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Phase-space-density limitation in laser cooling without spontaneous emission
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We study the possibility to enhance the phase-space density of noninteracting particles submitted to a classical
laser field without spontaneous emission. We clearly state that, when no spontaneous emission is present, a
quantum description of the particle motion is more reliable than semiclassical description, which can lead to
large errors especially if no care is taken to smooth structures smaller than the Heisenberg uncertainty principle.
Whatever the definition of position-momentum phase-space density, its gain is severely bounded especially when
started from a thermal sample. More precisely, the maximum of the position-momentum phase-space density can
only increase by a factor M for M-level particles. This bound comes from a transfer between the external and
internal degrees of freedom. Therefore, it is impossible to increase the position-momentum phase-space density
in the same internal state.
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I. INTRODUCTION

It is usually believed that the phase-space density (PSD)
of noninteracting particles cannot be increased by using only
pure Hamiltonian evolution and any PSD increase would
require a dissipative mechanism [1,2]. In the context of laser
cooling, this dissipation is usually ensured by spontaneous
emission. Nevertheless, in recent years, several papers sug-
gested that some experimental observations could support
the possibility of an optical cooling without spontaneous
emission [3–5]. These counterintuitive results were also sup-
ported by theoretical arguments and semiclassical simulations
using classical laser fields [6–8]. The perspective of cooling
different species including molecules has actively stimulated
the discussions [9–11].

In this paper, we specifically address the issue of increasing
the PSD for noninteracting particles submitted to classical
laser fields (i.e., equivalent to quantum fields in coherent
mode [12–14]) and deprived of spontaneous emission. We first
determine the evolution of a position-momentum distribution
(PMD) of such particles (often called atoms hereafter even
though molecules are also concerned) in a phase-space region.
In particular, we show that a quantum treatment of the external
degrees of freedom is more reliable than a classical treatment
that may lead to erroneous predictions. A quantum description
of position and momentum requires one to revisit the defi-
nition of the classical PMD, to define quantum analogs, and
to discuss their characterizations. Because the term “cooling”
is ambiguous and has often led to misinterpretations and
controversies, we perform our analysis by considering both
the PMD and several definitions of a single quantity (rather
than a distribution) called PSD in a generic way. Somehow,
the most straightforward definition of PSD is the maximum of
PMD. Other definitions, such as those derived from different
entropies, are used to account for the populations and corre-
lations of the internal and external degrees of freedom. With
these careful definitions, we establish that PSD can marginally

increase in the case of an initial thermal distribution. Yet the
gain is shown to be bounded by the number M of internal
levels.

First of all, it is important to recall that the evolution of
noninteracting particles can be derived from a single-particle
statistics. In this framework, we do not study single realiza-
tions of many-particle evolution that may cause PMD mod-
ification driven by ergodicity, Zermelo-Poincaré recurrence,
or fluctuation theorems [15] as through coarse-grained PMD
[16,17] or by phase-space volume surrounding particles (such
as ellipsoid emittance growth in beams) [18]. Therefore, we
assume the ensemble evolution as entirely derived from the
one-particle density matrix ρ̂ in the quantum case and, in the
classical case, from the (statistical averaged single-particle)
classical PMD ρ(r, v, t ).

The most general evolution of the classical PMD undergo-
ing a (nonrandom) external force F(r, v, t ) is given by the
continuity equation:

Dρ

Dt
= ∂ρ

∂t
+

(
v · ∂

∂ r

)
ρ + F

m
· ∂ρ

∂v
= −ρ

∂

∂v
· F
m

, (1)

where Dρ

Dt
is the material derivative. This clearly shows that a

velocity-dependent force is necessary to change the PMD ρ.
The Doppler cooling scheme, using for example the classical
Lorentz oscillator model, is a textbook example of velocity-
dependent force. However, in Hamiltonian mechanics, ac-
cording to the Vlasov-Liouville theorem Dρ

Dt
= 0 for nonin-

teracting particles, ρ is constant. This is consistent with the
continuity equation because friction forces cannot be included
in our closed system with external fields.1 Since quantum
mechanics is also based on a Hamiltonian description, one
may wonder how the maximum of a PMD could be increased.

1For example, an electric charge submitted to the Lorentz force
F = q(E + v × B) verifies ∂

∂v
· F = 0.
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A major difference actually comes from the treatment of
the internal degrees of freedom that cannot be rigorous in
classical physics. Regarding the electromagnetic interactions,
the time evolution of the internal degrees of freedom is
generally calculated by the quantum master equation acting
on the density matrix because it may also include nonuni-
tary evolutions due to spontaneous emission. The semiclas-
sical evolution of the external degrees of freedom is then
usually obtained by Ehrenfest’s theorem. This framework
provides satisfying predictions for Doppler cooling where
the change of semiclassical PMD maximum is essentially
attributed to spontaneous emission. However, even without
spontaneous emission, several semiclassical studies suggest
that the maximum of a PMD can be modified [π pulse, rapid
adiabatic passage (RAP), stimulated RAP, and bichromatic
fields [3,5,6,8,10]]. Their common idea is that a coherent
force, resulting from absorption and stimulated emissions,
depends on the particle velocity via the Doppler effect. So
a large increase of the PMD maximum seems possible from
the continuity equation (1). In the following, we will show
that the concept of semiclassical force is only partly correct
and that the Ehrenfest’s theorem can lead to an important
overestimation of the cooling efficiency. We will show that a
proper quantum-mechanical treatment exhibits a limited gain
in the PMD, its maximum being the number M of internal
levels.

II. INCREASING THE POSITION-MOMENTUM
DISTRIBUTION

A. Basic mechanism

The basic physical mechanism and maximum gain of PMD
can be understood using an ensemble of noninteracting two-
level atoms (with ground |g〉 and excited |e〉 internal states)
and momentum states | p〉. Because the atoms do not interact
with each other and do not undergo spontaneous emission, as
discussed in detail in Appendix A, the one-particle Hamilto-
nian where the fields are classical [Eq. (A2)] is sufficient to
describe the dynamics. We ran several simulations based on
various optical schemes, including bichromatic fields, rapid
adiabatic transfers, and π pulses. In all cases, we found
the same limitations on the gain of the PMD maximum.
The underlying reasons can be understood with the example
sketched in Fig. 1. It shows how a light pulse (with Doppler
detuning and Rabi frequency � wisely adjusted to address
a narrow line recoil transition) may bring two atoms in the
same momentum state | p〉, while the internal state of the
displaced atom is changed. Any attempt to increase further the
population of | p〉 is vain because the rates of absorption and
stimulated emission are equal, which prevents increasing the
population in | p〉. This qualitatively explains the limited gain
in position-momentum PSD gain by a factor 2 for two-level
atoms.

B. Evolutions

We now confirm this limitation by accurate calculations
for two pulses in one dimension as depicted in Fig. 1. The
classical evolution and the quantum evolution of an initial
two-dimensional (thermal) Gaussian PMD in (r, p) are given

FIG. 1. Left: pulse sequence, a π pulse coming from the right
(red) followed by a π pulse coming from the left (green). Right: basic
idea of PMD maximum increase. The first π pulse transfers one atom
from |p + h̄k, g〉 to |p, e〉 without affecting the atom already in state
|p, g〉, thereby increasing the total number of particles in |p〉 by a
factor 2. Trying to add a third particle in the same momentum |p〉
cell, by applying a second π pulse counterpropagating, simply swaps
the particles in each state with no gain in |p〉 population. ωrec =
h̄k2/2m and � are the recoil and Rabi frequencies, respectively.

in Fig. 2. The quantum evolution is based on the density-
matrix master equation ρ̂(r, p, t ) as defined in Appendix A 4 a
following Eq. (A12) and the Wigner function W (r, p, t ) as
defined in Appendix A 4 b following Eqs. (A13)–(A15). The
semiclassical evolution makes use of Newton’s equation of
motion with a force defined Eq. (B9) resulting from the
Ehrenfest theorem and Bloch equations using the h̄k → 0
limit of the Wigner quantum evolution (see Appendix B).
The evolution of the semiclassical PMD was calculated with
a billion test particles. The final distribution corresponds to
the number of atoms in a position-momentum cell whose
size has been arbitrarily chosen as 1/(5k) in position and
h̄k/10 in momentum. In these conditions, the maximum of
the semiclassical PMD is subject to a large gain (factor
20), which significantly overcomes the quantum approaches
where the maximum gain of the Wigner PMD reaches 2.5.
The semiclassical approach should indeed be handled with
precaution to predict the PMD evolution. When spontaneous
emission is present, the collapse of the atomic wave packet
[19] smooths out the evolution on a time scale longer than the
spontaneous emission time. Therefore, the internal variables
relax fast enough and follow quasiadiabatically the slower
external motion; so the evolution of the Wigner distribu-
tion is reduced to the semiclassical one as demonstrated in
Appendix B 2. On the contrary, without spontaneous emis-
sion, correlations may appear between internal and external
variables [20] invalidating the semiclassical approach.

C. Discussion

The physical relevance of the previous calculations have
to be discussed in the light of the position-momentum uncer-
tainty principle because both the quantum and semiclassical
distributions exhibit structures smaller than the minimum
uncertainty. This problem is often present in the distributions
processed in cooling or brightening studies [3–5,10,11]. This
issue can be solved by performing a convolution of the PMD
with a Gaussian function corresponding to the Heisenberg
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FIG. 2. PMD evolution starting with an initial Gaussian PMD
(normalized to a maximum of 1 and represented by black lines on the
projections). The histogram of the position-momentum semiclassical
evolution for cell size of 1/(5k) in position and h̄k/10 in momentum
(a) and smoothed distribution (b) as well as the total (ground plus
excited states) Wigner (c) and Husimi (d) functions are shown after
a pair of π pulses (left-right) with Rabi frequency 2ωrec and pulses
detuning −2ωrec.

limit σrσp = h̄/2, which gives the smoothed coarse-grained
distributions shown in Figs. 2(b) and 2(d), where we chose
kσr = σp

h̄k
= 1√

2
. Applied to a Wigner function, we obtain the

so-called Q(r, p, t ) Husimi distribution, which is the opti-
mal probability distribution for joint position and momentum
measurement [21]. The effect is quite striking since, in our
example, the classical and quantum smoothed PMD are very
similar (but still different) and both indicate a maximum
gain of 2. The similitude may depend on the specificities
of our toy model. Other protocols could give rise to far
more significant differences. Indeed, even with a smoothing
postprocedure, the semiclassical evolution should fail at the
time when particles initially in the ground state and contained
in a Heisenberg-bounded PSD region undergo different forces
(or Rabi frequencies).

III. INCREASING THE PHASE-SPACE DENSITY

A. Definitions

In order to precisely understand the role of the interplay
between internal and position-momentum degrees, we now
adopt an analysis relying on the density matrix ρ̂. For this
purpose, we use the quantum PSD as a quantity linked to the
entropy S (per particles and per unit of kB) through to the
Boltzmann formula

S = − ln D, (2)

where D defines the PSD quantitatively. This definition is sim-
ilar to the Sackur-Tetrode formula S = − ln D + 5

2 that gives
the thermal classical PSD used by the ultracold atoms com-
munity (the number of particles contained in a de Broglie’s
wavelength sized box reaches unity when quantum degener-
ation is reached). We first consider the Von Neuman entropy

SVN = −Tr[ρ̂ ln(ρ̂ )] = −
∑

i

λi ln(λi ), (3)

where λi are the eigenvalues of the singleparticle density
matrix ρ̂. These eigenstates generally do not correspond to
physical observables |i〉 as the energy eigenstates for example.
So other quantities are commonly used, such as the informa-
tional Shanon entropy

SSh = −
∑

i

pi ln pi, (4)

where pi = 〈i|ρ̂|i〉 is the population of the ith eigenstate.
Consequently, we define DVN and DSh from Eq. (2). These
particular cases belong to two distinct and general categories:
eigenvalue-based (or spectral) entropy and population-based
(or informational) entropy. The first kind is independent of
the representation basis and thus invariant under Hamiltonian
evolution, while the second kind depends on the representa-
tion and consequently is likely to change over time.

B. Evolutions

In these conditions, one can wonder whether a quantum
entropy can decrease or not. To answer this question, we
reconsider the evolution during the pair of π pulses that gave
rise to the PMD in Fig. 2. However, in order to calculate
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FIG. 3. Evolution of several definitions of PSD, normalized to
their initial value: (Husimi, max [ρ̂], Von Neuman SVN, and Shanon
SSh entropies) under same conditions as in Fig. 2 but with initial full
spatial delocalization. (a) Evolution for the total (external + internal
degree of freedom). (b) Only external degree of freedom (denoted A)
for max [ρ̂A], max [Q{A}], D

{A}
VN , and D

{A}
Sh bounded by 2.

DSh and DVN more easily, we now assume that the atoms are
initially fully delocalized in position, which implies that the
initial density matrix is Gaussian diagonal when expressed
in |p〉 basis. We checked that this small modification had
almost no effect on the evolution of the gain observed from
the PMD (Fig. 2 shows that the smoothed spatial distribution
was almost not affected by the time evolution). As expected,
we see in Fig. 3(a) that the Von Neuman entropy is invariant
while the Shanon entropy is not. More fundamentally, an
initial thermal state provides the largest possible PSD and
prohibits further PSD increase [1]. Indeed, the minimum
Shanon entropy is achieved by a thermal Gaussian state [22]
and then equals the Von Neuman entropy. So in our case
DSh(t ) � DSh(0) = DVN(0). Yet it is noticeable that, unlike
the Von Neumann PSD, the Shanon PSD can locally increase
as observed in Fig. 3(a) between ωrect = π/4 and ωrect = π/2
when the density matrix is no longer Gaussian diagonal. Thus
cooling is indeed possible if starting from nonthermal states
(as the one produced at time ωrect = π/4).

C. Discussion

Finally, we would like to discuss the decrease of DSh and
the invariance of DVN, which seems to contradict the results
of Fig. 2, where all the distribution maxima increase. This
apparent contradiction comes from the fact that the whole
density matrix we consider is composed of two subspaces: the
full atomic system AB (ρ̂ = ρ̂AB) is formed by the external
degrees of freedom (part A) and the M internal degrees of
freedom B (here M = 2). As the PMD in Fig. 2 are functions
of the coordinates (r, p) (part A), it is thus more appropriate to
evaluate S{A} (or D{A}), i.e., S (or D) restricted to A by using
the partial trace over the internal degrees of freedom ρ̂A =
TrBρ̂ instead of ρ̂. The quantity S{A} is not submitted to the
constraints imposed to S because entropy can be exchanged
between the two subspaces. For instance, SVN verifies the
subadditivity and the Araki-Leib inequality

S
{AB}
VN − S

{B}
VN � S

{A}
VN � S

{AB}
VN + S

{B}
VN , (5)

where the maximum of S
{B}
VN is log M [23–26]. Using Eq. (2),

we thus find the fundamental inequality

1

M
D{AB} � D{A} � MD{AB} (6)

that bounds the PSD evolution. The gain limit of M is a
fundamental result of our study. This latter also holds for
S

{A}
Sh and consequently D

{A}
Sh can only increase by a factor M

for an initial thermal state because D
{A}
Sh � D

{A}
VN with both

quantities being equal for an initial diagonal (or thermal) state.
As discussed in Appendix C, this is general and can be ex-
tended to other PSD definitions based on entropy, functions, or
maximum of PMD that are all bounded by the same factor M .
This is consistent with our numerical results in Fig. 3 showing
the evolution of the quantities max [ρ̂A], max [Q{A}], S

{A}
VN ,

and S
{A}
Sh [Eqs. (C2)–(C4)]. As an important precaution, we

mention that using pseudo-phase-space-density definitions, as
the ones filtering a specific state [such as for the ground state
only S

(g)
Sh ; see Eq. (C4)], it is possible to find larger increase

than a factor 2.

IV. CONCLUSION

In conclusion, in the absence of spontaneous emission and
using classical laser fields, we have shown that a quantum
description is more reliable than a semiclassical description
of the atomic motion, which can lead to large errors. We
have also shown that the total eigenvalues-based PSD cannot
increase. This conclusion can be extended to informational
population-based PSD (max [ρ̂], SSh entropy, or max [Q])
when the initial state is a diagonal state. Still, a sample initially
prepared in a thermal state and thereby without quantum
correlation can exhibit a gain of the PMD maximum or PSD
up to the number M of internal states (or ultimately M2 if
initial correlations exist in the initial state; see Appendix C).
The direct and fundamental consequence of this analysis,
holding for any kind of free particles or particles in time-
dependent trapping potential, is that cooling mechanisms
based on coherent field momentum transfer without sponta-
neous emission (such as adiabatic passages, bichromatic, and
π pulses [5,6,8,10,11,27]) have a limited efficiency and could
only lead to a position-momentum PSD gain of M . This is still
of interest for studies that need more particles in a same phase-
space area regardless of the internal distribution (for laser
manipulation, detection, collisional studies, etc.). However,
increasing the full PSD is impossible; in other words, the
production under coherent fields of all particles in the same in-
ternal state with a larger PSD than the initial one is impossible
without spontaneous emission. An obvious way to overcome
this limitation is to allow a single spontaneous emission event
per particle [28–30] because the third ancilla spontaneous
emission space has almost an infinite dimension to extract en-
tropy (see [9,31–40]). A second option for cooling is to create
entanglement between particles and the light field [41,42] or
by using nonstatistical methods such as informational cooling
(stochastic cooling being one famous example) [43,44] or
cavity cooling [23,41,45–48]. A final alternative would be
to use nonclassical quantum fields. Because absorption or
stimulated emission rates are not equivalent anymore (with
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the simple example of Fock states), the last step sketched
in Fig. 1 would allow one to put more atoms at the same
phase-space location [14]. In other words, when the optical
field is no longer considered as a parameter, the total system is
now composed of three subsystems (external, internal degrees
of freedom, and quantized field). Our previous demonstrations
could then be applied: the (external) PSD can be increased by
the number of available microstates in the other (internal and
field) spaces. If the latter are sufficiently large, there is a priori
no theoretical limit on cooling even without spontaneous
emission [3,7,9,10,23,45,47].
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APPENDIX A: NONRELATIVISTIC HAMILTONIAN
OF NONINTERACTING PARTICLES

We recall here the equations of motion for laser cooling of
atoms. The reader can refer to textbooks such as [49].

1. Quantized or (semi)classical Hamiltonian

We study here the quantum Hamiltonian Ĥ of two generic
levels |1〉 and |2〉 (representing the ground |g〉 and the excited
|e〉 states in main text of a particle (mass m) under the effect
of electromagnetic fields. The generalization to an M level
system is straightforward but will not be detailed for the sake
of simplicity. We separate the “motional” (or trapping) fields
that do not couple |1〉 and |2〉, such as trapping potential
V1, V2 produced for example by magnetic coils, magnets, or
electrodes through Zeeman (−μ̂.B) or Stark effect (−d̂.E),
and the laser fields Ê that do couple |1〉 and |2〉.

For N noninteracting particles the full Hamiltonian can
be written as Ĥ = ∑N

i=1 Ĥ (i) + Ĥfield + ∑N
i=1 Ĥ

(i)
int,field, where

Ĥ (i) is the Hamiltonian p̂2
i

2m
+ V1(r̂ i , t )|1〉〈1| + V2(r̂ i , t )|2〉〈2|

for the position and momentum pi , r i of the ith particle. The
trapping field is arbitrary but the simplest case corresponds
to harmonic traps: Vi = Ei + 1

2mωi r2. A base of the Hilbert

space will be an ensemble of states
⊗N

i=1 | pi , 1 or 2〉i ⊗
|πkσ nkσ 〉 when using the Fock notation for the field. We treat
the N particles as totally independent and use the density-
matrix formalism (written as ρ̂) to describe the system of N

identical particles as a statistical ensemble. The external field
is common to the N atoms and this can automatically generate
entanglement between the atoms or collective behavior that
can indeed lead to cooling [41,42]. As explained in the article,
this is not our interest here and we shall study only the single-
particle case. In the dipolar approximation and neglecting the
Roentgen term, despite the fact that it can create surprising
radiation forces on the atoms [50,51], the Hamiltonian for a
single particle reads as

Ĥ = p̂2

2m
+ V1(r̂, t )|1〉〈1| + V2(r̂, t )|2〉〈2| − d · Ê(r̂, t )

× (|2〉〈1| + |1〉〈2|) +
∑
kσ

h̄ωk (â†
kσ âkσ + 1/2), (A1)

where d is the transition dipole element (assumed to be real
d = 〈2|q r̂|1〉) and Ê(r, t ) is a quantized real field. For in-
stance for a single plane wave field (in a volume L3) Ê(r, t ) =∑

k,σ i

√
h̄ωk

2ε0L3 (âkσ e−iωktεkσ eik.r − â
†
kσ eiωktε∗

kσ e−ik.r ).

The initial state is uncorrelated and the density operator
can be written as an atomic (external and internal degrees
of freedom) and a field part as ρ̂ = ρ̂at ⊗ ρ̂field = ρ̂ext ⊗
ρ̂int ⊗ ρ̂field.

In the semiclassical approximation, we would like to re-
place the field operators (denoted with the hat ˆ) by their
classical expectation values, namely âkσ and â

†
kσ by c numbers

akσ and a∗
kσ , such as Ê(r̂, t ) by E(r̂, t ) becomes in the

Hamiltonian

Ĥ = p̂2

2m
+ E1(r̂, t )|1〉〈1| + E2(r̂, t )|2〉〈2|

−d · E(r̂, t )(|2〉〈1| + |1〉〈2|).

2. Classical fields

This can be done by using coherent states |α〉, that are eigenstates of the annihilation operator â: â|α〉 = α|α〉, by using the
unitary transformation under the operator Û = D̂(αλe

−iωλ )†, and neglecting the quantum field that now describes spontaneous
emission only [12–14].

Therefore, in the following we assume to have classical laser fields with different frequencies ωL, wave vectors kL, or
temporal phase �L(t ): E(r̂, t ) = E′(r̂, t ) + E′†(r̂, t ) = 1

2

∑
L [EL(t )ei[kL ·r̂−ωL t−�L (t )] + E∗

L(t )e−i[kL ·r̂−ωL t−�L (t )]]. The rotating
wave approximation leads to

Ĥ = p̂2

2m
+ V1(r̂, t )|1〉〈1| + V2(r̂, t )|2〉〈2| − d · E′(r̂, t )|2〉〈1| − d · E′†(r̂, t )|1〉〈2|). (A2)

We will now use this Hamiltonian to describe the evolution. In matrix notation with the |1, 2〉 basis, the Hamiltonian (A2)

becomes Ĥ = (Ĥ1 V̂ †

V̂ Ĥ2
), where the coupling term is V̂ = −d · E′(r̂ , t ) = − d

2

∑
L EL(t )ei[kL·r̂−ωLt−�L (t )] = ∑

L V̂L.
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a. Density matrix

The time evolution ih̄
∂ρ̂

∂t
= Ĥ ρ̂ − ρ̂Ĥ leads to(

∂ρ̂11

∂t

∂ρ̂12

∂t

∂ρ̂21

∂t

∂ρ̂22

∂t

)
= 1

ih̄

(
[Ĥ1, ρ̂11] + V̂ †ρ̂21 − ρ̂12V̂ [p̂2/2m, ρ̂12] + V̂1ρ̂12 − ρ̂12V̂2 + V̂ †ρ̂22 − ρ̂11V̂

†

[p̂2/2m, ρ̂21] + V̂2ρ̂21 − ρ̂21V̂1 + V̂ ρ̂11 − ρ̂22V̂ [Ĥ2, ρ̂22] + V̂ ρ̂12 − ρ̂21V̂
†

)
.

b. Wigner functions

The Wigner-Weyl transform of this equation gives the time evolution of the Wigner function defined as

W (r, p, t ) = 1

h3

∫
〈 p − p′/2|ρ̂(r̂, p̂, t )| p + p′/2〉e−ir. p′/h̄d p′ (A3)

through the so-called Moyal bracket, governed by

∂W

∂t
= 1

ih̄
(H 
 W − W 
 H ). (A4)

The 
 product can be evaluated using the convenient formula [21] for any generic function ρ1,2(r, p),

(ρ1 
 ρ2)(r, p) = ρ1

(
r + i

h̄

2

∂

∂p
, p − i

h̄

2

∂

∂r

)
ρ2(r, p),

(ρ2 
 ρ1)(r, p) = ρ2

(
r − i

h̄

2

∂

∂p
, p + i

h̄

2

∂

∂r

)
ρ1(r, p),

that we have restricted to a one-dimensional motion for simplicity.
Therefore, when no r̂ , p̂ product is present in ρ̂ = ρ(r̂ , p̂), the Wigner-Weyl transform Wρ̂ (r, p; t ) is the unmodified classical

observable expression ρ(r, p). An important example is a conventional Hamiltonian, Ĥ = p̂2/2m + V (r̂ , t ), for which the
transition from classical mechanics is the straightforward quantization: WĤ (r, p; t ) = H (r, p; t ) = p2/2m + V (r, t ).

The expressions containing eikL.r̂ can be expanded by using an exponential (Taylor) series that indicates

e
ikL (r± ih̄

2
∂
∂p

)
f (r, p, t ) = eikLrf (r, p ∓ h̄kL/2, t ). and finally using h̄ωL(r, t ) = d · ELei[kL ·r−ωL t−�L (t )], we obtain

{
∂

∂t
+ p

m

∂

∂r
− 1

ih̄

[
V1

(
r + i

h̄

2
∂p

)
− V1

(
r − i

h̄

2
∂p

)]}
W11(r, p, t )

= − 1

2i

∑
L

[
�∗

L(r, t )W21

(
r, p + h̄kL

2
, t

)
− �L(r, t )W12

(
r, p + h̄kL

2
, t

)]
, (A5)

{
∂

∂t
+ p

m

∂

∂r
− 1

ih̄

[
V1

(
r + i

h̄

2
∂p

)
− V2

(
r − i

h̄

2
∂p

)]}
W12(r, p, t )

= − 1

2i

∑
L

�∗
L(r, t )

[
W22

(
r, p + h̄kL

2
, t

)
− W11

(
r, p − h̄kL

2
, t

)]
, (A6)

{
∂

∂t
+ p

m

∂

∂r
− 1

ih̄

[
V2

(
r + i

h̄

2
∂p

)
− V1

(
r − i

h̄

2
∂p

)]}
W21(r, p, t )

= − 1

2i

∑
L

�L(r, t )

[
W11

(
r, p − h̄kL

2
, t

)
− W22

(
r, p + h̄kL

2
, t

)]
, (A7)

{
∂

∂t
+ p

m

∂

∂r
− 1

ih̄

[
V2

(
r + i

h̄

2
∂p

)
− V2

(
r − i

h̄

2
∂p

)]}
W22(r, p, t )

= − 1

2i

∑
L

[
�L(r, t )W12

(
r, p − h̄kL

2
, t

)
− �∗

L(r, t )W21

(
r, p − h̄kL

2
, t

)]
. (A8)

For completeness, we mention that a (1D) spontaneous emission rate � can be added if needed, by including the terms [20,52]

∂W11

∂t

∣∣∣∣
spon

= �

∫ pr

−pr

�(p′)W22(r, p + p′)dp′,
∂W11

∂t

∣∣∣∣
spon

= −�

2
W12(r, p),

∂W21

∂t

∣∣∣∣
spon

= −�

2
W21(r, p),

∂W22

∂t

∣∣∣∣
spon

= −�W22(r, p),
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where �(p′) is the probability density distribution for the projection of spontaneous emission �(p′) = 3
8pr

(1 + p′2
p2

r
) (for a dipolar

radiation pattern) on the atomic recoil momentum for pr = h̄k. Equation of motion of the Husimi distribution can be derived
[53–57] and presents a nonzero second term of the Liouville equation [similar to Eqs. (A5)–(A8)].

3. Connection with Liouville equation

In the absence of light fields, Taylor series expansion indicates that the evolution of the diagonal terms Wii is given by

DWii

Dt
= ∂Wii

∂t
+ p

m
· ∂Wii

∂r
− ∂Vi

∂r
· ∂Wii

∂p
=

∑
s�1

h̄2s 2−2s

(2s + 1)!

∂2s+1Vi

∂r2s+1

∂2s+1Wii

∂p2s+1
.

We recover the Liouville’s equation, DWii

Dt
= 0, under the influence of the potential V , but only for a quadratic potential Vi (r, t ) =

a(t ) + b(t )r + c(t )r2. However, when higher derivatives of Vi (r ) are present, additional terms will give rise to diffusion and the
quantum Wigner function gradually deviates from the corresponding classical phase-space probability density. So a nonharmonic
potential is a clear way to modify the Wigner phase-space density. This argument also applies to the Husimi function.

4. Interaction picture: Free evolution

The evolution of H1(t ) is given by the unitary time evolution operator Û1(t ) = e−i
∫

Ĥ1(t )/h̄. In matrix notation, the evolution

operator is Û0 = (Û1 0
0 Û2

). The interaction picture consists in defining a new density matrix ρ̂I (t ) = Û
†
0 (t )ρ̂(t )Û0(t ), which

evolves under the modified Hamiltonian Ĥ I = Û
†
0 Ĥ Û0 + ih̄

dÛ
†
0

dt
Û0 = ( 0 V̂ I †

V̂ I 0 ), where V̂ I = Û
†
2 V̂ Û1.

Because several laser frequencies are possibly present, the interaction picture is more appropriate than the Bloch rotating
frame. The latter would imply to choose one laser frequency as a reference. The interaction picture removes this arbitrariness.

a. Density matrix

Using the momentum representation, where r̂ acts as ih̄∂p on ψ (p) = 〈p|ψ〉, we have eikr̂ |p〉 = |p + h̄k〉. We find

V̂ I |p〉 = −1

2

∑
L

|p + h̄kL〉�Le−i(δp+
L t ), (A9)

δ
p±
L = ωL − (E2 − E1)/h̄ − kL

m
(p ± h̄kL/2), (A10)

where h̄�L(t ) = d · ELe−�L (t ) and δ
p±
L = δ0

L + δD
L (p) ± δr

L: the detuning δ0
L = ωL − (E2 − E1)/h̄, the Doppler shift δD

L (p) =
−kL.p/m, and recoil frequency δr

L = −h̄k2
L/2m appear naturally.

With ρ̂I
ij = Û

†
i ρ̂ij Ûj , the evolution reads as⎛

⎝ ∂ρ̂I
11

∂t

∂ρ̂I
12

∂t

∂ρ̂I
21

∂t

∂ρ̂I
22

∂t

⎞
⎠ = 1

ih̄

∑
L

⎛
⎝V̂ I†ρ̂I

21 − ρ̂I
12V̂

I V̂ I †ρ̂I
22 − ρ̂I

11V̂
I †

V̂ I ρ̂I
11 − ρ̂I

22V̂
I V̂ I ρ̂I

12 − ρ̂I
21V̂

I †

⎞
⎠. (A11)

Assuming there is no external field from now on and using ρI p′p
ij = 〈p′|ρ̂I

ij |p〉 = ei(p′2−p2 )t/2mh̄ei(Ei−Ej )t/h̄ρ
p′p
ij , the latter can

be written as⎛
⎝ ∂ρI p′p

11
∂t

∂ρI p′p
12

∂t

∂ρI p′p
21

∂t

∂ρI p′p
22

∂t

⎞
⎠ = − 1

2i

∑
L

(
�∗

Leiδ
p′+
L t ρI (p′+h̄kL )p

21 − �LρI p′(p+h̄kL )
12 e−iδ

p+
L t �∗

Leiδ
p′+
L t ρI (p′+h̄kL )p

22 − �∗
LρI p′(p−h̄kL )

11 eiδ
p−
L t

�Le−iδ
p′−
L t ρI (p′−h̄kL )p

11 − �LρI p′(p+h̄kL )
22 e−iδ

p+
L t �Le−iδ

p′−
L t ρI (p′−h̄kL )p

12 − �∗
LρI p′(p−h̄kL )

21 eiδ
p−
L t

)
.

(A12)

b. Wigner function

It is quite convenient to use the so-called nondiagonal Wigner functions by defining WI
ij = Wρ̂I

ij
/h as the Wigner transform

function associated to ρ̂I
ij = 〈i|ρ̂I |j 〉. So Wij (r, p, t ) = ei(Ej −Ei )t/h̄WI

ij (r − pt/m, p, t ) and the evolution equations become

∂WI
11

∂t
(r, p, t ) = −

∑
L

Im
[
�∗

L(r, p, t )WI
21(r − h̄kLt/2m,p + h̄kL/2, t )

]
, (A13)

∂WI
21

∂t
(r, p, t ) = 1

2i

∑
L

�L(r, p, t )
[
WI

22(r − h̄kLt/2m,p + h̄kL/2, t ) − WI
11(r + h̄kLt/2m,p − h̄kL/2, t )

]
, (A14)

∂WI
22

∂t
(r, p, t ) =

∑
L

Im
[
�∗

L(r, p, t )WI
21(r + h̄kLt/2m,p − h̄kL/2, t )

]
, (A15)
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where

�L(r, p, t ) = �Lei[kLr+kLpt/m−δ0
L t−�L (t )]. (A16)

5. Single laser case (Bloch equation)

When there is only one laser, we can define

W̃ I
11(r, p, t ) = WI

11(r, p, t ), W̃ I
22(r, p, t ) = WI

22(r − h̄kLt/m, p + h̄kL, t ),

W̃ I
21(r, p, t ) = e−i(kLr+ kLpt

m
−δ0

L t−�L )WI
21

(
r − h̄kLt

2m
,p + h̄kL

2
, t

)
.

If we assume �L real, the evolution is governed by

∂

∂t

W̃ I
11 − W̃ I

22

2
= −�LImW̃ I

21 + h̄kL

2m

∂

∂r
W̃ I

22, (A17)

∂

∂t
ReW̃ I

21 = −δ
p+
L ImW̃ I

21 − h̄kL

2m

∂

∂r
ReW̃ I

21, (A18)

∂

∂t
ImW̃ I

21 = δ
p+
L ReW̃ I

21 + �L

W̃ I
11 − W̃ I

22

2
− h̄kL

2m

∂

∂r
ImW̃ I

21. (A19)

We recognize the standard Bloch equations except for the term in h̄kL
2m

∂
∂r

. We can thus retrieve the Bloch equations from the
exact Wigner function evolution by performing series expansion in h̄k. This approach justifies the semiclassical equation for the
particle’s evolution that we derive from heuristic considerations.

APPENDIX B: SEMICLASSICAL EVOLUTION

From the quantum evolution, we can derive the semiclassical evolution of the atomic motion. The underlying assumption is
that the displacement of the atom during the internal relaxation time is very small. The internal variables follow quasiadiabatically
the external motion [20]. It is then possible to separate the internal and the external degree of freedom.

The Doppler or recoil effects, or the use of the stationary state of the Bloch equation, can be done with hand-waving arguments
(see for instance [58]). Nevertheless, the Lagrangian description (individual particles are followed through time), Eulerian
description, and interaction picture that freeze the motion in the Eulerian description may lead to confusion. We will clarify
this distinction.

1. Definition of the force

For simplicity, we neglect the external potentials (but they can be included in the interaction picture if needed).
In the semiclassical approach, the particle motion is classical: for a given particle initially at r (t0) = r0 and v(t0) = v0 at time

t = t0 its trajectory in phase space r (t ), p(t ) = mv(t ) is given by Newton’s equation of motion mdv
dt

(t ) = F(r (t ), v(t ), t ).
The standard way to define the force in laser cooling is by using the Ehrenfest theorem (see for instance [59,60], but other

methods exist [61–63]). Knowing the light field seen by the atom at the position r with velocity v = p/m enables one to solve
the optical Bloch equations [density matrix σ̂ (t ) evolution] to determine the atomic internal state. The force is then derived from
F = −tr[σ̂ (t )∇Ĥ ] = 〈 ∂d·E

∂ r 〉. The usual optical Bloch equations where σij (t ) stands for σij (t ; r0, v0, t0) read as(
∂σ11
∂t

∂σ12
∂t

∂σ21
∂t

∂σ22
∂t

)
(t ) = − 1

2i

∑
L

(
�∗

L(r (t ), t )σ21(t ) − �L(r (t ), t )σ12(t ) �∗
L(r (t ), t )[σ22(t ) − σ11(t )]

�L(r (t ), t )[σ11(t ) − σ22(t )] �L(r (t ), t )σ12(t ) − �∗
L(r (t ), t )σ21(t )

)
, (B1)

where �L(r, t ) = �Lei(kL .r−�L t−�L ). The rapidly oscillating terms can be removed by introducing slowly varying quantities as
σ I

ij (t ) = e−i(Ej −Ei )t/h̄σij (t ).
The absence of Doppler shift in the expression of �L(r, t ) may be surprising, especially when compared to Eq. (A12) [using

p′ = p = p(t ), r = r (t ), and h̄kL put to zero]. The explanation is the following: we use r (t ) = r (t ; r0, v0, t0), the Lagrangian
description where individual particles are followed through time, whereas, when dealing with the Wigner W (r, v, t ) or position-
momentum distribution ρ(r, v, t ) picture, we use the Eulerian description. The connection between Lagrangian and Eulerian
coordinates explains why the Doppler effect is correctly taken in both Eq. (B1) with �L(r (t ), t ) = �Lei[kL .r (t )−�L t−�L (t )] and in
Eq. (A12) with �L(r, p, t ) = �Lei[kLr+kLpt/m−δ0

L t−�L (t )]. In any case, the instantaneous laser phase seen by the atoms is correct,
including the Doppler effect because dr (t )

dt
= p(t )/m.

Similarly, in the Eulerian description the force is thus given by Tr[σ̂ (t )∇Ĥ ] or Tr[ρ̂(t )I∇V̂ I ] using the cyclic invariant of
the trace. We have V I (r, p, t ) = −∑

L
h̄
2 �L(r, p, t ) so ∇V I (r, p, t ) = −i

∑
L

h̄kL
2 �L(r, p, t ).
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So in conclusion and back to our Lagrangian description we have

F(r (t ), v(t ), t ) = Im

[
σ21(t )

∑
L

h̄kL�∗
L(r (t ), t )

]
. (B2)

As we chose plane waves (or ∇EL = 0), there is no direct dipolar force. Also, because of the interplay between the Bloch
equations [Eq. (B1)] and the force [Eq. (B2)], the atomic velocity v(t ) and position r (t ) should be updated in a short time
interval (typically ps), and the calculation of the Bloch equation evolution iterated on a similar time scale [58].

2. Phase-space evolution equation

Here, we would like to justify the equations we just derived assuming a separation of the external and internal degrees of
freedom. However, we know that, without spontaneous emission, this is valid only if the ratio of resonant photon momentum to
atomic momentum dispersion is small h̄k/�p 
 1. In such a case, the rapid processes acting on the internal degrees of freedom
can be separated from the slow processes associated with translational motion. The dynamics of the atomic ensemble is thus
determined by the slow change of the distribution function in translational degrees of freedom w(r, p) = W11 + W22 and the
expansion in h̄k, that we will derive here for completeness, is justified [20].

One analog of the classical phase-space distribution ρ is the total distribution function in translational degrees of freedom,
w(r, p, t ), as plotted in Fig. 2(b). Equations (A5)–(A8) (written for simplicity without the external potentials), become[

∂

∂t
+ p

m

∂

∂r

]
W11(r, p, t ) = − 1

2i

∑
L

[�∗
L(r, t )W21(r, p + h̄kL/2, t ) − �L(r, t )W12(r, p + h̄kL/2, t )]. (B3)

[
∂

∂t
+ p

m

∂

∂r
− E1 − E2

ih̄

]
W12(r, p, t ) = − 1

2i

∑
L

�∗
L(r, t )[W22(r, p + h̄kL/2, t ) − W11(r, p − h̄kL/2, t )], (B4)

[
∂

∂t
+ p

m

∂

∂r
+ E1 − E2

ih̄

]
W21(r, p, t ) = − 1

2i

∑
L

�L(r, t )[W11(r, p − h̄kL/2, t ) − W22(r, p + h̄kL/2, t )], (B5)

[
∂

∂t
+ p

m

∂

∂r

]
W22(r, p, t ) = − 1

2i

∑
L

[�L(r, t )W12(r, p − h̄kL/2, t ) − �∗
L(r, t )W21(r, p − h̄kL/2, t )], (B6)

with h̄�L(r, t ) = d · ELei(kL ·r−�L t−�L ).
A frequently used method to derive a continuity equation such as Eq. (1) for ρ = w is to expand the Wigner distribution

equations in a power series of the photon momentum h̄k [20,52,64–68]. In the presence of spontaneous emission, the second
order leads to the standard Fokker-Planck equation [20,52,64–68]. The simplest formulation is restricted to the first-order
approximation; therefore, W21(r, p ∓ h̄kL/2, t ) ≈ W21(r, p, t ) ∓ h̄kL

2
∂
∂p

W̃21(r, p, t ). To this first order in h̄kL, the sum of (B3)
and (B6) is [

∂

∂t
+ p

m

∂

∂r

]
w(r, p, t ) = −

∑
L

Im

[
�∗

L(r, t )h̄kL
∂

∂p
W21(r, p, t )

]
. (B7)

Since the recoil momentum h̄k is small, the variation of atomic translational motion is slower than the atomic internal state
change. The latter follows the varying translational state w(r, p, t ) [69]. Fast relaxation of the internal atomic state means that
the functions Wij (r, p, t ) follow the distribution function w(r, p, t ).

At zero order in h̄kL we have the simplest approximation Wij (r, p, t ) ≈ W 0
ij (r, p, t )w(r, p, t ). Equation (B7) leads to[

∂

∂t
+ p

m

∂

∂r

]
w(r, p, t ) = −∂[F (r, p, t )w(r, p, t )]

∂p
. (B8)

We recognize a continuity equation as Eq. (1) with the force given by

F (r, p, t ) = Im

[
W 0

21(r, p, t )
∑

L

h̄kL�∗
L(r, t )

]
. (B9)

So, in a classical picture, this expression of the force shall be used to calculate individual particles trajectories.
The evolution of the Wigner function is given by Eqs. (B3)–(B6), with Wij (r, p, t ) ≈ W 0

ij (r, p, t )w(r, p, t ), to obtain

∂W 0
11(r + pt/m, p, t )

∂t
= −

∑
L

Im
[
�∗

L(r + pt/m, t )W 0
21(r + pt/m, p, t )

]
, (B10)

∂W 0
21(r + pt/m, p, t )

∂t
= 1

2i

∑
L

�L(r + pt/m, t )
[
W 0

22(r + pt/m, p, t ) − W 0
11(r + pt/m, p, t )

]
, (B11)
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∂W 0
22(r + pt/m, p, t )

∂t
=

∑
L

Im
[
�∗

L(r + pt/m, t )W 0
21(r + pt/m, p, t )

]
, (B12)

where we have used [ ∂
∂t

+ p

m
∂
∂r

]W 0
11(r + pt/m, p, t ) = ∂W 0

11(r+pt/m,p,t )
∂t

.
We partially recognize the optical Bloch equations [Eq. (B1)], with σij (t ) = W 0

ij (r0 + p0t/m, p0, t ) [20]. This is the usual
first order in time connection between Lagrangian and Eulerian specification: r (t ) = r (t ; r0, v0, t0) ≈ r0 + v0t, p(t ) ≈ p0. So
to first order σij (t ) ≈ W 0

ij (r (t ), p(t ), t ) and the force given by Eq. (B9) is exactly the same force as Eq. (B2).
An alternative way to derive these expressions consists in using the interaction picture. A similar method using wI (r, p, t ) =

WI
11 + WI

22W
I
ij (r, p, t ) ≈ WI

ij

0
(r, p, t )w(r, p, t ) from Eqs. (A13)–(A15) leads, to first order in h̄kL, to

∂WI
11

0

∂t
(r, p, t ) = −

∑
L

Im
[
�∗

L(r, p, t )WI
21

0
(r, p, t )

]
, (B13)

∂WI
21

0

∂t
(r, p, t ) = 1

2i

∑
L

�L(r, p, t )
[
WI

22
0
(r, p, t ) − WI

11
0
(r, p, t )

]
, (B14)

∂WI
22

0

∂t
(r, p, t ) =

∑
L

Im
[
�∗

L(r, p, t )WI
21

0
(r, p, t )

]
, (B15)

which are the usual Bloch equations in the particle frame. The Doppler effect is here explicitly included. Indeed, the continuity
equation reads as

∂wI

∂t
(r, p, t ) = −

[
− t

m

∂

∂r
+ ∂

∂p

]
[F I (r, p, t )wI (r, p, t )]

for the force F (r + pt/m, p, t ) = F I (r, p, t ) = ∑
L h̄kL�∗

L(r, p, t )WI
21(r, p, t )0.

This is indeed the classical continuity equation (1). In the interaction picture ρ(r, p, t ) = ρI (r − pt/m, p, t ) leads to

∂ρI

∂t
(r, p, t ) +

[
− t

m

∂

∂ r
+ ∂

∂ p

]
(ρIF I )(r, p, t ) = 0, (B16)

where F (r, p, t ) = F I (r − pt/m, p, t ).

APPENDIX C: QUANTITATIVE DEFINITION OF THE PSD

We define the different quantities related to the generic
term phase-space density (PSD) and position-momentum
distribution (PMD) that are used in the main text as
follows.

(i) The PMD are functions of position r and momentum p.
(ii) The PSD are single values that are used to characterize

how cold and dense the system is.
The PSD quantities can be arranged in two main categories.
(1) Position-momentum based PSD are simply the maxi-

mum of the PMD functions (such as the Wigner or Husimi
distributions).

(2) Entropy based PSD are the value D = e−S for a given
entropy definition S. The entropies are defined using the
density matrix ρ̂. They are of the following two types.

(i) Informational (or population-based, or diagonal) PSD:
based on the populations pi = 〈i|ρ̂|i〉 of specific states |i〉
(usually a complete basis set) chosen for their physical inter-
est.

(ii) Eigenvalues (or spectral) PSD: based on eigenvalues λi

of the density matrix ρ̂.
The PSD can include or not the following internal states.
(i) For the full system, the PSD is calculated from the

whole density matrix of the full particle system AB (ρ̂ = ρ̂AB),
where A and B denote the subspaces related to the external
and internal degrees of freedom, respectively. Note that a

quantification of the optical field would require a dedicated
extra subspace C (ρ̂ = ρ̂ABC).

(ii) For the position-momentum only (part A), we are inter-
ested in the degrees of external freedom, i.e., the coordinates
r, p regardless of the internal state. Thus the total density
matrix is replaced by the partial density matrix obtained
by tracing out the B part: ρ̂A = TrBρ̂. For instance, with a
two-level particle and a |p, g〉 or |p, e〉 basis, 〈p|ρ̂A(t )|p′〉 =
〈p, g|ρ̂(t )|p′, g〉 + 〈p, e|ρ̂(t )|p′, e〉.

1. Position momentum distribution

The usual Wigner function W = Wgg + Wee, as plotted in
Fig. 2(c), is given by Eq. (A3) with

Wgg (r, p, t )= 1

h3

∫
〈 p − p′/2, g|ρ̂| p + p′/2, g〉e−ir· p′/h̄d p′

(C1)

and an equivalent expression for the excited state Wee.
A smoothed version is obtained by averaging Eq. (C1)

over an equivalent cell area of 2πσrσp weighted by a Gaus-
sian function, which corresponds to the so-called Weierstrass
transform (in 1D):

WGσr, σp(r, p) =
∫

dr ′dp′W (r, p)Gσr,σp
(r, r ′; p, p′),
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where Gσr,σp
(r, r ′; p, p′) = 2

h
e

(− (r−r′ )2

2σ2
r

− (p−p′ )2

2σ2
p

)
. Wσr,σp

(r, p)
represents a probability resulting from simultaneous measure-
ment of position and momentum. The uncertainties are σr and
σp as also used in this work [70–74]. The Q-Husimi distribu-
tion is a special case with a minimal equivalent cell area of
h/2 occurring when σrσp = h̄/2. This is the optimal distribu-
tion obtained for joint position and momentum measurement
[75]. The Husimi function is defined and positive and is
equal to the average of the density operator over a coher-
ent state |α(r, p) = r

σr
+ i

p

σp
〉. So, Q(r, p, t ) = 1

π
〈α|ρ̂A|α〉

is the probability distribution of a heterodyne measurement
performed on the state |α〉 [76]. Q(r, p, t ) = Qgg (r, p, t ) +
Qgg (r, p, t ) = 1

π
(〈α, g|ρ̂|α, g〉 + 〈α, e|ρ̂|α, e〉) is the func-

tion plotted in Fig. 2(d). Its maximum is plotted in Fig. 3.

2. Informational phase-space density

Several states |i〉 can be used to define an informational
PSD, such as energy states |Ei〉, momentum states |p〉, or
also coherent states |α(r, p)〉. For instance, if only the ex-
ternal degrees of freedom (subspace A) are of interest, the
energy eigenstates are Ep = p2/2m for free particles and
En = h̄ω(n + 1/2) for 1D harmonically trapped particles. If,
on the other hand, the full system AB is considered, the
internal energy must be added.

Several definitions of PSD are possible depending of the
choice of the function of the parameters F (pi ) (see discussion
below). An important one is the (Gibbs-)Shanon entropy
SSh = − ∑

i pi ln pi . So, for the full space AB,

SSh = −
[∑

p

〈p, g|ρ̂|p, g〉 ln(〈p, g|ρ̂|p, g〉)

+
∑

p

〈p, e|ρ̂|p, e〉 ln(〈p, e|ρ̂|p, e〉)

]
, (C2)

while, for the external degrees of freedom only,

S
{A}
Sh = −

∑
p

[〈p, g|ρ̂(t )|p, g〉 + 〈p, e|ρ̂(t )|p, e〉]

× ln[〈p, g|ρ̂(t )|p, g〉 + 〈p, e|ρ̂(t )|p, e〉]. (C3)

Finally, considering a specific internal state only, e.g., the
ground state, it can be also defined as

S
(g)
Sh = −

∑
p

〈p, g|ρ̂|p, g〉 ln(〈p, g|ρ̂|p, g〉). (C4)

3. Spectral phase-space density

The spectral PSD can be seen as a special case of pop-
ulation entropy when the states |i〉 are the eigenstates of
the density matrix, i.e., pi = λi . This gives rise to another
definition of PSD known as the Von Neumann entropy SVN =
−∑

i λi ln(λi ). Such a definition has the advantage of being
independent of the basis choice and is unambiguously defined
from the density matrix as SVN = −Tr[ρ̂ ln(ρ̂ )]. The related
PSD DVN = e−SVN was plotted for the full density matrix
in Fig. 3(a) and the partial density matrix in Fig. 3(b). The
possible modification of S

{A}
VN is obviously linked to the mutual

entropy S
{A}
VN + S

{B}
VN − S

{AB}
VN defining the maximal cooling

(work) that can be achieved in quantum thermodynamics [22].
The triangle inequality Eq. (6) indicates that a subtly corre-
lated system could even lead to an increase of D

{A}
VN by a factor

M2 [26]. However, under the canonical conditions where only
one internal state is populated, the gain of D

{A}
VN is bounded to

M since S
{AB}
VN (0) = S

{A}
VN (0) and S

{AB}
VN (t ) = S

{AB}
VN (0). This is

consistent with the results shown in Fig. 3(b), where the gain
on D

{A}
VN is greater than one but lower than M = 2.

4. Other entropy definitions

Other functions F of the parameters can be used to define
the entropy. For instance, power function leads to Tsallis
entropy: Sq = 1

q−1 [1 − ∑
i p

q

i ]. For q → 1, it reduces to the
Shanon entropy and for q → ∞ to the maximal population
of ρ̂.2

Combining with logarithmic function leads to the Rényi
entropy S

(q )
R = 1

1−q
log [

∑
i p

q

i ]. The case q = 0 is the Hartley
or max entropy, q → 1 is the Shannon entropy, q = 2 is the
collision or simply called Rényi entropy, and q → ∞ the min
entropy.

It is important to realize that, for a given choice of F , a
given PSD will have a population version F (pi ) but also an
eigenvalue one (when pi = λi). Sometimes, the terminology
is ambiguous and it is important to be precise if a function
of pi or λi is used. Fortunately, some definitions are not
ambiguous; for instance, the Von Neumann entropy is always
an eigenvalue function. The Von Neumann entropy is there-
fore always the Shannon entropy over the spectrum of ρ̂.
Similarly the so-called (Tsallis-2) linear entropy (because it
approximates the Von Neumann entropy when ln ρ̂ ≈ ρ̂ − 1
[77]) SL = 1 − ∑

i λ
2
i = 1 − Tr(ρ̂2) is usually used over the

spectrum of ρ̂ because it quantifies the purity of the quantum
state [purity being defined by Tr(ρ̂2) [2,78]].

5. Relation between PSD and PMD

The function F can also be used to define a single value
PSD from a PMD. For instance, we can define the so-called
Wehrl entropy SW = − ∫

Q(r, p) ln Q(r, p) dr dp. This is a
continuous (or differential) entropy in which Q(r, p) is seen
as a probability density function. Wehrl’s entropy is the clas-
sical limit h → 0 of the Von Neumann quantum entropy [79].

The linear entropy could also be used because, com-
pared to other definitions of the entropy, it has the di-
rect Weyl-Wigner-Moyal transcription: SR = 1 − Tr(ρ̂2

A) =
1 − h

∫
W (r, p)2 dr dp (so-called Manfredi-Feix entropy)

[77,80,81].

6. Relation and bounds between PSD

a. Informational versus spectral PSD

An informational entropy is always larger than the corre-
sponding spectral entropy.

2Because limq→∞ ‖ · ‖q = ‖ · ‖∞, that is limq→∞ (
∑

i |pi |q )
1/q

=
maxi pi .
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The key argument is based on the Schur-Horn theorem
(that indicates essentially that pi � λi) and on the fact
that the functions F are concave (as the power or loga-
rithmic functions) in order to keep some basic properties
of the entropies such as increasing with disorder. Then
Jensen’s inequality for concave function proves the result
[22–25,76,82,83].

For instance, F (x) = −x ln(x) leads to SSh � SVN (or
equivalently DSh � DVN).

b. Invariance of full PSD

The invariance of the full eigenvalues PSD is obvious
using series of F (x), the unitarity of the evolution opera-
tor Û [ρ̂(t ) = Û (t )ρ̂(0)Û †], and the cyclic invariant of the
trace. The fact that all functions of the eigenvalues λi are
conserved is the argument used in Ref. [1] to show that
the min-entropy S∞ = − log maxi λi = − log ‖ρ̂‖∞ or the
spectral radius D∞ = ‖ρ̂‖∞ = maxi (λi ) of ρ̂ (maximum oc-
cupation number of quantum eigenstates λi) are conserved
under Hamiltonian evolution (and so that the related PSD
cannot vary).

c. Bound by the number of internal states M

The evolution operator Û can also be used to demonstrate
other bounds [2] such as

max [ρ̂A(t )] � M max [ρ̂A(0)]. (C5)

This is demonstrated by considering
maxp [〈p|ρ̂A(t )|p〉] = ∑M

i=1〈p0, i|ρ̂(t )|p0, i〉 in addition
to 〈p0, i|ρ̂(t )|p0, i〉 = ∑

p,j Up0i,pjρpj,pj (0)U ∗
pj,p0i

�
max [ρ̂A(0)]

∑
p,j Up0i,pjU

∗
pj,p0i

� max [ρ̂A(t )] that arises

from the unitarity of the evolution operator Û .
In a similar manner [using F (x) = xn and limn→∞ ‖ ·

‖n = ‖ · ‖∞ with the theorem (5) of [76]] it can be shown (see
also [76]) that the Husimi function Q and the Wehrl entropy
are bounded by the same factor M . More detail and other
bounds can be found in Refs. [22–25,76,82,83].

As an important final precaution, again we mention that
using pseudo-phase-space-density definitions, as the ones fil-
tering a specific state [such as the ground state only S

(g)
Sh =

−∑
p〈p, g|ρ̂|p, g〉 ln(〈p, g|ρ̂|p, g〉)], it is possible to find an

increase larger than M . This is because such pseudo PSD are
based neither on a properly defined density matrix nor a partial
trace of ρ̂.
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