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We use tensor network methods—matrix product states, tree tensor networks, and locally purified tensor
networks—to simulate the one-dimensional Bose-Hubbard model for zero and finite temperatures in experi-
mentally accessible regimes. First we explore the effect of thermal fluctuations on the system ground state by
characterizing its Mott and superfluid features. Then we study the behavior of the out-of-equilibrium dynamics
induced by quenches of the hopping parameter. We confirm a Kibble-Zurek scaling for zero temperature and
characterize the finite-temperature behavior, which we explain by means of a simple argument.
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I. INTRODUCTION

Ultracold quantum gases in optical lattices offer the possi-
bility to explore the behavior of condensed matter systems on
a controllable test bed [1–7]. This platform using interference
of laser beams to create spatial standing waves is well suited
for tailoring a variety of lattice structures in three [8] or
fewer [9–11] dimensions. Systems of bosons in an optical
lattice can be described by the Bose-Hubbard model. First
introduced in the 1960s by Gersch and Knollmann [12],
it became very helpful in understanding the superfluid–to–
Mott insulator phase transition [13,14] and has been realized
in a multitude of experiments (for an overview see, e.g.,
Ref. [15]). In particular, the one-dimensional (1D) setting has
been studied in great depth over the years and is characterized
by rich physics, one of the reasons being the occurrence of
a multicritical point with a Berezinskii-Kosterlitz-Thouless
(BKT) transition [13,14].

For a long time the theoretical and numerical work on this
model has concentrated on the zero-temperature limit, which
is a valid approximation for many experimental setups. Nev-
ertheless, characterizing the impact of thermal fluctuations is
an important prerequisite in order to enable a comprehensive
understanding of the observed phenomena [16]. An early in-
vestigation of the influence of finite temperatures on the Bose-
Hubbard model, focusing mostly on the insulating regime,
has been carried out in Ref. [17]. This work was followed by
further theoretical [18–22] and experimental [23–27] studies.

In addition to the equilibrium physics of the model, the
investigation of dynamical processes, arising from tuning the
system’s parameters, is of great interest [28–33], especially
towards engineering complex phases in quantum gases. An
important scenario in this context is quasiadiabatic quenches
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across quantum phase transitions, for which the Kibble-Zurek
(KZ) hypothesis [34–37] offers a simple and intuitive theoret-
ical framework, yet allowing for a quantitative understanding
of the formation of defects when crossing a quantum critical
point. The Kibble-Zurek mechanism (KZM) has been tested in
a plethora of theoretical and experimental settings, including
the Bose-Hubbard model itself [38–40]. Also in this context,
attempts have been made to address thermal effects [41–43].

In this work we focus on the 1D Bose-Hubbard model in
chains of moderate sizes in the range of current experiments.
We analyze the effects of finite temperature on two types of
scenarios of experimental interest: First, we characterize the
properties of the system after being prepared in an initial
thermal state under a given set of constant system param-
eters. We study the extent to which the properties of the
insulating and superfluid phases persist at finite temperatures,
expanding on previous results [17]. Second, we explore the
dynamics of the system triggered by a linear quench in
the particle hopping parameter. We verify the predicted KZ
scaling at zero temperature [38] and then study deviations
from this behavior with rising initial temperature. We pro-
pose a simple argument, capable of providing a quantita-
tively correct prediction of the obtained finite-temperature
results.

Our analysis is based on numerical simulations using ten-
sor network methods, which are well established as a pow-
erful tool for simulating low-dimensional strongly correlated
many-body systems [44–46]. At the core of the analysis, we
employ locally purified tensor networks (LPTNs) [47–49],
a tailored variational ansatz capable of representing thermal
equilibrium states, as well as performing real-time evolution
for time-dependent Hamiltonians and Lindblad master equa-
tions. Previously, this method has been successfully applied to
quantum Ising chains [50]. In the zero-temperature limit, we
complement our results using matrix product state (MPS) [51]
and tree tensor network [52,53] simulations.

2469-9926/2018/98(6)/063601(12) 063601-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.063601&domain=pdf&date_stamp=2018-12-03
https://doi.org/10.1103/PhysRevA.98.063601


WEISS, GERSTER, JASCHKE, SILVI, AND MONTANGERO PHYSICAL REVIEW A 98, 063601 (2018)

The remainder of this paper is structured as follows: In
Sec. II we introduce the model and the notation and study
the properties of the system at equilibrium by characterizing
the insulating (Sec. II A) and superfluid (Sec. II B) features
of its thermal states. The collected results are summarized
in a finite-temperature state diagram (Sec. II C). In Sec. III
we extend our analysis to dynamical processes by quenching
the system in the hopping parameter, first at zero temperature
(Sec. III A) and then at finite temperatures (Sec. III B). In
Sec. IV we draw our conclusions.

II. EQUILIBRIUM PROPERTIES

We consider a 1D Bose-Hubbard lattice [13] described by
the Hamiltonian

H = − J

L−1∑
j=1

(b†j bj+1 + H.c.)

+ U

2

L∑
j=1

nj (nj − 1) − μ

L∑
j=1

nj . (1)

Here, bj (b†j ) is a bosonic annihilation (creation) operator

obeying [bj , b
†
j ′ ] = δjj ′ , and nj = b

†
j bj is the particle number

operator at site j . L is the length of the chain, which we
assume to have open boundaries. The coupling J determines
the hopping strength, while U and μ represent the on-site
repulsion strength and the chemical potential, respectively. By
setting U = h̄ = kB = 1, kB being Boltzmann’s constant, we
fix the units of energy E, time t , and temperature T .

Depending on the values of the parameters J and μ,
the ground state of H at zero temperature exhibits different
phase properties [13,14,54]. Two phases emerge: In the Mott
insulator phase, which in the (J , μ) plane of the phase
diagram appears as “lobes” [13] in proximity to the J = 0
axis, the bosonic particles are localized at single lattice sites
and the filling factor � = N/L (where N = 〈∑L

j=1 nj 〉 is the
total number of particles in the system) is pinned to integer
values, depending on the chemical potential μ. Moreover, this
phase has a finite energy gap �E and it is incompressible,
i.e., ∂�/∂μ = 0. In contrast, a superfluid phase appears for
large enough J , in which the bosons are delocalized over the
entire lattice. In this phase, � is in general not integer, hence it
is compressible ∂�/∂μ > 0. The superfluid phase is gapless,
i.e., �E = 0, and its quasi-long-range order is expected to
disappear at any finite temperature in the thermodynamic
limit.

In the remainder of this section, we characterize the equi-
librium properties of the Bose-Hubbard chain at finite tem-
peratures T > 0. In particular, we aim to quantify the extent
to which the thermal equilibrium states keep their Mott- or
superfuid-phase features when increasing the temperature at
a finite size L. We perform this characterization numerically,
using an LPTN ansatz state, representing the thermal many-
body density matrix ρ = e−βH / Tr[e−βH ], with β = 1/T .
For zero temperature, an MPS can be used instead of an
LPTN. In this sense, the LPTN extends the MPS picture,
valid at T = 0, to finite temperatures (see also Appendix A).
Clearly, the numerical treatment implies a truncation of the

bosonic local Fock spaces to a finite cutoff dimension d,
in order to carry out the numerical simulation. The effect
of this truncation is tunable and negligible as long as high
local occupation numbers are energetically suppressed, i.e.,
as long as the parameters J , μ, and T do not become too large
(compared to U = 1). Here, we adopt up to d = 5, which we
verified to be sufficient for the parameter regime studied here;
see also Appendix B. The lengths of the simulated systems
range from L = 16 to L = 32 sites. We target via LPTN the
grand canonical ensemble density matrix, and in what follows,
we use μ = 1/2. Along this line in the phase diagram, the
transition from the Mott insulator to the superfluid is known to
be a second-order quantum phase transition in the T = 0 case
[13], taking place at a critical hopping strength of Jc ≈ 0.13
[14]. Let us stress that this scenario is not to be confused with
the phase transition at fixed particle filling � ∈ N, which is
of the BKT type [13] and will play a role in the real-time
dynamics.

A. Characterization of Mott insulating features

We start by quantifying the Mott-like character of the
system, as a function of both J and T . In order to do so, we
use the on-site particle occupations 〈nj 〉 and their variance

σ 2
j = 〈

n2
j

〉 − 〈
nj

〉2
, (2)

as well as the compressibility ∂�/∂μ. A necessary condition
for Mott insulating states is localized particles, leading to
integer on-site occupation numbers 〈nj 〉 ∈ N. This behavior
is accompanied by small variances σ 2

j ≈ 0 and a vanishing
compressibility. Specifically, the particle occupation is 1 (i.e.,
〈nj 〉 = 1) in the first Mott lobe which is crossed by the
μ = 1/2 line studied here. In contrast, outside of the Mott
insulating phase, the occupation can attain any value 〈nj 〉 ∈
R+ and the compressibility is strictly larger than 0. This finite
compressibility can be induced either by thermal fluctuations,
when T becomes large enough to overcome the on-site repul-
sion, or by quantum fluctuations, even at zero temperature,
when J becomes large enough to favor delocalized particles.

In Fig. 1, we show the numerically obtained occupation
numbers, variances, and compressibilities as a function of the
coupling J for various temperatures T ∈ [0, 0.4]. Here the
system size is L = 24 sites. In order to avoid boundary effects,
we measure local quantities close to the center of the chain.
As shown in Fig. 1, the on-site particle occupation at T = 0 is
indeed exactly 〈nj 〉 = 1 in the interval 0 � J � Jc, while for
J > Jc a monotonous increase can be observed. This abrupt
behavior is replaced by a smoother transition with rising tem-
perature, actually reducing the range of J supporting a Mott-
like emergent behavior with 〈nj 〉 = 1. The compressibility
∂�/∂μ exhibits a similar behavior; we remark, however, that
this quantity is more prone to finite-size effects due to the
involved numerical derivative (see Appendix B). For low
temperatures, T < T ∗ ≈ 0.2, we observe that the variance
is approximately insensitive to T , indicating a survival of
Mott-like features at least up to these temperatures. For this
reason, the temperature T ∗ has also been referred to as the
“melting temperature” of the Mott insulator [17].
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FIG. 1. On-site occupation 〈nL/2〉 (top), variance σ 2
L/2 (middle),

and compressibility ∂�/∂μ (bottom; determined via a linear fit of
�(μ) in the interval μ ∈ [0.425, 0.575]) as a function of J for various
temperatures T , measured at the center of a chain with L = 24 sites
for U = 1 and μ = 1/2. Inset: Particle occupations along the whole
chain, for fixed J = 0.08.

B. Characterization of superfluid features

In order to identify superfluid features, we study the be-
havior of the two-point hopping correlation function C(r ) =
〈b†j bj+r〉. While in higher dimensions this correlation func-
tion exhibits long-range order in the superfluid phase, in
one dimension the Mermin-Wagner theorem [55,56] prohibits
a spontaneous breaking of the U(1) symmetry. Therefore,
the superfluid phase merely exhibits quasi-long-range order
in one dimension, characterized by algebraically decaying

FIG. 2. Upper panel: Correlation functions C(r ) as a function of
the distance r on the double-logarithmic scale and semilogarithmic
scale (inset) for fixed J = 0.46, U = 1, and μ = 1/2 and various
temperatures T . The system size is L = 24. Lower panel: Fit param-
eters η and ξ , obtained by fitting Eq. (3) to the correlation functions
C(r ).

correlation functions C(r ) ∝ r−η. In contrast, outside of the
superfluid phase order occurs only at a finite correlation length
ξ , which is signaled by an exponential decay, C(r ) ∝ e−r/ξ .
The quasi-long-range order can be destroyed either by thermal
fluctuations, i.e., when T dominates over J , or even at zero
temperature, when J becomes small and the particles crystal-
lize due to density-density interactions.

In order to illustrate this behavior, we plot the correlation
functions C(r ) = 〈b†L/2bL/2+r〉 for a fixed value J > Jc and
different temperatures in Fig. 2. Although the finite size of the
system (here L = 24) makes it difficult to precisely extract the
exponent η or the correlation length ξ , one can nevertheless
detect the crossover from a power-law to an exponential decay
when the temperature is raised, hinting at a gradual loss of
coherence. In order to quantify this observation, we fit the
correlation functions with

C(r ) ∝ r−η exp

(
− r

ξ

)
, (3)

and plot the fit parameters η and ξ as a function of T (see
lower panel in Fig. 2): For low temperatures, we obtain ξ 	
L, meaning a predominantly algebraic decay, while for higher

063601-3



WEISS, GERSTER, JASCHKE, SILVI, AND MONTANGERO PHYSICAL REVIEW A 98, 063601 (2018)

temperatures we have ξ < L and η small, signaling a mainly
exponential decay.

As a secondary approach to quantifying the superfluidlike
nature of a given state ρ, we define and numerically calculate
the “finite-size correlation length” ξL as follows:

ξL =
√√√√

∑L
j,k=1 (j − k)2〈b†j bk〉∑L

j,k=1〈b†j bk〉
. (4)

The two definitions of ξ coincide (neglecting a constant pref-
actor) when ξ is larger than the lattice spacing but smaller than
the system size: ξL	ξ = ξ . If, however, the true correlation
length becomes comparable to or larger than the system
size, ξL is upper bound by a constant proportional to L.
This bound can be shown by considering the limiting case
of a constant correlation function C(r ) → �, which is the
asymptotically exact ground-state correlation function of H in
the limit J → ∞, since η(J→∞) → 0. Obviously, the true
correlation length is diverging in this case (ξ → ∞), but for
ξL we get

ξL =
√√√√

∑L
j,k=1 (j − k)2�∑L

j,k=1 �
=

√
L2 − 1

6
−−−→
L→∞

L√
6
. (5)

More generally, one can show that for L → ∞ the propor-
tionality ξL ∝ L is valid for any algebraically decaying cor-
relation function, if its exponent η is in the range 0 � η < 1.
This condition holds throughout the superfluid phase [14,57].
Consequently, a diverging correlation length ξ can be detected
by monitoring whether the ratio ξL/L approaches a constant
larger than 0 when increasing L. If, on the other hand, this
ratio tends to 0 for increasing L, the correlation length is finite.

We illustrate this idea in Fig. 3 (upper two panels), both for
zero and for nonzero temperature. Clearly, the more superflu-
idlike the system, the more ξL diverges with the system size
L. Based on this observation, we quantify the superfluidlike
nature of a thermal state ρ via

ΥL(J, T ) = ξL+�L(J, T ) − ξL(J, T )

�L
, (6)

measuring the incremental growth of ξL while increasing the
system size by �L. In the bottom panel in Fig. 3 we plot Υ24

with �L = 2 as a function of J for different temperatures T .
At zero temperature, a sharp, discontinuous increase in ΥL at
J ≈ Jc separates the Mott insulating phase with vanishing ΥL

from the superfluid phase with nonzero ΥL. Higher tempera-
tures gradually smooth out the transition and push the regime
of superfluidlike correlations to larger and larger values of J .

C. State diagram for finite system sizes at finite temperatures

Having developed quantifiers for both the Mott-like and
the superfluidlike character of the system, we can summarize
the data from the previous two subsections in a single graph,
leading to the finite-size state diagram shown in Fig. 4.
The intensity of the blue color corresponds to the deviation
�(J, T ) of the variance σ 2

L/2(J, T ) from its maximal value in
the considered intervals of J and T . More specifically,

�(J, T ) = max
J,T

[
σ 2

L/2(J, T )
] − σ 2

L/2(J, T ), (7)

FIG. 3. Finite-size correlation length ξL as a function of J for
several system sizes L and two temperatures, T = 0 (top panel) and
T = 0.4 (middle panel), with fixed U = 1, μ = 1/2. Insets: ξL/L for
the same data, together with the upper bound 1/

√
6. Bottom panel:

Quantifier for superfluidity Υ24, calculated with �L = 2 according
to Eq. (6), for various temperatures T ∈ [0, 0.4].

with the variance σ 2
L/2(J, T ) as defined in Eq. (2). Conse-

quently, the intensity of the blue color encodes the presence of
Mott-like features. Similarly, the intensity of the orange color
encodes the occurrence of superfluidlike features measured
via ΥL(J, T ), as defined in Eq. (6).
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FIG. 4. Characterization of Mott-like features (blue) and super-
fluidlike features (orange) as a function of the hopping strength J

and temperature T (for fixed U = 1, μ = 1/2), based on the analysis
described in Secs. II A and II B. The white area corresponds to the
“thermal region.” The system size is L = 24.

For T = 0 the sharp transition between the Mott insulator
phase and the superfluid phase at J ≈ Jc is clearly visible in
Fig. 4. For low enough temperatures and sufficiently far away
from Jc the essential features of the two phases survive. A
larger and larger “thermal region,” where thermal fluctuations
prevent any type of order, opens up around Jc when the
temperature is raised.

III. DYNAMICS

We now discuss some aspects of the time evolution, i.e.,
the out-of-equilibrium dynamics in the Bose-Hubbard model.
In particular, we are interested in analyzing the behavior of
the system when exposed to linear-ramp quenches in the
hopping strength J across the phase transition. This is the
typical scenario investigated in the framework of the Kibble-
Zurek mechanism [34,35]. As before, we start from the zero-
temperature behavior and then proceed to analyze the impact
of finite temperatures. We use the following quench protocol:

(i) The starting point is the equilibrium state ρ0 of the
Hamiltonian H for J = 0, μ = 1/2. Since the coupling term
vanishes in this case, ρ0 is always a product state. At zero
temperature, ρ0 is the pure state composed of the perfect
Mott insulator state |�〉 with filling 1, i.e., |�〉 = |1〉1 . . . |1〉L,
while at finite temperature ρ0 = e−βH0/ Tr[e−βH0 ].

(ii) The initial state ρ0 is evolved via unitary time evolu-
tion ρ̇ = −i [H (t ), ρ] in the time interval t ∈ [−τQ/2, τQ/2],
where τQ is the duration of the quench. The Hamiltonian is
time dependent through a linear ramp in the hopping strength,

J (t ) = 2Jc

τQ

t + Jc, (8)

which is chosen to be symmetric around the critical
point Jc, such that J (0) = Jc and J (−τQ/2) = 0. Since
[H (t ),

∑L
j=1 nj ] = 0, the total particle number N is a con-

stant of motion. For T = 0 this implies that the dynamics
takes place along the line of constant filling � = 1 in the phase
diagram, which passes through the multicritical point at the

tip of the first Mott lobe [13]. The phase transition in this
case [58] is of the BKT type [59,60], and it is located at Jc ≈
0.30 [15,61]. The time evolution of the quantum many-body
state (computed by means of MPS and LPTN for zero and
finite temperatures, respectively) is performed numerically
with the time-evolving block decimation [62] algorithm using
a Suzuki-Trotter decomposition of the Hamiltonian at second
order (see also Appendix A).

(iii) At the end of the quench, the final correlation length
ξfin is measured using Eq. (4). We then study the behavior of
this “defect measure” [36] as a function of the quench duration
τQ.

A. Quenches at zero temperature

In order to enable an understanding of the essential features
of the system’s state after the quench, the KZM provides a
simple yet powerful argument relying on a comparison of
the system’s internal relaxation time scale τR (t ) with the
external driving time scale τD (t ). This comparison separates
the dynamics into two stages: an adiabatic stage when τR (t ) <

τD (t ) and an impulsed (sudden) stage when τR (t ) > τD (t ).
The instant t̂ at which the dynamics changes from adiabatic
to sudden is called the freeze-out time. Based on this simple
picture, the KZM predicts that the order properties of the
system after the quench are essentially determined by the
instantaneous ground state at Ĵ = J (t̂ ) [35].

For the case of a second-order quantum phase transition,
the KZM allows for a particularly elegant description of the
scaling of the final density of defects as a function of the
quench duration. More specifically, if at the critical point
the equilibrium correlation length diverges with a critical
exponent ν and the energy gap �E closes with another critical
exponent zν, the KZM predicts [36] that the final correlation
length (after the quench) scales according to

ξfin ∝ τ κ
Q, where κ = ν

1 + zν
, (9)

i.e., the scaling of the defect density as a function of the
quench time is determined by a single constant exponent κ .

Here, however, due to the preservation of the total number
of particles induced by the U(1) symmetry, we cross an
infinite-order BKT transition which produces quantitative and
qualitative deviations from the traditional KZ picture [38,63]:
While the basic idea of identifying the final correlation length
with the one at equilibrium at time t̂ is in principle still
valid, the exponential scaling [64] of the equilibrium quan-
tities �E(J ) and ξ (J ) near the critical point Jc prevents the
derivation of a simple expression like the one in Eq. (9). Nev-
ertheless, following Ref. [38], one can still define “effective”
critical exponents νeff and [zν]eff by approximating the expo-
nentials with power laws around a sufficiently small interval
around the freeze-out point Ĵ . Obviously, these exponents
now depend on Ĵ and hence also on the quench time τQ,
but this approach allows one to recover (at least formally) the
scaling given in Eq. (9), after replacing κ with an effective
exponent κ (τQ):

κ (τQ) = νeff (τQ)

1 + [zν]eff (τQ)
. (10)
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FIG. 5. Driving time scale τD and relaxation time scale τR as
a function of the time t for a system of L = 16 sites undergoing
the linear quench of Eq. (8), with fixed U = 1, � = 1. Left panel:
For τQ < 2 no intersection of the two time scales exists, hence τD

is always smaller than τR . Right panel: For τQ � 2 the time scales
intersect (depicted by the circle), leading to a nontrivial freeze-out
time t̂ .

In the following, we adopt this strategy to verify the validity
of the KZM for the quench protocol described above at zero
temperature. To this end, we first need to determine the freeze-
out times t̂ (τQ). We do this numerically, by comparing the
relaxation time scale τR (t ) = 1/�E(t ) with the driving time
scale τD (t ) = |(J (t ) − Jc )/J̇ (t )| = |t | [36]. This procedure is
illustrated in Fig. 5, for two quench times τQ. In our energy
units we have �E(−τQ/2) = �E(J = 0) = 1, thus the re-
laxation time scale is always τR (−τQ/2) = 1 at the beginning
of the quench. Hence, for all τQ < 2 the driving time scale
τD (−τQ/2) = τQ/2 is sufficiently fast that the quench will
be completely sudden. On the other hand, if τQ � 2, there is
an intersection of the two time scales and a nontrivial KZM
scaling of the final defect density can be expected. In order
to verify the KZM in this regime, we numerically determine
the effective critical exponents νeff and [zν]eff as shown in
Fig. 6. By fitting power laws to the equilibrium quantities in
the appropriate interval of J , we obtain νeff = 2.32 ± 0.2 and

FIG. 6. Fitting of the effective critical exponents νeff and [zν]eff

to the equilibrium scaling of ξL and �E, respectively, as a function of
the distance |J − Jc| from the critical point Jc. Note that all axes are
logarithmic. The fit interval (marked by nondashed lines) has been
chosen such that it covers the range of freeze-out points Ĵ for quench
times in the interval 3 � τQ � 15. The system size is L = 16, and
U = 1, � = 1.

FIG. 7. Final correlation length ξfin as a function of the quench
time τQ for T = 0. Three regimes can be distinguished: the sudden
quench regime, KZM scaling regime, and regime of finite-size
saturation. The system size is L = 16, and U = 1, � = 1.

[zν]eff = 1.54 ± 0.1, which are compatible with the numbers
reported in Ref. [63]. Inserting these values into Eq. (10)
delivers the prediction κ = 0.92 ± 0.12 for the scaling of the
final correlation length ξfin after the quench.

In Fig. 7, we show the final correlation lengths ξfin, mea-
sured after simulating the time evolution of the quantum
many-body state with the time-evolving block decimation
algorithm, for various values of τQ spanning several orders
of magnitude. Three regimes can be observed (marked by
different shadings).

(1) Sudden quench regime for τQ � 2: As discussed
above, the dynamics may be viewed as driven by a short
impulse of duration τQ in this regime. The fact that τQ is small
allows for an approximate integration of the Schrödinger
equation via discretization. Such an approximation can be
done analytically, resulting in the following expression for the
final correlation length (see Appendix C):

ξfin(τQ) = 2
√

Jc τQ + O
(
τ 2
Q

)
. (11)

For τQ  1 this expression is in good agreement with the
numerical data, as demonstrated by the red line in Fig. 7.

(2) KZM scaling for 2 � τQ � 15: The fact that this
regime has an upper bound for τQ is due to the finite size of the
system (here L = 16), implying a saturation value of L/

√
6

for the correlation length [see Eq. (5)]. Fitting the exponent κ

from the data in the KZM scaling regime yields κ = 0.88 ±
0.1, which is in good agreement both with the prediction based
on the equilibrium effective critical exponents outlined above
and with the experimental and numerical results reported in
Ref. [39].

(3) Saturated regime for τQ � 15: In this regime, the final
correlation length is saturated due to the finite system size.
Here, the defect density becomes too low to be resolved in
a system of size L and the system appears to be completely
ordered. Larger system sizes shift this regime to larger values
of τQ (not shown in Fig. 7).

063601-6



KIBBLE-ZUREK SCALING OF THE ONE-DIMENSIONAL … PHYSICAL REVIEW A 98, 063601 (2018)

B. Quenches at finite temperatures

In order to gain some (semiquantitative) understanding of
the behavior of the KZ scaling for finite temperatures, it is
instructive to first consider the limiting case T → ∞. Since
in this case the thermal state ρ0 asymptotically approaches the
identity, i.e., ρ0(T →∞) → 1, the time evolution is trivial and
the final state is again the identity: ρfin(T →∞) = ρ0. This
behavior automatically implies a vanishing KZ exponent κ ,
because ξfin(τQ) = ξ0 = 0. Hence, we expect κ (T →∞) →
0. On the other hand, for T = 0 we need to recover the
zero-temperature KZ exponent, κ (T →0) → κ0, where κ0 is
determined by the KZM described above. In order to provide
a heuristic ansatz for the KZ exponent κ (T ) at finite temper-
atures, we resort to an Arrhenius argument. This argument
fits because the deviation �κ (T ) = κ0 − κ (T ) of the thermal
KZ exponent from the zero-temperature KZ exponent can be
viewed as a thermally induced quantity: An energy barrier
needs to be overcome by means of thermal activation in order
to enable an increase of �κ . Based on this motivation, we use
the Arrhenius ansatz [65]

�κ (T ) = κ0 e−Ea/T , (12)

where Ea is an activation energy. Since the increase in �κ (T )
is “activated” by an increasingly dominating population of
excited states in the initial thermal density matrix ρ0(T ), the
energy gap �E′ between the ground and the excited states can
be considered an appropriate energy scale for the activation
energy Ea . As ρ0 results from the Hamiltonian with J = 0 in
our protocol, the energy gap is easily seen to be �E′ = μ.
It is worth mentioning that here the relevant energy gap is
the intersector gap �E′ (i.e., the energy difference between
a system with N particles and a system with N + 1 particles)
because we are working in a grand canonical ensemble. This
gap is not the same as the intrasector gap �E employed in
the previous section, which is relevant for determining the
freeze-out of the particle-conserving adiabatic time evolution
of the ground state at zero temperature.

Combining all assumptions, we predict the following ther-
mal dependence of the KZ exponent:

κ (T ) = κ0(1 − e−μ/T ). (13)

Figure 8 stresses the validity of this ansatz: In the numeri-
cally accessible interval of low temperatures (T � 0.5), the
determined KZ exponents indeed follow the prediction given
in Eq. (13).

IV. CONCLUSION

In this work, we have investigated the properties of the
equilibrium and out-of-equilibrium 1D Bose-Hubbard model
at finite temperatures. In the analysis of equilibrium properties
we find, for the considered system sizes, a persistence of
both insulating and superfluid features up to a certain tem-
perature depending on the coupling J . Our simulations yield
a variety of observable data which characterize the physics
of the thermal system. Additionally, theoretical predictions
for the system’s quantities at finite temperatures allow for
thermometry in an experimental setup [26,66].

The investigation of the dynamical behavior of the system
results in a verification of the Kibble-Zurek scaling for zero

FIG. 8. Correlation length ξfin after the quench as a function of
the quench duration τQ, for various temperatures T . Dashed lines
are linear fits whose slopes determine the KZ exponents κ (T ). The
system size is L = 16, and U = 1. Upper plot: Extracted exponents
as a function of T , together with the Arrhenius ansatz indicated in
Eq. (13), with μ = 1/2.

temperature and a good agreement between the proposed
Arrhenius-type ansatz and the obtained numerical data for
T > 0.

Our analysis offers many possible extensions, e.g., inves-
tigating certain regions of the J -μ phase diagram where a
revival of the Mott insulating phase is expected [14] or, as
often found to characterize experimental setups, simulating
harmonically confined systems realized by site-dependent
chemical potentials [15,67,68].

Finally, an essential question is when the scenario of
evolving a mixed state with a unitary time evolution following
the von Neumann equation applies. Throughout this work we
consider the case where the time scale of the quench is much
shorter than the time scale of the system to reach thermal
equilibrium. This condition is normally fulfilled if we prepare
the initial thermal state and are able to largely decouple the
system from the environment. If, instead, the quench time
scale is comparable to or larger than the relaxation time scale,
one has to include open-system dynamics in the calculations
[69,70]. This case is left for future studies and requires a
careful choice of Lindblad operators [71–74] for Markovian
dynamics or evolution of non-Markovian systems [75,76].
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APPENDIX A: NUMERICAL METHODS

As mentioned above, we employ tensor network methods
as our simulation tool. The ground-state properties have been
obtained via the imaginary time evolution for the MPS [44]
or via variational minimization for the tree tensor network
[53,78]. In order to obtain thermal equilibrium states for
T > 0, we use the imaginary time evolution applied to the
LPTN. Each discretization step of this evolution generates a
fixed-temperature state, starting from the maximally mixed
state (infinite temperature). The temperature of the LPTN after
n steps is inversely proportional to n, i.e., T ∝ 1/n. In the
following, we summarize the LPTN framework in more detail,
beginning with a brief recap of MPS notation.

The idea of the MPS is the decomposition of a many-body
wave function |ψ〉 representing a system at L sites into a set
of L local tensors which together compose |ψ〉. The original
vector representing the quantum many-body state has dL

entries, where d is the local dimension of the Bose-Hubbard
model in our case. Each tensor represents one site and is of
rank 3, Tαj ,ij ,αj+1 ; the index ij iterates over the different states
in the local Hilbert space, i.e., the Fock states at site j ; and the
indices α connect the site to its nearest neighbor and encode
the entanglement to the complete subsystem on the left and
right, respectively. The maximal dimension of α enables us
to truncate entanglement and to keep simulations feasible;
this maximal dimension is called the bond dimension m. For
m = dL/2 the MPS representation covers all possible states,
i.e., the full Hilbert space.

The idea of the LPTN lies in the positivity of a density
matrix, i.e., we can decompose any density matrix ρ as

ρ = U�U † = U
√

�
√

�U † = XX†, (A1)

where �i � 0 are the eigenvalues represented in a diagonal
matrix �, and we define X ≡ U

√
�. The matrix X is the

purification of the density matrix ρ and is sufficient for
the unitary time evolution and imaginary time evolution, as
outlined later. The purification X scales with the system size
as dL × 1 for a pure state and dL × dL for a maximally mixed
state ρ ∝ 1. For the special case of a pure state, there is exactly
one eigenvalue equal to 1 and ρ = |ψ〉 〈ψ |. We can include
this new index running over the eigenvalues by extending
each tensor in the MPS with an additional index κj , i.e.,
Tαj ,ij ,κj ,αj+1 ; we obtain the LTPN. The MPS is regained for
dim(κj ) = 1, ∀j . In contrast, if each dim(κj ) = d, ∀j , we
regain, globally, the dimension dL of matrix �.

We turn to the argument why this representation is efficient
in the case of finite-temperature states. We define the thermal
state as ρth = exp(−βH )/Z, with the partition function de-
fined as Z = Tr[exp(−βH )]. We can rewrite the thermal state
as

ρth = exp(−βH )

Z

= 1

Z
exp

(
−βH

2

)
1 exp

(
−βH

2

)
, (A2)

where the identity 1 is proportional to the infinite-temperature
state ρinf ; its purification can be easily represented as an

FIG. 9. Demonstration of convergence in the system size L and
the bond dimension m for the variance in the middle of the chain as a
function of the hopping strength J . The local dimension d = 5, and
U = 1, μ = 1/2.

LPTN, where the global identity is a product state of lo-
cal identities with dim(αj ) = 1, ∀j ; the identity matrix is
with respect to the indices ij and κj for each site j . Equa-
tion (A2) represents the imaginary time evolution with a
constant Hamiltonian. For the real time evolution, we time-
slice the Hamiltonian and evolve the state under a Hamiltonian
constant for each time step �t . To approximate the propagator
of the Hamiltonian in both time evolution schemes, we use a
Suzuki-Trotter decomposition splitting the Hamiltonian into
H = H2j−1,2j + H2j,2j+1, where H2j−1,2j acts at odd sites
and their nearest right neighbors, and the second term contains
operators acting at even sites and their nearest right neighbors.
There is an error scaling with �t when using

exp(cH ) = exp
( c

2
H2j−1,2j

)
exp(cH2j,2j+1)

× exp
( c

2
H2j−1,2j

)
+ O(�t3), (A3)

where the summands in each exponential on the right-hand
side commute with each other and, consequently, can be ex-
ponentiated independently at the local two-site Hilbert spaces.
The constant c is i�t and �t for the real and the imaginary
time evolution, respectively. The error of the total evolution
scales as O(�t2) for this second-order Suzuki-Trotter decom-
position. The application of each of the three layers follows
the idea of the time-evolving block decimation algorithm
[44,62]. We point out that it is sufficient to evolve either X or
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X† because both real and imaginary time evolution preserve
the complex conjugate structure of the purification.

In addition to errors scaling with the time step �t , we have
to truncate correlations in the dimension of αj . For an exact
representation of a many-body state, the number of weights at
the center of our many-body representation can include up to
dL nonzero weights in the case of an LPTN or dL/2 for a pure
state represented as an MPS. We allow for truncations of low
weights in the spectrum of the singular value decomposition
(SVD). The truncation with the SVD results in a minimal error
for the evolution of an LPTN [49] if the LPTN is properly
gauged [46]. The index κj capturing the purification does
not increase during unitary time evolution and guarantees an
efficient evolution.

APPENDIX B: CONVERGENCE OF THE SIMULATIONS

In this section we show with some examples that the nu-
merical simulations presented above are at convergence with
respect to changing the relevant refinement parameters. In our
case, these include the system size L, the bond dimension m,
the Trotter time step �t , and the local dimension d.

In Fig. 9 we demonstrate that the variances of the particle
occupations of the obtained equilibrium ground and thermal
states are independent of the system size L. The deviations of
σ 2

L/2(J ) are below the symbol size when both the system size
L and the bond dimension m are changed, for all considered
values of the temperature T .

The two plots in Fig. 10 show that the Trotter time step
�t and the employed bond dimensions m are sufficient for
converged imaginary time evolution results: The error of the
correlation length ξL is again below the symbol size.

FIG. 10. Demonstration of convergence in the bond dimension
m and the Trotter time step �t for the correlation length ξL as a
function of the hopping strength J . The system size is L = 16, the
local dimension is d = 5, and U = 1, μ = 1/2.

FIG. 11. Numerical calculation of the compressibility ∂�/∂μ.
The upper two panels show the filling � as a function of the chemical
potential μ, for various temperatures and two hopping strengths,
J = 0.04 < Jc and J = 0.19 > Jc. The lower panel shows the fitted
slopes ��/�μ as a function of the hopping strength J , for two
temperatures and three values for the fit interval �μ. The system
size is L = 18, and U = 1.

Figure 11 illustrates how we numerically obtain the com-
pressibilities plotted in Fig. 1: We first determine the filling �

as a function of the chemical potential μ and then linearly
fit these data in an interval of width �μ around μ = 1/2,
yielding an estimate for the compressibility ∂�/∂μ|μ=1/2. We
plot �(μ) for two values of J in the upper two panels in
Fig. 11, demonstrating that ∂�/∂μ indeed only vanishes in
the Mott insulator phase. For a system at zero temperature
and finite size L, the filling � = N/L is limited to integer
multiples of 1/L, leading to a steplike behavior of �(μ). In
order to account for this finite-size effect, a careful choice
of the fit interval �μ is required. We find that �μ = 0.15
provides a good trade-off in the parameter regime studied here
(see lower panel in Fig. 11).
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FIG. 12. Demonstration of convergence in the bond dimension
m and local dimension d for the final correlation length ξfin as a
function of the quench time τQ. Upper panel: Results presented in
Fig. 7. Lower panel: Results presented in Fig. 8. The system size is
L = 16.

Finally, in Fig. 12 we focus on the convergence of the
quench data presented in Sec. III. It is evident that both for
zero (upper panel) and for finite (lower panel) temperatures

the local dimension d = 4 delivers noticeably different results
compared to d = 5. Instead, the observed deviations between
d = 5 and d � 6 become negligibly small.

APPENDIX C: ANALYTICAL TREATMENT OF TIME
EVOLUTION FOR SHORT QUENCHES

Here we show the calculation leading to Eq. (11). We start
from the perfect Mott insulator state with filling � = 1, i.e.,

|�0〉 = |�(−τQ/2)〉 = |1〉1 . . . |1〉L. (C1)

Performing a linear quench in the hopping strength entails a
nontrivial time evolution under the time-dependent Hamilto-
nian H (t ). We focus on the case τQ  1, meaning that the
total evolution time is short. Discretizing the integration of
the Schrödinger equation we can write

|�(τQ/2)〉 �
(

1 − iH̄ τQ − 1

2
H̄ 2τ 2

Q + O
(
τ 3
Q

))|�0〉, (C2)

and we use the trapezoidal rule to determine the con-
stant Hamiltonian H̄ during the discretization interval
[−τQ/2, τQ/2],

H̄ = 1
2 [H (−τQ/2) + H (τQ/2)] = H (J (0)) = H (Jc ),

(C3)

where we have used the definition of the linear ramp J (t ) of
Eq. (8).

Plugging Eqs. (C1) and (C3) into Eq. (C2), we can calcu-
late the final state |�(τQ/2)〉, exact up to third order in τQ

(here we assume periodic boundary conditions for simplicity,
and U = 1):

|�(τQ/2)〉 = (
1 − 2 τ 2

QJ 2
c L

)|1〉1 . . . |1〉L +
(

1√
2

τ 2
QJc + i

√
2 τQJc

) L∑
j=1

|1〉1 . . . |1〉j−1(|2〉j |0〉j+1 + |0〉j |2〉j+1)|1〉j+2 . . . |1〉L

− 2 τ 2
QJ 2

c

L∑
j=1

L∑
k>j+1

|1〉1 . . . |1〉j−1(|2〉j |0〉j+1 + |0〉j |2〉j+1)|1〉j+2 . . . |1〉k−1(|2〉k|0〉k+1 + |0〉k|2〉k+1)|1〉k+2 . . . |1〉L

− 3√
2

τ 2
QJ 2

c

L∑
j=1

|1〉1 . . . |1〉j−1(|2〉j |1〉j+1|0〉j+2 + |0〉j |1〉j+1|2〉j+2)|1〉j+3 . . . |1〉L

−
√

6 τ 2
QJ 2

c

L∑
j=1

|1〉1 . . . |1〉j−1|0〉j |3〉j+1|0〉j+2|1〉j+3 . . . |1〉L + O
(
τ 3
Q

)
. (C4)

From Eq. (C4) we obtain the two-site hopping correlations, again exact up to third order in τQ:

〈b†j bk〉 =
⎧⎨
⎩

1 for j = k,

2 τ 2
QJc + O(τ 3

Q) for |j − k| = 1,

O(τ 3
Q), for |j − k| > 1.

(C5)

We can use these to determine the correlation length ξfin according to Eq. (4),

ξfin =
√√√√ 2L · 12 · 2 τ 2

QJc + O
(
τ 3
Q

)
L + 2L · 2 τ 2

QJc + O
(
τ 3
Q

) = 2
√

Jc τQ + O
(
τ 2
Q

)
, (C6)

which is the expression used in Eq. (11).
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