¢)/ U
in Fig. 10 for various quench times 7’s. As explained above,
Je1/U 2~ 0.10 and J»/U =~ 0.22. For larger tq, the results
are getting closer to the static case as it is expected. However,
in all cases, the SF amplitude || has a finite value forr — ;.

It is also interesting to see density profile at ¢ = ¢ for the
above various 7g’s. We show the obtained results in Fig. 11.
For every tg, there are domain walls separating DW regions,
and for larger 7, the less domain walls form. A close look
at domain walls reveals that the pattern of the DW changes
as crossing domain walls, and the expectation value of the
particle number at each site in domain walls fluctuates and

(@) J/U
30025 2 15 1 05 0
i
08
— 06
204 M"lﬁ"
02
0 0 = 300
—7Q -200 -100 [ 100
t(Units of h/U)
(b) Density © Vortex
.2 5 Yo, .3-7" Pk n-:d'.ﬂ
zﬁ;ﬁﬁi‘-_j‘ ﬂs-cﬁﬁiﬁi k‘*i
s IR

FIG. 9. If we start the time evolution with the genuine SF state
with a totally coherent phase, a DW-SF heterogeneous state forms
after crossing the DW phase transition. We show snapshots of the
heterogeneous state of the DW and SF at t = t that forms as a result
of the evolution from the genuine SF state. Density profile exhibits
clear formation of local DW regimes in the rather homogeneous
background. Snapshot of vortices indicates that they proliferate.
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FIG. 10. SF amplitude as a function of J/U for various quench
times 7q’s. Results are compared with the equilibrium values.

takes a fractional value. This means that strong quantum
fluctuations take place inside of domain walls.

Next, physical quantities ||, Apw, and Agg are shown in
Fig. 12 as a function of time for 7q = 300. |¥|, Apw, and Agr
exhibit expected behaviors. In order to investigate a SF phase
coherence in detail, we calculated the first-order correlation
defined by

0o =

1
o > (afa;) +cc.). (14)
5 l,_]

In Fig. 12, we show the calculation of F, for 7q = 300
as a function of time. After + = 0, F, exhibits fluctuating
behavior and a close look at the oscillating regime shows that
the period T = 1. In Fig. 13, we show F, as a function of
time for 7o = 50, 200, and 300. For every quench time 7q,
F, exhibits oscillating behavior after passing ¢ =~ 0, but the
pattern of oscillation strongly depends on 7g. This behavior
may be related to the collapse-revival phenomenon that results
from the surviving phase coherence of the SF as studied in
Refs. [34,42-46]. In fact for the product of the genuine coher-
ent state, |[SF) = [T, |p:. 6;) with a;lp;, 6;) = /pie"|p;, 6;),
F, is calculated as follows [42]:

(SFle! ™V ] a e~ Mov! |SF)

o /pipj €@~ explpi(e’ — 1)+ pj(e™ — 1)
xexp{pi(¢ = 1)+ pe(e™ = D), (15)

(b) 7¢ =200 t; =100 (c) 7@ =300 t; =150

(@) 79 =50 ty =25

FIG. 11. Density profiles at ¢ = ¢, for various quench times 7q’s.
J(t;) = 0. Domain walls separating DW regions form and the total
length of domain walls decreases as 7 increases.
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FIG. 12. (Left panels) Physical quantities |\V|, Apw, and Agr as a
function of time for 7q = 300. (Right panels) First-order correlation
F,. After t = 0, it exhibits the collapse-revival behavior. t' = t x £

J(©)/U = J../U and J(—150)/U ~ J.o/U. "

where
U
Hpw = E{ni(ni = DAnjln; — DY+ V(ning +njng).

In the DW-type configurations such as p;, p; > pk, p¢, the
on-site U term in Eq. (15) dominates over the NN V term,
and the oscillation period approximately is given by 2w /U.
This explains the result in Fig. 12.

In order to verify the above expectation, we study the
cases of various 7q’s, and show F, and vortex configurations
for J/U =~ 0 in Fig. 13. For g = 50 and 200, rather clear
domain walls exist, and interestingly enough, large amount
of vortices reside on these domain walls. Therefore, the SF
phase coherence is destroyed. On the other hand for 7 = 300,
existence of domain walls are not so clear, and the number of
vortices is small and vortices seem to locate rather randomly.
We expect that this is the origin for the oscillating behavior
of F,. In summary, we observe that for slower quench from
the SF to DW, the SF amplitude || is getting smaller but the
SF phase coherence is getting stronger compared to the faster
quench as the vortex distribution and the first-order correlation
F, indicate.

V. CONCLUSION AND DISCUSSION

In this paper, we studied the EBHM on the square lattice,
which is expected to be realized by the ultracold atomic gases
and quantum simulated. We first clarify the phase diagram
of the system near the unit filling and V/U = 0.375. There
are three phases, the DW, SS, and SF. Then we studied
the nonequilibrium quench dynamics by varying the hopping
amplitude as a function of time.

In the quench dynamics from the DW to SS, we observed
the time evolution of the SF amplitude and verified that it
exhibits similar behavior in the Mott to SF second-order
phase transition. The correlation length of the SF order, vortex
density, 7 and feq> all exhibit the scaling laws with respect
to the quench time 7q. By using the KZ scaling hypothesis,
the values of critical exponents v and z were estimated from
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FIG. 13. (Upper panels) First-order correlation function as a function of time for 7o = 50, 200, and 300. #; is the time at which the
quench is terminated as shown in Fig. 8. (Middle panels) Density profiles corresponding to the above times (Fig. 11). (Lower panels) Vortex
distributions corresponding to the above times. For tg = 50 and tq = 200, rather clear domain walls form although their shapes are different
in the two cases. Vortices locate at the domain walls. On the other hand for 7 = 300, locations of vortices are random.

our numerical simulations, and we found that z is close to the
value of the 3D XY model but the estimated v does not agree
with the value of the 3D XY model. This discrepancy may stem
from the NN repulsion and the DW order.

Next, we investigated the quench dynamics from the DW
to SF through the SS. We verified that the phase degrees of
freedom of the SF order parameter experiences the coarsening
process as in the Mott to SF transition. The correlation length
of the SF was also measured and we found that it gets large
in the SF regime. This result implies that a SF at finite
temperature forms as a result of the energy injection by the
quench. On the other hand, the DW order smoothly decreases
after passing the static transition point to the SS and vanishes
at the transition to the SF.

Finally, we investigated the quench dynamics from the SF
to DW. The SF amplitude starts to decrease at the SF-SS
transition point J,,. After passing the SS-DW transition point,
it exhibits the oscillating behavior for 7o = 300. Observation
of the first-order correlation of the SF indicates that it is
nothing but the collapse-revival phenomenon of the quenched

SF correlation in the DW regime. Similar phenomenon was
discussed for the SF-Mott quench dynamics in the previous
papers [26,34,42].

We hope that the phenomena that were investigated here
will be observed in ultracold atomic experiments soon. '**Er
bosonic atom is a candidate for quantum simulation of the
EHBM, as its dipole magnetic moment, 7upg (ug = the Bohr
magneton), is fairly large. In the previous paper [47], we
studied '®Er systems on an optical lattice, and showed that
the EBHM with V/U & 0.3 can be realized. Furthermore,
some related experiments on ' Er systems were performed
and observation of a ground state with a DW order was
reported [48].

Recently, there appeared very interesting theoretical study
on universality in the dynamics of quench phase transition
[49]. There, by using equations of motion or Ginzburg-
Landau-type arguments, the KZ scaling was re-derived. In
Ref. [27], this analysis was successfully applied to the first-
order phase transition in the EBHM in the vicinity of the
half filling. It is quite interesting to see how this approach
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is applied to the present multi-second-order phase transitions.
This problem is under study, and results will be reported in a
future publication.
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