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We present a unified description of several methods of chiral discrimination based exclusively on electric-
dipole interactions. It includes photoelectron circular dichroism (PECD), enantiosensitive microwave spec-
troscopy (EMWS), photoexcitation circular dichroism (PXCD), and photoelectron-photoexcitation circular
dichroism (PXECD). We show that, in spite of the fact that the physics underlying the appearance of a chiral
response is very different in all these methods, the enantiosensitive and dichroic observable in all cases has
a unique form. It is a polar vector given by the product of (i) a molecular pseudoscalar and (ii) a field
pseudovector specified by the configuration of the electric fields interacting with the isotropic ensemble of chiral
molecules. The molecular pseudoscalar is a rotationally invariant property, which is composed from different
molecule-specific vectors and in the simplest case is a triple product of such vectors. The key property that
enables the chiral response is the noncoplanarity of the vectors forming such triple product. The key property
that enables chiral detection without relying on the chirality of the electromagnetic fields is the vectorial nature of
the enantiosensitive observable. Our compact and general expression for this observable shows what ultimately
determines the efficiency of the chiral signal and if, or when, it can reach 100%. We also discuss the differences
between the two phenomena, which rely on the bound states, PXCD and EMWS, and the two phenomena using
the continuum states, PECD and PXECD. Finally, we extend these methods to arbitrary polarizations of the
electric fields used to induce and probe the chiral response.
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I. INTRODUCTION

Right- and left-handed helices are typical examples of
chiral objects; each of them cannot be superimposed on
its own mirror image. Some molecules possess the same
property; left-handed and right-handed molecules are called
enantiomers. Distinguishing left and right enantiomers is both
vital and difficult [1–3]. Since the nineteenth century, the helix
of circularly polarized light has been used to distinguish the
two enantiomers of a chiral molecule, relying on the relatively
weak interaction with the magnetic field as a key mechanism
for chiral discrimination. However, in this case the chiral
signal1 is proportional to the ratio of the molecular size to the
pitch of the light helix, i.e., its wavelength, generally leading
to weak signals in the infrared, visible, and UV regions.

One can overcome this unfavorable scaling and obtain
significantly higher circular dichroism, at the level of a few
percent, in several ways. First, one can rely on using a
strong laser field to enhance the optical response involving
the interference of the magnetic-dipole transitions and the
electric-dipole ones, as done in chiral high-order-harmonic
generation [4–7]. Second, one can decrease the pitch of the
light helix by using XUV or x-ray light [8,9]. Yet, in both
cases the chiral signal would be equal to zero within the
electric-dipole approximation.
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1When referring to the measured signal, we will use the adjective

chiral as a shorthand for enantio-sensitive and dichroic.

Thus, the discovery of approaches relying exclusively on
electronic dipole transitions [10–18] and yielding a very high
chiral response already in the electric-dipole approximation is
both intriguing and beneficial. These techniques include pho-
toelectron circular dichroism (PECD) [10–13], enantiosensi-
tive microwave spectroscopy (EMWS) [16,19,20], photoexci-
tation circular dichroism (PXCD) [18], and photoexcitation-
photoelectron circular dichroism (PXECD) [18].

This new generation of chiral methods leads to very high
signals, up to tens of percent in PECD, which is several orders
of magnitude higher than in standard techniques relying on
magnetic interactions. Here we present a unified description
of several of these methods working in the perturbative one-
and two-photon regimes of the light-molecule interaction. Re-
sults for the multiphoton [21–23] and the strong-field regime
[24,25] of PECD will be presented elsewhere.

We derive a common general formulation for the chi-
ral response encompassing PECD, EMWS, PXCD, and PX-
ECD. This formulation is based on understanding that these
electric-dipole-based techniques using nonchiral fields are
only possible thanks to vectorial observables. Readers familiar
with chiral measurements might be uncomfortable with such
statement. Indeed, it is well known that chiral observables
are pseudoscalars, not polar vectors. Section II addresses
this issue and describes the role of the laboratory setup in
enantiosensitive techniques with nonchiral fields. In Sec. III,
we describe how symmetry enforces enantiosensitivity and
dichroism on polar vectors resulting from the electric-dipole
interaction. Section IV consists of four parts which specify
how the information about the handedness of the laboratory
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setup and that of the molecular enantiomer can be decoupled
and defined in a common way for the four perturbative dipole
techniques: PECD, PXCD, EMWS, and PXECD. Section V
summarizes the conclusions of this work. We use atomic units
throughout the paper.

II. CHIRAL MEASUREMENTS AND ENANTIOSENSITIVE
OBSERVABLES

The goal of our work is to demonstrate the general con-
cept underlying several chiral measurements which do not
use magnetic interactions. Achieving this goal requires two
things. First, one should provide a general concept, i.e.,
address the following question: What is the key difference
between the chiral measurements involving the magnetic com-
ponent of the light field and those relying only on the electric-
dipole approximation? We outline such concept in this sec-
tion. Second, one should formalize this concept by deriving
compact expressions for observables pertinent to the four
different experimental setups and establishing connections
between them. Such derivations will be presented in Sec. IV.

It is well known that any enantiosensitive observable
should be a pseudoscalar. However, detectors in any experi-
mental setup measure clicks. Clicks are scalars. Where is the
pseudoscalar in a click?

Let us start with the conventional concept. It is well known
that the handedness of chiral objects can only be probed
via interaction with another chiral object; in other words,
it is well known that one always needs a chiral reagent to
discriminate between opposite enantiomers. A chiral reagent
interacts differently with left and right enantiomers. The chi-
ral reagent can be simply another chiral molecule or chiral
light. Consider, for example, absorption circular dichroism.
Absorption of circularly polarized light by a chiral molecule is
the outcome of such an experiment, and this absorption must
be different for right and left enantiomers. The difference in
absorption is a scalar; however, this scalar is just a product
of two pseudoscalars, one from the molecule and the other
from light. In this particular case, the second pseudoscalar
is the light helicity (see Appendix 1), which encodes the
handedness of the helix traced by the circularly polarized light
in space. Thus, we use the chiral probe (chiral reagent) to
“hide” a molecular pseudoscalar inside a scalar. The molec-
ular pseudoscalar in absorption circular dichroism, as is well
known, is given by the scalar product of electric-dipole and
magnetic-dipole vectors. The overall signal is small because
the magnetic field interacts very weakly with molecules.

We now turn to methods which do not rely on the inter-
action with the magnetic component of the light field such
as, e.g., PECD. In PECD, the photoionization of an isotropic
molecular ensemble with circularly polarized light yields a
net photoelectron current in the direction perpendicular to
the plane of polarization. The direction of this current can
be flipped by either swapping the molecular handedness or the
direction of rotation of the field. It is a purely electric-dipole
effect: Light chirality is not needed at all; i.e., the magnetic
field of the incident laser pulse is not used. Thus, we do not use
the chiral property of light, yet the chiral signal is very strong.
Where is our chiral reagent if the light chirality is not used?
The combination of circularly polarized light and a detector

(a) (b) (c) (d)

FIG. 1. The combination of circularly polarized light (blue
curved arrows) and a detector (horizontal lines) defining a vector
perpendicular to the polarization plane (black vertical arrows) make
up a chiral setup. Four possible realizations of such setup are shown.
Setups (a) and (b) are left handed and setups (c) and (d) are right
handed. For a fixed molecular enantiomer (not shown in the figure),
setups with the same handedness yield the same result, while setups
with opposite handedness yield opposite results.

that distinguishes the two opposite directions perpendicular to
the polarization plane defines a chiral setup (see Fig. 1) whose
handedness (a pseudoscalar) is given by the scalar product
between the photon’s spin (a pseudovector) and the direction
defined by the detector (a vector). Thus, the chiral reagent is
substituted by the chiral observer (i.e., chiral setup). That is
why we do not need to employ chiral properties of impinging
electromagnetic fields.

The role of the directionality of the detector in defining
the handedness of the chiral setup highlights the crucial
importance of having a vectorial response to the light-matter
interaction, since a scalar response would be unable to exploit
the directionality of the detector and as a consequence also the
handedness of the setup. Furthermore, as we show in Sec. III,
such vectorial response automatically exhibits enantiosensi-
tivity and dichroism with respect to the external vector defined
by the detector. These properties indicate that in general the
vectorial response results from the product of a molecular
pseudoscalar and a field pseudovector. The field pseudovector
determines the direction of observation of the dichroic and
enantiosensitive response and thus indicates (up to a sign)
the corresponding detector arrangement required to measure
such response (see Fig. 1). The field pseudovector is formed
by noncollinear (and phase-delayed in the cases of a single
frequency) components of the electric field. For example, in
PECD, it results from the vector product between the x and
y components of the circularly polarized field. Ultimately,
the result of the measurement—the scalar (click)—is given
by the projection of the vectorial response on the external
vector defined by detector, which yields the product of the
molecular pseudoscalar and the handedness of the setup (see
Sec. IV). The latter is the projection (positive or negative) of
the field pseudovector on the external vector defined by the
detector.

Note that the field pseudovector does not have to point in
the direction of light propagation (as one might think from the
above example). In Sec. IV, we expose various opportunities
offered by different field geometries, including arrangements
of electric fields propagating noncollinearly.

In Sec. IV, we illustrate this concept by deriving molec-
ular pseudoscalars and field pseudovectors for four exper-
iments detecting different observables in different systems
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FIG. 2. Symmetry properties of an isotropic ensemble of chiral
molecules interacting with circularly polarized light in the electric-
dipole approximation. The box represents the “enantiomer + field”
system. Inside the box: red letters L and R specify the enantiomer,
the curved blue arrow specifies the direction of rotation of a field
circularly polarized in the xy plane, and the vertical golden arrow
stands for a polar vector observable �v = vzẑ displaying asymmetry
with respect to the polarization xy plane. A reflection σ̂z with respect
to the xy plane leaves the field invariant but swaps the enantiomer
and flips �v. A rotation R̂π

�a by π radians around any axis �a contained
in the xy plane leaves the enantiomer invariant because the ensemble
is isotropic but swaps the polarization and flips �v. Note that a rotation
R̂π

�x (R̂π
�y ) followed by a reflection σ̂z is equivalent to a reflection σ̂y

(σ̂x) and leaves �v invariant but swaps both the enantiomer and the
polarization.

using different setups. However, in all cases what enables
chiral discrimination is the chiral observer defined by the
combination of an achiral electromagnetic field and a direc-
tional detector.

III. SYMMETRY IN THE ELECTRIC-DIPOLE
APPROXIMATION

Let us begin with a simple symmetry consideration, which
applies to all enantiosensitive effects considered here. Con-
sider first an isotropic ensemble of a nonracemic mixture
of chiral molecules, which interacts with light circularly
polarized in the xy plane. Irrespective of the specific chiral
response we are looking at, it may lead to an observable
associated with some polar vector �v. For example, in the case
of PECD this polar vector is the net photoelectron current,
while in PXCD it would be the coherent dipole induced in
the bound states of the neutral. The cylindrical symmetry
of the “ensemble + field” system implies that �v = vzẑ.2

Generalization to the case with no cylindrical symmetry is
discussed below. The “enantiomer + field” system and a chiral
sensitive vectorial observable in the case of cylindrical sym-
metry are sketched in the upper-left box of Fig. 2. It applies,

2Note that for few-cycle pulses, the cylindrical symmetry may be
severely compromised. However, for perturbative fields the first-
order amplitudes do not encode the duration of the pulse, that is, the
response of a few-cycle pulse can be emulated using monochromatic
light of the appropriate intensity, and therefore the cylindrical sym-
metry assumption remains valid even for ultrashort pulses provided
one only looks at functions of the first-order amplitudes.

FIG. 3. Same as Fig. 2 but for two perpendicular linearly po-
larized fields along x̂ (double headed arrow in perspective) and
ŷ (horizontal double headed arrow) of arbitrary frequencies and
intensities. In general, vx �= 0 and vy �= 0 but only vzẑ is shown
(vertical arrow). A rotation R̂π

x (R̂π
y ) leaves the enantiomer invariant

but changes the phase of the field along ŷ (x̂) by π . σ̂x , σ̂y , and σ̂z

describe transformations of the “enantiomer + field” system upon
reflections with respect to the different axes of the laboratory frame.

for example, to the field configuration in PECD and PXCD.
Our system transforms as indicated in Fig. 2 under reflections
in the xy plane and under rotations by π radians around any
axis contained in the xy plane. These transformations show
the relationship between the different “enantiomer + field”
configurations and the corresponding effect on the dichroic
and enantiosensitive observable �v.

Figure 2 shows that for an achiral ensemble, i.e., an en-
semble of achiral molecules or a racemic mixture of chiral
molecules, the system “ensemble + field” is symmetric with
respect to reflection σ̂z in the xy plane. Therefore, the vector
�v must vanish, yielding a photoelectron angular distribution
symmetric with respect to the plane of polarization; otherwise
two identical experiments would yield different results. How-
ever, for a nonracemic mixture of chiral molecules, there is no
symmetry enforcing �v = 0. Therefore, nothing prohibits the
emergence of observables which display asymmetry with re-
spect to the plane of polarization and the associated dichroism
and enantiosensitivity. The question is what these observables
are, how strong can the signal be, and what determines its
limits. We address these problems in the next section.

We also stress that the cylindrical symmetry is not essential
for our reasoning. The argument can be extended to other
geometries including linear fields or aligned molecules, pro-
vided one takes into account that vx and vy are not necessarily
zero. Figure 3 shows a generalization of the case we have
just considered. Now the x and y components of the field
have different frequencies, intensities, and an arbitrary phase
shift with respect to each other. This field configuration is
relevant, for example, for the EMWS experiments carried out
in Ref. [19]. The original experiment in Ref. [16] can also
be analyzed similarly by replacing one of the two-headed
arrows in each “enantiomer + field” configuration in Fig. 3
by a single-headed arrow to account for the static field. The
details of the analysis are discussed further in Sec. IV C 1,
but the conclusion remains the same: the emergence of a
nonvanishing polar vector characterizing the chiral response
of the “enantiomer + field” system. Finally, the emergence
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FIG. 4. Same as Fig. 3 but for an arbitrary angle between the
two linearly polarized fields. Note that vectors pointing out of the
page are indicated by a dot (ẑ and �v in the upper left and lower right
configurations) and vectors pointing inside the page by an × (�v in
the upper right and lower left configurations).

of this vector for arbitrary orientations of linear fields is
illustrated in Fig. 4.

We can now support the introductory discussion of Sec. II
with several remarks concluding the symmetry analysis
above:

First, from Figs. 2–4 it is clear that �v reflects the properties
of the “enantiomer + field” system and not those of the
enantiomer or field separately.

Second, while it is well known that molecular chiral ob-
servables are characterized by pseudoscalars (scalar quantities
that change sign upon the parity transformation), so far we
have been discussing enantiosensitive properties of a polar
vector. The appearance of a polar vector �v is not accidental:
Its projections on the axes of the laboratory frame combine
the information about the handedness of the chiral molecule
and the handedness of the chiral setup.

Third, the observation of enantiosensitivity and dichroism
in Figs. 2–4 implicitly assumes a fixed z direction against
which we can compare the rotation direction of the light and
the direction of the vector �v. Otherwise, there would be no
way to, for example, distinguish right- and left-circularly-
polarized light from each other, since we could rotate the z

axis by π to change right- into left-circularly polarized light.
Although a fixed z direction is usually taken for granted, it
remains physically meaningless until it is somehow related to
the elements taking part in the experiment. In the methods
we analyze here, such a z direction is fixed by the detector
(vertical arrow in Fig. 1), which is, of course, assumed to
remain unchanged when either the enantiomer or the light
polarization is changed.

Therefore, the advent of electric-dipole-based techniques
marks a shift of paradigm in chiral discrimination from using
chiral reagents to using chiral observers, i.e., an experimental
setup with well-defined handedness, even if the latter is not
explicitly stated or recognized.

In the next section, we will show that in all cases the
polar vector �v is given by the product of (i) a molecular
pseudoscalar and (ii) a field pseudovector specified by the
configuration of the electric fields. We will directly specify
these two key quantities, forming the vectorial observables,
for each of the electric-dipole-based techniques.

IV. UNIFIED DESCRIPTION OF CHIRAL
ELECTRIC-DIPOLE RESPONSE

The chiral electric-dipole response manifests itself in vec-
torial observables, which have the following general form:

�v = χm
�Zl, (1)

where χm is a molecular pseudoscalar defining the handedness
of the molecule and �Zl is a light field pseudovector. Measuring
�v means projecting it on the external vector �ud defined by the
detector (vertical arrow in Fig. 1),

�v · �ud = χm( �Zl · �ud ). (2)

The projection of �Zl on �ud defines the handedness of the
chiral setup; therefore, the result of the measurement is given
by the product of the molecular handedness and the setup’s
handedness. In this section, we will derive χm and �Zl for
four different electric-dipole-based techniques of chiral dis-
crimination. These techniques include PECD [10–13], EMWS
[16,19,20], PXCD [18], and PXECD [18].

A. Photoelectron circular dichroism

We begin with what is perhaps the most prominent
electric-dipole-based technique, PECD. This technique was
first proposed in 1976 [10] and then rediscovered in 1982
[11]. The first quantitative calculations of the effect [12]
yielded staggering results: The expected effect was at the
level of some few percent to maybe even 10% of the total
photoionization signal. The first experiment appeared just a
year later [13]. The technique was dramatically advanced in
Refs. [26–29] from a theoretical concept to an extrasensi-
tive experimental technique. With the advances in table-top
laser-based implementations [30,31] including multiphoton
[21–23] and strong-field regimes [24], PECD has proven
very interesting from both fundamental and applied perspec-
tives. In PECD, the photoionization of an isotropic and non-
racemic ensemble of chiral molecules by circularly polarized
light leads to an asymmetry in the photoelectron angular
distribution (PAD) with respect to the polarization plane,
the so-called forward-backward asymmetry (FBA). This
asymmetry is usually described by decomposing the angle-
resolved photoionization probability W (�kL) in Legendre
polynomials,

W (�kL) =
2∑

l=0

bl (k)Pl

(
cos θL

k

)
, (3)

where it corresponds to a nonzero b1 coefficient. In Eq. (3),
W (�kL) is the probability of obtaining a photoelectron with
momentum �kL, L indicates that the vector is in the laboratory
frame, θL

k is the polar angle of �kL, k ≡ |�kL|, Pl is the Legendre
polynomial of degree l, and we assume that the polarization
plane coincides with the xLyL plane. The b1 coefficient is
directly related to the net photoelectron current induced by
ionization

�jL(k) =
∫

d�L
k
�jL(�kL), (4)
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where �jL(�kL) = W (�kL)�kL is the photolectron current in
the direction specified by the photoelectron direction �kL in
the laboratory frame, and

∫
d�L

k ≡ ∫ π

0 dθL
k

∫ 2π

0 dϕL
k sin θL

k is
the integral over all photoelectron directions. From the orthog-
onality of the Legendre polynomials, we obtain

�jL(k) =
∫

d�L
k
�jL(�kL),

=
2∑

l=0

bl (k)
∫

d�L
k Pl

(
cos θL

k

)�kL,

= k

2∑
l=0

bl (k)
∫

d�L
k Pl

(
cos θL

k

)
P1

(
cos θL

k

)
ẑL,

= 4π

3
kb1(k)ẑL, (5)

The current in Eqs. (4) and (5) is the vectorial observable
of our interest. The task is to find it or, equivalently, b1(k).
The corresponding calculations of the photoelectron angular
distributions traditionally rely on the formalism of angular
momentum algebra, both for one-photon and few-photon
PECD [10–12,32]. We have found that it is very instructive to
depart from this traditional formalism, which uses language
specific for photoionization. Instead, we use an alternative,
vectorial formulation, pioneered in works of Manakov [33]
and applied to aligned chiral systems [34]. The vectorial
formalism was also used to describe two-photon absorption
CD [35]. Conveniently, it provides a common language for
all electric-dipole-based techniques, irrespective of their “field
of origin” or observable, be it photoionization or microwave
physics.

We define the incident circularly polarized field in the
laboratory reference frame as

�E(t ) = E (t )êL
σ + c.c., (6)

where êL
σ = (x̂L + iσ ŷL)/

√
2 is the light polarization vector,

σ = ±1 defines the rotation direction of the field, and E (t ) is
the time-dependent amplitude. The photoelectron current den-
sity for a given photoelectron momentum �kM in the molecular
frame is (up to the negative electron charge)

�jM
�kM = |a�kM |2�kM. (7)

Here �a�kM is the ionization amplitude of the transition to
the continuum state |�kM〉 from the ground state |0〉 in the
circularly polarized field Eq. (6). Its standard first-order per-
turbation theory expression is

a�kM = iẼ〈�kM| �dL · êL
σ |0〉 = iẼ√

2
( �DL · x̂L + σ i �DL · ŷL),

(8)

where Ẽ is the Fourier transform of E at the transition fre-
quency, �d is the dipole operator, and �DL is the corresponding
transition dipole matrix element in the laboratory frame.

Our next step is to identify the molecule-specific enan-
tiosensitive structure in Eqs. (7) and (8). That is, we will be

looking for molecule-specific pseudoscalars; quantities that
change sign upon parity inversion. Pseudoscalars may arise
as a product of a vector and pseudovector. An example of
such pseudoscalar is the helicity η of circularly polarized light
which is nonzero only beyond the electric-dipole approxi-
mation (see Appendix 1). Molecular pseudoscalars also arise
from triple products formed by three molecular polar vectors.
We shall now look for such quantities.

Let us look at the cross term arising in |a�kM |2,

iσ [( �DL∗ · x̂L)( �DL · ŷL) − ( �DL · x̂L)( �DL∗ · ŷL)]. (9)

We now use the vector identity (�a · �c)(�b · �d ) − (�a · �d )(�b · �c) =
(�a×�b) · (�c×�d ) and the fact that x̂L×ŷL = ẑL to write the
interference term as a triple product,

|a�kM
|2 = |Ẽ |2

2
{| �DL · x̂L|2 + | �DL · ŷL|2 + iσ ( �DL∗× �DL) · ẑL}.

(10)

Note that i( �D∗× �D) = 2Im{ �D}×Re{ �D} is a real vector, where
Re{ �D} and Im{ �D} are the real and imaginary parts of �D.

The last term in Eq. (10) is a triple product, but it is
not the one we were looking for. Indeed, instead of a polar
vector, σ ẑL is a pseudovector that characterizes the rotation
direction of the field, i.e., the photon’s spin (see Appendix 1),
and moreover, the triple product includes two vectors
characterizing the molecule and one vector characterizing
the “observer” (or the laboratory frame), as opposed to
three vectors characterizing the molecule in the molecular
frame.

To relate the above expression to the transition dipoles in
the molecular, rather than the laboratory frame, one can use
the rotation matrix S(�). It transforms the vectors from the
molecular to the laboratory frame via a rotation through the
Euler angles � ≡ (αβγ ): �DL = S �DM ≡ S〈�kM| �dM|0〉.

Using Eq. (10), we can also write the current in the labo-
ratory frame, corresponding to the photoelectron momentum
�kM in the molecular frame

�jL
�kM = S �jM

�kM = |Ẽ |2
2

[|S �DM · x̂L|2 + |S �DM · ŷL|2

+ σ iS( �DM∗× �DM) · ẑL]S�kM. (11)

Note that �DL∗× �DL = S( �DM∗× �DM). This current is not a
usual observable. Measuring it would require a coincidence-
type setup, where one would detect the laboratory-frame elec-
tron momentum together with the orientation of the molec-
ular frame in the laboratory frame. We are interested in the
standard observable: the net photoelectron current in the lab-
oratory frame. Therefore, we need to integrate over all direc-
tions of the photoelectron momentum and over all molecular
orientations:

�jL(k) =
∫

d�

∫
d�M

k
�jL
�kM , (12)

where
∫

d�M
k ≡ ∫ π

0 dθM
k

∫ 2π

0 dϕM
k sin θM

k .
Within the standard approach, one performs the integra-

tion over all molecular orientations keeping the photoelec-
tron momentum �k fixed in the laboratory frame. This yields
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the standard laboratory-frame photoelectron angular distribu-
tions, from which the b1 coefficient, which is proportional
to the net photoelectron current [see Eq. (5)], is extracted.
Here, since we are not interested in the full angular dis-
tribution of photoelectrons, we can keep the photoelectron
momentum �k fixed in the molecular frame. This simplifies the
orientation averaging procedure considerably because in this
case the transition matrix element vector �DM(�kM) does not
have an argument that depends on the molecular orientation
� and can therefore be trivially rotated as S(�) �DM(�kM). In
the other case, when �k is fixed in the laboratory frame, the
corresponding rotation reads as S(�) �DM(S(�)−1�kL ) and the
orientation averaging step requires knowing how �D changes
as a function of �k, which is usually tackled with a partial
wave expansion of the continuum wave function. We do not
have such complication here and we can simply use the vector
identitiy Eq. (A14) derived in Appendix 2 to obtain

�jL(k) =
{

1

6

∫
d�M

k [i( �DM∗× �DM) · �kM]

}
{σ |Ẽ |2ẑL}. (13)

The equivalence between expression (13) and the original
expression derived by Ritchie [10] is demonstrated in Ap-
pendix 5.

Expression (13) is physically transparent. In particular, it
shows that the strength of the chiral signal depends on the
mutual orientation of the three vectors forming the triple
product of vectors defined in the molecular frame.

Let us analyze expression (13):
First, we see that only the interference term in the current

[see Eq. (11)] yields a nonvanishing contribution to the net
current after orientation averaging. This stresses the impor-
tance of the coherence between the two contributions to the
ionization amplitude, triggered by the two components of the
ionizing field.

Second, we see that the orientation averaging has modified
the expression for the vector triple product: it no longer
involves any laboratory-frame quantities, such as σ ẑL. Its
place is now taken by the molecular frame photoelectron
momentum �kM, and the molecular term is now a rotationally
invariant quantity.

Third, Eq. (13) shows that the net photoelectron current
(per molecule) in the laboratory frame can be factored into
a pseudovector field term expressed in the laboratory frame
and a pseudoscalar molecular term expressed in the molecular
frame. The pseudovector field term contains the intensity of
the field at the transition frequency and the rotation direction
of the circularly polarized field σ ẑL. The molecular term
is an integral over all states on the photoelectron energy
shell k2/2, where, after taking into account all molecular
orientations, each state contributes by an amount proportional
to the scalar triple product between �DM(�kM), �DM∗(�kM), and
�kM, or equivalently between Re{ �DM(�kM)}, Im{ �DM(�kM)}, and
�kM.

From the field term, we can see that �jL(k) is directed
along ẑL and takes opposite values for opposite circular
polarizations and a given enantiomer. On the other hand,
from the relationship between the photoionization dipoles
of opposite enantiomers derived in Appendix 4, �DM

left (�kM) =
− �DM

right (−�kM), it is simple to see that the molecular term is a

pseudoscalar, i.e., it changes sign under a parity inversion, and
therefore �jL(k) takes opposite values for the opposite enan-
tiomers and a given circular polarization [see Eqs. (A45) and
(A46) in Appendix 4]. All these conclusions are in agreement
with the symmetry analysis described in Sec. III, with �jL(k)
playing the role of the generic dichroic and enantiosensitive
vector �v.

The triple product in the molecular term vanishes if the
vectors are coplanar, which is, for example, the case for the
plane wave continuum, where one can use the velocity gauge
to show that �DM is parallel to �kM. This conclusion corresponds
to the well-known fact that | �jL(k)|/k ∝ |b1| has an overall
tendency to decrease as the photoelectron energy increases
and the continuum increasingly resembles a plane wave. One
can also show that �jL(k) vanishes in case of a spherically
symmetric continuum, in agreement with earlier studies [11].
The same conclusion holds for the strong-field PECD [25].

Our derivation and the result provide us with an important
insight. The chiral signal stems from the interference between
the two noncollinear dipole transitions. If we consider a single
final state, such interference leading to a vector product of
two transition dipoles would only be possible for a scattering
state where the complex transition dipole allows for two
noncollinear components: One of them is given by the real
part of the transition dipole and the other by its imaginary
part.

The generalization of Eq. (13) to arbitrary polarizations
of the field is straightforward. We just need to separate the
Fourier transform of the field into its real and imaginary parts
and keep in mind that for any complex vector �u = �ur + i �ui

we have that �u∗×�u = −2i �ui×�ur . Then, we obtain

�jL(k) =
{

1

6

∫
d�M

k [( �DM∗× �DM) · �kM]

}
{ �̃EL∗× �̃EL}, (14)

which reduces to Eq. (13) for the case of circularly polarized
light. Equation (14) shows that for an arbitrary field config-
uration the chiral response in PECD is not necessarily along
the light propagation direction.

B. Photoexcitation circular dichroism in electronic
or vibronic states

Let us now consider chiral response in bound excited
states. In this case, and for a single excited state, the excitation
dipole is real. Therefore, �DM(�kM) and �DM∗(�kM) are parallel,
yielding zero enantiosensitive dipole signal.

On the other hand, if we were to coherently excite two
states with noncollinear transition dipoles, we would have a
nonzero cross product. Then, we could obtain a dichroic and
enantiosensitive signal as long as we find a vectorial signal
that involves the interference between the two excitations.
Unlike in the previous case where this vectorial signal was
provided by the photoelectron current, in this case, it is
provided by the dynamics of the induced polarization.

The goal of our analysis is to uncover the intimate con-
nection between the PXCD effect discovered in Refs. [18] for
electronic and vibronic states and the EMWS discovered in
Ref. [16] for the rotational states. The physics in these two
cases is quite different, as the former involves internal and
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the latter external degrees of freedom, leading to subtle but
important details in the mathematical treatment.

Consider the case of two electronic or vibronic states,
which can be coherently excited by an ultrashort pulse from
the ground state. As before, we will consider a randomly
oriented ensemble. After interaction with a field of arbitrary
frequency, polarization, and intensity, the first-order ampli-
tudes of the excited states are given by

aj (t ) = i
[ �dL

j,0 · �̃EL(ωj0)
]
e−iωj t , j = 1, 2. (15)

where �dL
j,0 is now the real-valued transition dipole between the

ground and j th excited state and �̃EL is the Fourier transform
of the field at the corresponding transition frequency. For an
ultrashort pulse with the bandwidth covering both excited
states, the expectation value of the dipole will contain an
interference term of the form

〈 �dL〉χ ≡ a∗
1a2 �dL

1,2 + c.c.

= [ �dL
0,1 · �̃EL∗(ω1,0)

][ �dL
2,0 · �̃EL(ω2,0)

] �dL
1,2e

−iω2,1t + c.c.

(16)

which we have denoted by 〈 �dL〉χ to indicate that it is the chiral
part of the induced polarization.

In contrast to Eq. (10) and PECD, the fact that the Fourier
transform of the field is evaluated at two different transition
frequencies in the above expression does not allow us to easily
use the vector identity (�a · �c)(�b · �d ) − (�a · �d )(�b · �c) = (�a×�b) ·
(�c×�d ) and directly identify a triple product. The emergence of
the triple product as an enantiosensitive measure is somewhat
subtle: It only appears after averaging over all molecular
orientations, for a randomly oriented molecular ensemble.
With the help of Eq. (A15) derived in Appendix 2, one finds
that∫

d�〈 �dL〉χ = 1

6

[( �dM
0,1×�dM

2,0

) · �dM
1,2

]

× [ �̃EL∗(ω1,0)× �̃EL(ω2,0)]e−iω2,1t + c.c. (17)

The essential features of this expression are similar to those
of PECD. The expression again factorizes into a molecular
part, a pseudoscalar given by the triple product of molecule-
specific transition dipoles, and a field part, a pseudovector
given by the vector product of the incident fields. The induced
dipole oscillates at the frequency ω2,1 in the direction deter-
mined by the cross product between the Fourier transforms of
the exciting fields, at the corresponding transition frequencies.
The triple product of the transition dipoles is taken in the
molecular frame and forms the pseudoscalar that changes sign
for opposite enantiomers (see Appendix 4). This means that
the phase of the oscillations will be determined by the product
of the signs resulting from the molecular and field terms.
For a fixed polarization and opposite enantiomers, or for a
fixed enantiomer and opposite polarizations (see Figs. 2–4),
the phase will change by π . That is, the enantiosensitive and
dichroic character of the vectorial observable, in this case the
polarization, is encoded in the phase of its oscillations.

In the particular case of a circularly polarized field

[see Eq. (6)], we have �̃EL(ω) = Ẽ (ω)(x̂L + σ iŷL)/
√

2 and

therefore
∫

d�〈 �dL〉χ = iσ

6

[( �dM
0,1×�dM

2,0

) · �dM
1,2

]

× Ẽ∗(ω1,0)Ẽ (ω2,0)ẑLe−iω2,1t + c.c., (18)

which is the PXCD effect discovered in Refs. [18].
Equation (17) is the generalization of the PXCD effect to

the case of an arbitrary field. It shows that one can obtain
the same effect by either using a single broadband elliptically
polarized pulse or, for example, by using a sequence of two
spectrally narrow (and phase locked) linearly polarized pulses
with orthogonal polarizations. If more than two levels are
coherently excited, then Eq. (18) should include the sum over
all states.

Importantly, the vectorial quantity associated with the chi-
ral response does not have to be collinear with the direction
of light propagation, as happens in the case of a circularly
polarized field. It illustrates once again that the light propa-
gation direction, fundamental for characterizing the chirality
of a photon, does not play any role in electric-dipole-based
techniques. These techniques do not use the chirality of the
photon but use the polarization vectors of the light to define
the laboratory setup.

An important feature that distinguishes the “light observer”
from the “light reagent” is the presence of chiral sensitive ab-
sorption. Of course, PECD is associated with light absorption,
but this absorption is not chiral sensitive; e.g., it is neither
enantiosensitive nor dichroic [18].

Note that the earlier results for the quadratic susceptibility
in isotropic chiral media can also be presented in the vectorial
form, originally derived by Giordmaine [36],

�P (ω3 = ω1 − ω2) = χ (2)[ �E1(ω1)× �E∗
2 (ω2)], (19)

where the vectors �P , �E1, and �E2, are the Fourier components
of induced polarizations and incident fields at the respective
frequencies and χ (2) is the molecular pseudoscalar described
by the triple product of transition dipoles and a combination
of resonance denominators typical for second-order instanta-
neous response and derived in Refs. [14,15] in the context of
tree-wave mixing in isotropic chiral media within the electric-
dipole approximation.

Finally, the expression for PXCD also allows one to gauge
the strength of the chiral response. It maximizes when the
three transition dipoles are orthogonal to each other. In this
case, the coherent enantiosensitive dipole along the laboratory
ẑL axis, normalized to the excitation amplitudes, reaches
dM

1,2/3. Thus, for orthogonal excitation dipoles, the molecule
can convert all of its (ensemble-averaged) initial excitation in
the polarization plane of the circularly polarized pump into
enantiosensitive motion orthogonal to this plane, making a
highly efficient helix.

C. Chiral response upon rotational excitation:
Enantiosensitive microwave spectroscopy

In this section, we will use our vectorial formulation
to consider two enantiosensitive schemes in the microwave
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regime suggested by Patterson et al. [16,19] and described
theoretically in detail by Lehman [20].

Consider first coherent excitation of rotational states and
the enantiosensitive signal discovered by Patterson et al. in
Ref. [19]. The corresponding rotational wave functions are
the eigenstates of the asymmetric rigid rotor [37] and are
themselves functions of the Euler angles. We no longer deal
with a posteriori averaging over this degree of freedom. The
transition dipoles themselves are already the integrals over the
Euler angles � ≡ (αβγ ),

�dL
i,j = 〈JiτiMi | �dL|Jj τjMj 〉

=
[∫

d� ψ∗
JiτiMi

(�)S(�)ψJj τj Mj
(�)

]
�dM, (20)

where �dM is the permanent dipole moment of the electronic
ground state in the molecular frame, i, j = 1, 2. The state
|JτM〉 is an eigenfunction of the total angular momentum
operator Ĵ 2 and its z component Ĵz with eigenvalues J (J +
1) and M , respectively, and τ is associated with all other
quantum numbers pertinent for this state. These transition
dipoles are now used for the excitation amplitudes, which
are still given by the general expression Eq. (15) and the
induced dipole Eq. (16). Each of the dipoles entering Eq. (16)
is associated with a distribution of possible Mi,Mj ,Mk . This
distribution depends on the preparation of the system.

The orientation averaging over the Euler angles is now
replaced by summing over the distribution of all possible
initial and final M’s∑
M0,M1,M2

〈 �dL〉χ =
∑

M0,M1,M2

[ �dL
0,1 · �̃EL∗(ω1,0)

][ �dL
2,0 · �̃EL(ω2,0)

]

× �dL
1,2e

−iω2,1t + c.c. (21)

When all possible initial and final M’s are equally repre-
sented, as is the case for an isotropic sample, the averaging
is performed with the help of Eq. (A19), which is derived
Appendix 3 and yields

∑
M0,M1,M2

〈 �dL〉χ =
∑

M0,M1,M2

1

6

[( �dM
0,1×�dM

2,0

) · �dM
1,2

]

× [ �̃EL∗(ω1,0)× �̃EL(ω2,0)]e−iω2,1t + c.c. (22)

The main result here is the factorization of induced
polarization into the molecular-specific pseudoscalar∑

M0,M1,M2

1
6 [( �dM

0,1×�dM
2,0) · �dM

1,2], and the field pseudovector

[ �̃EL∗(ω1,0)× �̃EL(ω2,0)].
Note that before the averaging we had scalar products of

dipoles and fields [see Eq. (21)]. The averaging over the distri-
bution of M states in Eq. (21) plays the same role as averaging
over a random classical rotational ensemble in Eq. (17): It
leads to rearrangement of terms and to the appearance of
a rotationally invariant molecular pseudoscalar. It shows the
link to the PXCD effect [18] in the vibronic states.

Equation (22) is applicable for an arbitrary field configura-
tion. In the work by Patterson et al. [19] two linearly polarized
fields, orthogonal to each other, have been used to produce
a sum-frequency signal polarized along the direction perpen-
dicular to both fields. Here we derived the complementary
difference-frequency signal.

Importantly, our result shows that if two different pulses are
used, the signal in Eqs. (17) and (22) depends on the relative
phase between the two pulses. Therefore, the chiral signal
will only be observed in a reproducible fashion if the relative
phase between the two pulses is stable from shot to shot.
Clearly, this is automatically satisfied in the case of one-pulse
excitation with a circularly polarized field, where the relative
phase between the two perpendicular components is fixed at
π/2, as happens in PXCD.

Now we shall consider an alternative scheme, invented by
Patterson et al. and involving a static field [16].

1. Vectorial formulation for the static field case

Consider a molecule with eigenstates |n〉 in the absence of
fields and initially in the state |0〉. Application of a static field
�EL

S transforms the zeroth-order eigenstates into

|n′〉 = |n〉 +
∑
m�=n

�EL
S · �dL

m,n

Em,n

|m〉, (23)

where Em,n is the energy difference between the mth and nth
states, and we assumed that the states are nondegenerate or
that the perturbation does not couple degenerate states with
the same energy. If the perturbation of the initial state is
much smaller than that of the excited state and we apply an
oscillating field resonant with the transition |0〉 → |n′〉, then
the first order (in the oscillating field) amplitude of the state
|n′〉 reads as

an′ = i
[ �dL

n′,0 · �̃EL(ωn′,0)
]

= i

⎧⎨
⎩

[ �dL
n,0 · �̃EL(ωn′,0)

] +
∑
m�=n

�EL
S · �dL

n,m

Em,n

[ �dL
m,0 · �̃EL(ωn′,0)

]
⎫⎬
⎭.

(24)

While the DC Stark field is still present, the expected value
of the dipole has the form

〈 �dL〉 = �dL
0,0 + |an′ |2 �dL

n′,n′ + (
an′ �dL

0,n′e
−iωn′ ,0t + c.c.

)
. (25)

Upon orientation averaging, the oscillating term reads as∫
d�an′ �dL

0,n′e
−iωn′ ,0t + c.c.

= i

∫
d�

[ �dL
n′,0 · �̃EL(ωn′,0)

] �dL
0,n′e

−iωn′ ,0t + c.c.

= i

3

[ �dM
n′,0 · �dM

0,n′
] �̃EL(ωn′,0)e−iωn′ ,0t + c.c., (26)

so that the oscillations of the induced polarization follow the
field. Note that the orientation averaging for the rotational
states would follow accordingly as shown above, by replacing∫

d� by a sum over all M’s and keeping the sum on the
right-hand side of Eq. (26).

On the other hand, if the static field is adiabatically re-
moved so that all of the population in state |n′〉 is transferred
to state |n〉, we get

〈 �dL〉 = �dL
0,0 + |an′ |2 �dL

n,n + (
an′ �dL

0,ne
−iωn,0t+φ + c.c.

)
(27)
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where φ depends on the details of the turnoff of the static field. The orientation-averaged oscillating term reads as

∫
d� an′ �dL

0,ne
−iωn,0t+φ + c.c. = i

∫
d�

⎧⎨
⎩

[ �dL
n,0 · �̃EL(ωn′,0)

] �dL
0,n +

∑
m�=n

1

Em,n

[ �dL
n,m · �EL

S

][ �dL
m,0 · �̃EL(ωn′,0)

] �dL
0,n

⎫⎬
⎭e−iωn,0t+φ + c.c.

= i

⎧⎨
⎩

1

3

[ �dM
n,0 · �dM

0,n

] �̃EL(ωn′,0) + 1

6

∑
m�=n

1

Em,n

[( �dM
n,m×�dM

m,0

) · �dM
0,n

][ �EL
S × �̃EL(ωn′,0)

]
⎫⎬
⎭e−iωn,0t+φ + c.c.

(28)

In this case, we obtain an enantiosensitive contribution
which oscillates in the direction specified by the cross product
between the direction of the static field and the polarization
of the oscillating field. If, like in the original experiment [16],
the static field is along x̂ and the oscillating field is along ẑ,
then the polarization will exhibit oscillations along ŷ.

Wave mixing phenomena are usually described in the
language of susceptibilities. The quadratic susceptibility χ (2)

is responsible for three-wave mixing. However, both PXCD
and EMWS can also be described as free induction decay. In
fact, PXCD maximizes when the laser field is already turned
off (see Fig. 2(b) in Refs. [18]), supporting that free induction
decay that occurs after the pulse is at its main origin.

The example of a static field is interesting because it shows
that the free induction decay occurring both in PXCD and in
EMWS can have very different properties from the “instanta-
neous” response of an isotropic chiral medium described by
the quadratic susceptibility χ (2). For example, as shown in
Ref. [15], the chiral quadratic susceptibility vanishes if one
of the excitation fields is static, while the second term in
Eq. (28) shows that the chiral response associated with the
free induction decay is nonzero, be it EMWS or generalized
PXCD.

D. Bound-bound + bound-unbound transition

In the previous section, we saw how molecular chirality
can be read out from the dynamics of the induced polarization.

One can also imagine reading out this chirality not by looking
at the induced polarization directly but by looking at the
photoelectron current induced by a second absorption process
as originally proposed in Refs. [18]. Here, we will consider the
general case in which a pump pulse of arbitrary polarization
excites the molecule to a bound superposition and a probe
pulse of arbitrary polarization ionizes it after a time delay τ .
In this case, the photoionization amplitude into the state |�kM〉
reads as

a�kM = −[ �dL
1,0 · �̃EL

1 (ω1,0)
][ �DL

1 · �̃EL
2 (ωk,1)

]
e−iω1τ

− [ �dL
2,0 · �̃EL

1 (ω2,0)
][ �DL

2 · �̃EL
2 (ωk,2)

]
e−iω2τ , (29)

where �di,0 is a bound-bound transition dipole between states
|i〉 and |0〉, �Di is a bound-continuum transition dipole between

states |�kM〉 and |i〉, �̃Ei is the Fourier transform of the ith pulse,
and we assumed that the pulses do not overlap. Application of
Eq. (A16) to Eqs. (7), (12), and (29) yields the most general
result and it shows that not only the cross terms, as in the
generalized PXCD [see Eq. (17)], but also the diagonal terms
in |a�kM |2 may contribute to the net photoelectron current

�jL(k) =
∫

d�

∫
d�M

k |a�kM (�)|2S(�)�kM

= �jL
diag,1(k) + �jL

diag,2(k) + �jL
cross(k). (30)

The contribution from the diagonal terms is of the form

�jL
diag,i (k) =

∫
d�

∫
d�M

k

( �dL
0,i · �̃EL∗

1

)( �DL∗
i · �̃EL∗

2

)( �dL
i,0 · �̃EL

1

)( �DL
i · �̃EL

2

)�kL

= 1

15
Re

{∫
d�M

k

[( �dM
0,i× �DM∗

i

) · �DM
i

]( �dM
i,0 · �kM

)[( �̃EL∗
1 × �̃EL∗

2

) · �̃EL
2

] �̃EL
1

+
∫

d�M
k

[( �dM
0,i× �DM∗

i

) · �kM
]( �dM

i,0 · �DM
i

)( �̃EL
1 · �̃EL

2

)( �̃EL∗
1 × �̃EL∗

2

)

+
∫

d�M
k

[( �dM
0,i× �DM

i

) · �kM
]( �dM

i,0 · �DM∗
i

)( �̃EL
1 · �̃EL∗

2

)( �̃EL∗
1 × �̃EL

2

)}

+ 1

30

∣∣ �dM
i,0

∣∣2∣∣ �̃EL
1

∣∣2
∫

d�M
k

[( �DM∗
i × �DM

i

) · �kM
]( �̃EL∗

2 × �̃EL
2

)
(31)

where we only assumed that �d0,i = �di,0 is real, which can
always be achieved for bound states in the absence of mag-

netic fields. The fields �̃E1 and �̃E2 are evaluated at the frequen-
cies ωi,0 and ωk,i respectively. The last term is simply the
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generalized PECD from the ith state multiplied by the pop-
ulation in the ith state induced by the pump and a factor of
1/5 that comes from the orientation averaging. The terms in
curly brackets represent contributions to the current beyond
the usual PECD. Each term has selection rules that are evident
from its vectorial structure and will be discussed below after

considering the cross terms’ contribution to the photoelectron
current. As usual, the molecular terms are rotationally invari-
ant molecule-specific pseudoscalars and the field terms are
pseudovectors.

The contribution from the cross terms in |a�kM |2 to the net
photoelectron current �jL(k) is given in general by

�jL
cross(k) =

∫
d�

∫
d�M

k

( �dL
0,2 · �̃EL∗

1

)( �DL∗
2 · �̃EL∗

2

)( �dL
1,0 · �̃EL

1

)( �DL
1 · �̃EL

2

)�kL + c.c.

= �jL
noncopl(k) + �jL

ellip(k) + �jL
lin(k), (32)

where the fields �̃EL∗
1 , �̃EL∗

2 , �̃EL
1 , and �̃EL

2 are evaluated at the frequencies ω2,0, ωk,2, ω1,0, and ωk,1, respectively, and we grouped the
10 terms according to their selection rules for the fields as follows. The first group reads as

�jL
noncopl(k) = 1

30

{∫
d�M

k

[( �dM
0,2× �DM∗

2

) · �dM
1,0

]( �DM
1 · �kM)[( �̃EL∗

1 × �̃EL∗
2

) · �̃EL
1

] �̃EL
2

+
∫

d�M
k

[( �dM
0,2× �DM∗

2

) · �DM
1

]( �dM
1,0 · �kM

)[( �̃EL∗
1 × �̃EL∗

2

) · �̃EL
2

] �̃EL
1

+
∫

d�M
k

[( �dM
0,2×�dM

1,0

) · �DM
1

]( �DM∗
2 · �kM

)[( �̃EL∗
1 × �̃EL

1

) · �̃EL
2

] �̃EL∗
2

+
∫

d�M
k

[( �DM∗
2 ×�dM

1,0

) · �DM
1

]( �dM
0,2 · �kM

)[( �̃EL∗
2 × �̃EL

1

) · �̃EL
2

] �̃EL∗
1

}
eiω21τ + c.c., (33)

and contains all the terms involving scalar triple products of the field vectors, which means that each of its terms vanishes
if the fields involved in its triple product are coplanar. It means that exciting �jL

noncopl(k) requires noncollinear geometry of

pump and probe pulses. For fields with the same polarization at the two transition frequencies, that is, �̃EL
1 (ω1,0) ‖ �̃EL

1 (ω2,0) and
�̃EL
2 (ωk,1) ‖ �̃EL

2 (ωk,2), �jL
noncopl vanishes unless the polarization of the pump and the probe are noncoplanar, which means that at

least one of the fields must be elliptically polarized. The other field can be either linearly or elliptically polarized, provided its
polarization is noncoplanar to that of the first field.

The second group of contributions to �jL
cross is given by

�jL
ellip(k) = 1

30

{ ∫
d�M

k

[( �dM
0,2×�dM

1,0

) · �kM
]( �DM∗

2 · �DM
1

)( �̃EL∗
2 · �̃EL

2

)( �̃EL∗
1 × �̃EL

1

)

+
∫

d�M
k

[( �DM∗
2 × �DM

1

) · �kM
]( �dM

0,2 · �dM
1,0

)( �̃EL∗
1 · �̃EL

1

)( �̃EL∗
2 × �̃EL

2

)}
eiω21τ + c.c. (34)

and contains the two terms involving a cross product between a single field at the two transition frequencies. For fields satisfying
�̃EL
1 (ω1,0) ‖ �̃EL

1 (ω2,0) and �̃EL
2 (ωk,1) ‖ �̃EL

2 (ωk,2), each term vanishes unless the field in the cross product is elliptically polarized.
The field in the scalar product can have any polarization.

The third group of contributions to �jL
cross reads as

�jL
lin(k) = 1

30

{ ∫
d�M

k

[( �dM
0,2× �DM∗

2

) · �kM
]( �dM

1,0 · �DM
1

)( �̃EL
1 · �̃EL

2

)( �̃EL∗
1 × �̃EL∗

2

)

+
∫

d�M
k

[( �dM
0,2× �DM

1

) · �kM
]( �DM∗

2 · �dM
1,0

)( �̃EL∗
2 · �̃EL

1

)( �̃EL∗
1 × �̃EL

2

)

+
∫

d�M
k

[( �DM∗
2 ×�dM

1,0

) · �kM
]( �dM

0,2 · �DM
1

)( �̃EL∗
1 · �̃EL

2

)( �̃EL∗
2 × �̃EL

1

)

+
∫

d�M
k

[( �dM
1,0× �DM

1

) · �kM
]( �dM

0,2 · �DM∗
2

)( �̃EL∗
1 · �̃EL∗

2

)( �̃EL
1 × �̃EL

2

)}
eiω21τ + c.c. (35)

and contains the remaining terms. Unlike �jL
noncopl and �jL

ellip,
which vanish in the absence of elliptical fields when
�̃EL
1 (ω1,0) ‖ �̃EL

1 (ω2,0) and �̃EL
2 (ωk,1) ‖ �̃EL

2 (ωk,2), �jL
lin can be

nonzero even for purely linear fields provided pump and probe
are neither parallel nor orthogonal to each other. Clearly, the
selection rules described for �jL

noncopl, �jL
lin, and �jL

ellip are also
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valid for the first, second and third, and last term of �jL
diag,

respectively.
As a whole, the 10 terms in Eq. (32) correspond to the 10

ways in which the five molecular vectors �dM
0,1, �dM

2,0, �DM
1 , �DM

2 ,

and �kM can form a rotation-invariant molecular quantity. Each
molecular term is coupled to a field term that corresponds
to 1 of the 10 ways that a vector can be formed via scalar
and vector products between four vectors. Unlike the diagonal
terms, the cross terms’ contribution oscillates with the pump-
probe time delay at a frequency corresponding to the energy
difference between the two bound states excited by the pump.

If we consider the PXECD setup originally described in
Refs. [18], where the pump field is circularly polarized like
in Eq. (6) and the pump is linearly polarized along x̂L, then
application of the above discussed selection rules and some
vector algebra (see Appendix 6) yields

�jL(k) = iσ

60
Ẽ∗

1 Ẽ∗
2 Ẽ1Ẽ2

[( �dM
0,1×�dM

2,0

) ·
∫

d�M
k

�DM
12(�kM)

]

× ẑLeiω21τ + c.c., (36)

�DM
12(�kM) = −4

( �DM
1 · �DM∗

2

)�kM + ( �DM∗
2 · �kM) �DM

1

+ ( �DM
1 · �kM

) �DM∗
2 , (37)

which coincides with the result originally obtained in
Refs. [18]. Equations (30)–(35) are the generalization of PX-
ECD to arbitrary polarizations of the pump and probe pulses.

Interestingly, although the symmetry of a linear pump-
linear probe scheme where the two fields are orthogonal to
each other does not forbid the emergence of a nonzero net
photoelectron current �jL (see Fig. 3), Eqs. (30)–(35) show
that it vanishes. This symmetry can be traced back to the fact
that the phase shift between the pump and the probe is not
recorded by the system because the probe step corresponds to
the parametric process in terms of non-linear optics diagrams
(see Fig. 1 in Ref. [18]), where the initial and final states are
the same: It is a superposition of the states prepared by the
pump. It highlights the fact that all the effects considered in
this section do not require a phase lock between the pump and
probe pulses.

V. CONCLUSIONS

We have presented a unified approach to electric-dipole-
based methods of chiral discrimination. The approach is based
on a vectorial formulation of the chiral response and provides
a common language for understanding electric-dipole-based
techniques used in different fields, such as photoionization
and microwave spectroscopy. All these techniques make use
of coherent excitation of several states leading to electronic,
vibronic, rotational, or ionization dynamics.

The chiral response in all cases is characterized by a
vectorial observable and takes place within a chiral setup.
Unlike scalar observables (e.g., total cross sections), vectorial
observables (e.g., induced polarization) are able to exploit the
chirality of such setups and therefore provide the opportunity
to probe the chirality of isotropic molecular samples without
relying on the chirality of the light inducing the response.
Chiral setups can result from the combination of at least two

linearly polarized fields with noncollinear polarizations (and
phase delayed in the case of a single frequency) defining
a nonzero pseudovector, and a detector defining a direction
parallel or antiparallel to the field pseudovector. Furthermore,
the fields defining the pseudovector need not overlap in time,
which allows for pump-probe schemes in the construction of
the chiral setup.

We have shown that the generic structure of the vectorial
observable is given by the product of the field pseudovector,
defined by the configurations of the electric fields exciting
or probing chiral dynamics, and a molecular pseudoscalar
characterizing the molecular handedness. The projection of
the vectorial observable on the external direction defined by
the detector yields the result of the measurement: a product
of the molecular pseudoscalar associated to the molecular
handedness and the chiral setup pseudoscalar defining the
handedness of the chiral setup.

The molecular pseudoscalar is given by a rotationally
invariant molecule-specific quantity such as a triple prod-
uct involving three bound-bound transition dipoles, and/or
the triple product between photoionization dipoles and the
photoelectron momentum integrated over all directions. The
strength of the chiral response is determined by the mutual
orientation of such vectors in the molecular frame.

The affinity of different electric-dipole-based techniques
should help us to identify general mechanisms of chiral
response, driven exclusively by the electric component of
the electromagnetic field, and their link to molecular chiral
structure and dynamics.

ACKNOWLEDGMENTS

O.S. gratefully acknowledges illuminating discussions
with Prof. Aephraim Steinberg, in particular, on the role of
the chiral observer in detecting the chiral response in electric-
dipole-based methods. We also thank Dr. Emilio Pisanty for
his comments on the role of the chiral setup in PECD. The
authors are grateful to Prof. Misha Ivanov for stimulating
discussions and comments on the manuscript. O.S. thanks Dr.
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APPENDIX

1. Beyond the electric-dipole approximation: the magnetic
dipole, the helicity of light, and absorption circular dichroism

In order to introduce the reader to some fundamental
aspects of the discussion in the main part of the paper, we
will briefly illustrate the relation among magnetic dipole, he-
licity of light, and absorption circular dichroism in randomly
oriented chiral molecules.
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The interaction between the electron in the molecule and
the radiation field can be described by the interaction Hamil-
tonian (see, e.g., Ref. [38])

H ′(t ) = −�d · �E(0, t ) − �m · �B(0, t ) + · · · , (A1)

where �d and �m are the electric and magnetic dipoles,

�E(�r, t ) = −∂t
�A(�r, t ) and �B(�r, t ) = �∇× �A(�r, t ) (A2)

are the electric and magnetic fields, and �A(�r, t ) is the vector
potential. Other terms of the same order as the magnetic-
dipole interaction (e.g., the electric-quadrupole interaction)
have been ignored because electric-quadrupole effects vanish
in isotropic samples [38]. Consider a plane wave with wave
number �k and frequency ω,

�A(�r, t ) = �Aei(�k·�r−ωt ) + c.c., (A3)

where �A encodes the polarization, intensity, and phase shift of
the wave. For wavelengths λ much greater than the electron
orbit, the term �k · �r = 2πr/λ is very small and ei�k·�r can be
expanded in powers of it. The electric-dipole and magnetic-
dipole interactions in Eq. (A1) stem from the zeroth- and
first-order terms, respectively, of such expansion. That is,
the magnetic-dipole interaction emerges as a consequence of
taking into account the spatial structure of the electromagnetic
field. Furthermore, absorption circular dichroism, which is
linear in the magnetic-dipole interaction, scales as �k · �r , i.e.,
as the ratio of the electron orbit size to the wavelength.

Replacing Eq. (A3) in Eq. (A2) yields

�E(0, t ) = �Ee−iωt + c.c. and �B(0, t ) = �Be−iωt + c.c.,

(A4)

where �E = ω �A and �B = i�k× �A. Therefore, the probability
that the molecule in the initial state |i〉 is excited into the upper
energy state |f 〉 is given by

|〈f |H ′(t )|i〉|2 ∝ |( �df i · �E + �mf i · �B)|2 (A5)

and contains an interference term of the form

( �df i · �E )∗( �mf i · �B) + c.c. (A6)

For the case of electronic and/or vibrational transitions,
�df i and �mf i are fixed in the molecular frame, while �E and
�B are fixed in the laboratory frame. If the sample is isotropic,

we must average over all molecular orientations � (see Ap-
pendix 2), which yields∫

d�
[ �dL

f i (�) · �EL
]∗[ �mL

f i (�) · �BL
]

= 1

3

[ �dM
f i · �mM

f i

]
[ �EL∗ · �BL], (A7)

where the superscripts L and M indicate vectors expressed
in the laboratory and molecular frames respectively, and we
explicitly indicated the dependence of the molecular frame
vectors �df i and �mf i on the molecular orientation � when they
are expressed in the laboratory frame. The right-hand side of
Eq. (A7) is a scalar that is the product of two pseudoscalars.

One of them contains only molecular quantities in the molec-
ular frame, and the other contains only field quantities in the
laboratory frame. Furthermore, the latter is proportional to the
helicity of the field; i.e., it is proportional to the projection of
the light spin angular momentum on the propagation direction
�k. To see this, we rewrite the field pseudoscalar in terms of the
vector potential as

�EL∗ · �BL = ω �AL∗ · (i�kL× �AL) = ω(i �AL× �AL∗) · �kL. (A8)

The factor i �AL× �AL∗ is always real and it is proportional
to the photon’s spin. For example, for light circularly polar-
ized in the xy plane �AL = A(x̂L + iσ ŷL)/

√
2, σ = ±1, and

i �AL× �AL∗ = |A|2σ ẑL, where σ ẑL is the spin of the photon. If
we now project on the propagation direction k̂L, we obtain the
sign of the helicity of the circularly polarized field

η = σ ẑL · k̂L = ±σ, (A9)

where we used the fact that �kL can point either in the positive
(+) or negative (−) ẑL direction. One must be careful of not
confusing σ with η. While η indicates the handedness of the
helix formed by the electric (or magnetic) component of the
circularly polarized field in space at a fixed time and is a
time-even pseudoscalar, σ merely indicates that the direction
of rotation of the electric field in time at a fixed point in space
is invariant with respect to parity inversion and is therefore a
time-odd scalar.

Importantly for the discussion in the main part of the paper,
in the electric-dipole approximation, the variation of the elec-
tromagnetic field in space and along with it the propagation
direction of the light, the magnetic field, and the magnetic-
dipole interaction are absent. Therefore, the chiral effects
which rely only on the electric-dipole interaction do not rely
on the helicity of the light but on its spin. In other words,
they do not rely on the pseudoscalar character of the light
encoded in η but instead on its time-odd character encoded
in the pseudovector σ ẑ.

2. Classical orientation averaging

Following the formalism in Sec. 4.2 of Ref. [38], we can
perform the orientation averaging using tensor notation as fol-
lows: First, we define the transformation from the molecular
frame to the laboratory frame via

vi = liαvα, (A10)

where we used Einstein’s summation convention, Latin and
Greek indices indicate components in the laboratory and
molecular frames respectively, and liα stands for the direction
cosine between the axis i = xL, yL, zL in the laboratory frame
and the axis α = xM, yM, zM in the molecular frame. The
direction cosines can be written in terms of the Euler angles
� ≡ (αβγ ) (see, for example, Sec. 2.2 in Ref. [37]). From
Sec. 4.2.5 of Ref. [38] (see also Ref. [39]), we have that
the isotropic orientation averages of products of direction
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cosines are

∫
d� liαljβ = 1

3
δij δαβ, (A11)

∫
d� liαljβ lkγ = 1

6
εijkεαβγ , (A12)

∫
d� liαljβ lkγ llδlmε = 1

30
{εijkδlmεαβγ δδε + εij lδkmεαβδδγ ε + εijmδklεαβεδγ δ + εiklδjmεαγ δδβε

+ εikmδjlεαγ εδβδ + εilmδjkεαδεδβγ + εjklδimεβγ δδαε + εjkmδilεβγ εδαδ

+ εjlmδikεβδεδαγ + εklmδij εγ δεδαβ}, (A13)

where
∫

d� ≡ 1
8π2

∫ 2π

0 dα
∫ π

0 dβ
∫ 2π

0 dγ sin β. Straightforward application of formulas (A11)–(A13) yields the vector identities

∫
d� (�aL · �vL)�bL = 1

3
(�aM · �bM)�vL, (A14)

∫
d� (�aL · �uL)(�bL · �vL)�cL = 1

6
[(�aM×�bM) · �cM](�uL×�vL), (A15)

∫
d� (�aL · �uL)(�bL · �vL)(�cL · �wL)( �dL · �xL)�eL

= 1

30
{[(�aM×�bM) · �cM]( �dM · �eM)[(�uL×�vL) · �wL]�xL + [(�aM×�bM) · �dM](�cM · �eM)[(�uL×�vL) · �xL] �wL

+ [(�aM×�bM) · �eM](�cM · �dM)(�uL×�vL)( �wL · �xL) + [(�aM×�cM) · �dM](�bM · �eM)[(�uL× �wL) · �xL]�vL

+[(�aM×�cM) · �eM](�bM · �dM)(�uL× �wL)(�vL · �xL) + [(�aM×�dM) · �eM](�bM · �cM)(�uL×�xL)(�vL · �wL)

+[(�bM×�cM) · �dM](�aM · �eM)[(�vL× �wL) · �xL]�uL + [(�bM×�cM) · �eM](�aM · �dM)(�vL× �wL)(�uL · �xL)

+[(�bM×�dM) · �eM](�aM · �cM)(�vL×�xL)(�uL · �wL) + [(�cM×�dM) · �eM](�aM · �bM)( �wL×�xL)(�uL · �vL)} (A16)

for arbitrary vectors �a, �b, �c, �d , �e, �u, �v, �w, and �x, respectively.

3. Quantum orientation averaging

In this Appendix, we will derive the identities

∑
Mi

�Ai,i = 0, (A17)

∑
Mi,Mj

( �Ai,j · �u) �Aj,i = 1

3

∑
Mi,Mj

( �Ai,j · �Aj,i )�u, (A18)

∑
Mi,Mj ,Mk

( �Ai,j · �u)( �Bk,i, · �v) �Cj,k = 1

6

∑
Mi,Mj ,Mk

[( �Ai,j× �Bk,i ) · �Cj,k](�u×�v), (A19)

where �̂A, �̂B, and �̂C are vector operators, �u and �v are vectors, and we use the shorthand notation �Ai,j = 〈αiJiMi | �̂A|αjJjMj 〉.
The state |αJM〉 is an eigenfunction of the total angular momentum operator Ĵ 2 and of its z component Ĵz, with eigenvalues
J (J + 1) and M respectively. The label α indicates all the other quantum numbers required to describe the state.

These equations can be used to carry out the orientation averaging procedure of the expected value of the dipole
in Sec. IV C.

The first identity is rather trivial, especially in view of its classical analog. The second and third identities are the quantum
analogs of Eqs. (A14) and (A15) respectively. The proofs below are valid both for integer and half-integer J .

Before going into the derivation, we will briefly remind the reader of a few formulas that we will use throughout our derivation.
The spherical components of a vector are defined by (see Eq. 4.10 in Ref. [40])

v0 = vz, v± = ∓ 1√
2

(vx ± ivy ). (A20)
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From this definition, it follows that the dot product, the cross product, and the scalar triple product can be written in terms of
their spherical components as follows:

�u · �v =
1∑

q=−1

(−1)qu−qvq, (A21)

(�u×�v)p = (−1)pi

1∑
q,r=−1

εpqru−qv−r , (A22)

(�u×�v) · �w = −i

1∑
p,q,r=−1

εpqrupvqwr, (A23)

where εpqr is the Levi-Civita tensor for the set {−1, 0, 1} such that ε−1,0,1 = ε0,1,−1 = ε1,−1,0 = 1 and ε1,0,−1 = ε−1,1,0 =
ε0,−1,1 = −1, and every other component is equal to zero. Note also that

1√
6

(
1 1 1

−1 0 1

)
= 1, (A24)

which along with the symmetry properties of the 3-j symbol for column permutations implies that (see also Sec. 3.2
in Ref. [40])

√
6

(
1 1 1
p q r

)
= εpqr . (A25)

Another special value of the 3-j symbol is obtained by considering the coupling to zero angular momentum 〈JM; 00|JM〉 =
1 and the relationship between the Clebsch-Gordan coefficient and the 3-j symbol, which yields(

J 0 J

−M 0 M

)
= (−1)J−M

√
2J + 1

. (A26)

We will also use the formula (see Eq.(7.35) of Ref. [40]3)

∑
δεφ

(−1)d−δ+e−ε+f −φ

(
d e c

−δ ε γ

)(
e f a

−ε φ α

)(
f d b

−φ δ β

)
=

{
a b c

d e f

}(
a b c

α β γ

)
, (A27)

where the symbol in curly brackets is a 6-j symbol.
Finally, the Wigner-Eckart theorem for the spherical component q of a rank k tensor reads as4 (see Ref. [40])

〈αJM|T k
q |α′J ′M ′〉 = 〈αJ‖T k‖α′J ′〉(−1)J−M

(
J k J ′

−M q M ′

)
. (A28)

Now we begin with the proof of Eq. (A17). For this case, we will drop the index i on the quantum numbers and let α �= α′.
On the left-hand side of Eq. (A17), the addends read as

�Ai,i = 〈αJM| �A|α′JM〉 = 〈αJ‖A‖α′J 〉(−1)J−M
∑

q

(
J 1 J

−M q M

)
êq , (A29)

and the corresponding sum over M yields
∑
M

(−1)J−M

(
J 1 J

−M q M

)
= √

2J + 1
∑
M

(
J 0 J

−M 0 M

)(
J 1 J

−M q M

)
,

= √
2J + 1

∑
M,M ′

(
J 0 J

−M 0 M ′

)(
J 1 J

−M q M ′

)
,

= 0, (A30)

where we used Eqs. (A26), the selection rule −M + M ′ = 0, and the orthogonality of the 3-j symbols. Equations (A29) and
(A30) yield the first identity [Eq. (A17)].

3There is a misprint in the reference.
4Our reduced matrix element contains an extra factor of

√
2J + 1 in comparison to that defined in Ref. [40].
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For the second identity, we can use Eqs. (A21) and (A28) to write the addends on the left-hand side of Eq. (A18) as

( �Ai,j · �u) �Aj,i =
∑
q,p

(−1)q〈αiJiMi |A−q |αjJjMj 〉uq〈αjJjMj |Ap|αiJiMi〉êp,

=
∑
q,p

(−1)q〈αiJi‖A‖αjJj 〉(−1)Ji−Mi

(
Ji 1 Jj

−Mi −q Mj

)
uq〈αjJj‖A‖αiJi〉(−1)Jj −Mj

(
Jj 1 Ji

−Mj p Mi

)
êp,

(A31)

and the corresponding sum over Mi and Mj yields
∑

Mi,Mj

(−1)Ji−Mi+Jj −Mj

(
Ji 1 Jj

−Mi −q Mj

)(
Jj 1 Ji

−Mj p Mi

)

=
∑

Mi,Mj

(−1)Ji−Mi+Jj −Mj

(
Ji Jj 1

−Mi Mj −q

)(
Ji Jj 1

−Mi Mj −p

)
,

= (−1)−Ji+Jj −q
∑

Mi,Mj

(
Ji Jj 1

−Mi Mj −q

)(
Ji Jj 1

−Mi Mj −p

)
,

= (−1)−Ji+Jj −q

√
3

δp,q, (A32)

where we used the symmetry property for column exchange and for negating all M’s of the 3-j symbol, the selection rule for
the M’s to write Mj = Mi + q in the exponent of (−1), and the fact that Ji + Jj + 1 is an integer. Then we replaced (−1)2Mi

by (−1)2Ji , and used the orthogonality relation of 3-j symbols. Replacing Eqs. (A31) and (A32) on the left-hand side of (A18),
we get ∑

Mi,Mj

( �Ai,j · �u) �Aj,i = F
∑
q,p

uqδp,q êp = F �u, (A33)

where we defined

F ≡ (−1)Jj −Ji

√
3

|〈αiJi‖A‖αjJj 〉|2. (A34)

Using Eq. (A32) with p = q, the right-hand side of Eq. (A18) yields∑
Mi,Mj

( �Ai,j · �Aj,i ) =
∑

Mi,Mj ,q

(−1)q〈αiJiMi |A−q |αjJjMj 〉〈αjJjMj |Aq |αiJiMi〉,

= F
∑

q

δq,q ,

= 3F, (A35)

which in comparison with Eq. (A33) yields the identity (A18).
For the third identity, we can use Eqs. (A21) and (A28) to write the addends on the left-hand side of Eq. (A19) as

( �Ai,j · �u)( �Bk,i, · �v) �Cj,k =
∑
p,q,r

(−1)p+q〈αiJiMi |A−p|αjJjMj 〉up〈αkJkMk|B−q |αiJiMi〉vq〈αjJjMj |Cr |αkJkMk〉êr ,

=
∑
p,q,r

(−1)p+q〈αiJi‖A‖αjJj 〉(−1)Ji−Mi

(
Ji 1 Jj

−Mi −p Mj

)
up

×〈αkJk‖B‖αiJi〉(−1)Jk−Mk

(
Jk 1 Ji

−Mk −q Mi

)
vq

×〈αjJj‖C‖αkJk〉(−1)Jj −Mj

(
Jj 1 Jk

−Mj r Mk

)
êr , (A36)

and the corresponding sum over all Mi , Mj , and Mk yields
∑

Mi,Mj ,Mk

(−1)Ji−Mi+Jj −Mj +Jk−Mk

(
Ji 1 Jj

−Mi −p Mj

)(
Jk 1 Ji

−Mk −q Mi

)(
Jj 1 Jk

−Mj r Mk

)

= (−1)2Ji+2Jj +2Jk+3
∑

Mi,Mj ,Mk

(−1)Ji−Mi+Jj −Mj +Jk−Mk

(
Ji Jj 1

−Mi Mj −p

)(
Jj Jk 1

−Mj Mk r

)(
Jk Ji 1

−Mk Mi −q

)
,
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= (−1)2Jk+1

{
1 1 1
Ji Jj Jk

}(
1 1 1
r −q −p

)
,

= (−1)2Jk+1

√
6

{
1 1 1
Ji Jj Jk

}
εr,−q,−p, (A37)

where we used the symmetry property for column exchange of the 3-j symbols, Eqs. (A25) and (A27), and the fact that Ji +
Jj + 1 is an integer. By replacing Eqs. (A36) and (A37) in the left-hand side of Eq. (A19) and using Eq. (A22), we get∑

Mi,Mj ,Mk

( �Ai,j · �u)( �Bk,i, · �v) �Cj,k = G
∑
p,q,r

(−1)p+qupvqεr,−q,−pêr ,

= iG
∑
p,q,r

(−1)r iεr,p,qu−pv−q êr ,

= iG(�u×�v), (A38)

where we defined

G ≡ (−1)2Jk+1

√
6

〈αiJi‖A‖αjJj 〉〈αkJk‖B‖αiJi〉〈αjJj‖C‖αkJk〉
{

1 1 1
Ji Jj Jk

}
. (A39)

On the right-hand side of the identity [Eq. (A19)], we have

( �Ai,j× �Bk,i ) · �Cj,k = −i
∑
p,q,r

εpqr〈αiJiMi |Ap|αjJjMj 〉〈αkJkMk|Bq |αiJiMi〉〈αjJjMj |Cr |αkJkMk〉,

= −i
∑
p,q,r

εpqr〈αiJi‖A‖αjJj 〉(−1)Ji−Mi

(
Ji 1 Jj

−Mi p Mj

)

×〈αkJk‖B‖αiJi〉(−1)Jk−Mk

(
Jk 1 Ji

−Mk q Mi

)

×〈αjJj‖C‖αkJk〉(−1)Jj −Mj

(
Jj 1 Jk

−Mj r Mk

)
, (A40)

and, inverting the sign of q and p in Eq. (A37), the corresponding sum over Mi , Mj , and Mk yields∑
Mi,Mj ,Mk

( �Ai,j× �Bk,i ) · �Cj,k = −iG
∑
p,q,r

εpqrεrqp,

= iG
∑
p,q,r

ε2
pqr ,

= 6iG, (A41)

which in comparison with Eq. (A38) yields Eq. (A19).

4. Transition dipoles for chiral electronic states

Opposite enantiomers R and L are related to each other via an inversion; therefore their bound and scattering electronic wave
functions satisfy

ψR (�r ) = ψL(−�r ), (A42)

ψ�k,R (�r ) = ψ−�k,L(−�r ). (A43)

Then, for the transition dipole between two electronic bound states ψ and ψ ′, we have

�dR ≡ −
∫

d�r ψ ′∗
R (�r )�rψR (�r ),

=
∫

d�r ψ ′∗
L (−�r )(−�r )ψL(−�r ),

=
∫

d�r ψ ′∗
L (�r )�rψL(�r ),

= −�dL, (A44)
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as expected. For the transition dipole between the bound state ψ and the scattering state ψ�k , one has to be more careful because
of the vector nature of the photoelectron momentum �k. In this case, we have

�DR (�k) = −
∫

d�r ψ∗
�k,R

(�r )�rψR (�r ),

=
∫

d�r ψ∗
−�k,L

(−�r )(−�r )ψL(−�r ),

=
∫

d�r ψ∗
−�k,L

(�r )�rψL(�r ),

= − �DL(−�k). (A45)

Using Eq. (A45), it is a simple matter to confirm that the molecular term in Eq. (13) does indeed have opposite sign for
opposite enantiomers:

χR
m = 1

6

∫
d�k[i �D∗

R (�k)× �DR (�k)] · �k,

= 1

6

∫
d�k[i �D∗

L(−�k)× �DL(−�k)] · �k,

= −1

6

∫
d�k′[i �D∗

L(�k′)× �DL(�k′)] · �k′,

= −χL
m, (A46)

where we did the change of variable �k′ = −�k in the third line.

5. Recovering Ritchie’s formula

In Ritchie’s original derivation [10], the b1 factor is given by

b1 = |Ẽ |2 (4π )2

3

∑
lj ,mj ,λj ,μj ,m1,μ1

〈ψi |rY ∗
1μ1

∣∣ψ (−)
λj ,μj

〉〈
ψ

(−)
lj mj

∣∣rY1m1 |ψi〉(−1)1+m1+mj 3
√

(2lj + 1)(2λj + 1)

×
(

lj λj 1
0 0 0

)(
1 1 1
σ −σ 0

)(
lj λj 1
mj −μj −(mj − μj )

)(
1 1 1

m1 −μ1 −(mj − μj )

)
, (A47)

where the different prefactor in comparison with Eq. (11) in Ref. [10] is because we take W (�kL) = |〈ψ (−)
�k |êσ |ψi〉|2 in agreement

with Eqs. (3), (5), (7), and (12). If we define

D
lj mj

q ≡
√

4π

3

〈
ψ

(−)
lj mj

∣∣rY1q |ψi〉, (A48)

and use Eq. (A22) for the cross product in spherical components, along with the properties εpqr = −ε−p,−q,−r , (vq )∗ =
(−1)q (�v∗)−q , Eq. (A25), and the selection rule m1 − μ1 − mj + μj = 0 of the 3-j symbol, we obtain

∑
m1,μ1

(−1)m1〈ψi |rY ∗
1μ1

∣∣ψ (−)
λj μj

〉〈
ψ

(−)
lj mj

∣∣rY1m1 |ψi〉
(

1 1 1
m1 −μ1 −(mj − μj )

)
,

= 3

4π

∑
m1,μ1

(−1)m1
(
D

λj μj

μ1

)∗
D

lj mj

m1

(
1 1 1

m1 −μ1 −(mj − μj )

)
,

= 3

4π
√

6

∑
m1,μ1

(−1)m1−μ1εm1,−μ1,μj −mj
( �Dλj μj ∗)−μ1D

lj mj

m1 ,

= −i
1

4π

√
3

2
(−1)mj −μj i

∑
m1,μ1

εmj −μj ,μ1,−m1 ( �Dλj μj ∗)−μ1D
lj mj

m1 ,

= − 1

4π

√
3

2
(i �Dλj μj ∗× �Dlj mj )mj −μj

. (A49)
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Then we can use the integral of three spherical harmonics,

∫
d�kYlj ,mj

Yλj ,−μj
Y1,μj −mj

=
√

3(2lj + 1)(2λj + 1)

4π

(
lj λj 1
0 0 0

)(
lj λj 1
mj −μj μj − mj

)
, (A50)

equation (A21) for the dot product in spherical components, and the selection rule for the sum of the M’s in the 3-j symbol to
obtain

− 1

4π

√
3

2

∑
mj ,μj

(−1)mj (i �Dλj μj ∗× �Dlj mj )mj −μj

√
(2lj + 1)(2λj + 1)

(
lj λj 1
0 0 0

)(
lj λj 1
mj −μj −(mj − μj )

)

= − 1

4π

√
3

2

√
4π

3

∑
mj ,μj

(−1)mj (i �Dλj μj ∗× �Dlj mj )mj −μj

∫
d�kYlj ,mj

Yλj ,−μj
Y1,μj −mj

,

= − 1

4π

√
3

2

√
4π

3

∑
mj ,μj

(−1)mj −μj (i �Dλj μj ∗× �Dlj mj )mj −μj

∫
d�kY

∗
λj ,μj

Ylj ,mj
Y1,μj −mj

,

= − 1

4π

√
3

2

√
4π

3

∑
mj ,μj ,q

(−1)q (i �Dλj μj ∗× �Dlj mj )q

∫
d�kY

∗
λj ,μj

Ylj ,mj
Y1,−q,

= − 1

4π

√
3

2

∑
mj ,μj

∫
d�kY

∗
λj ,μj

Ylj ,mj
[(i �Dλj μj ∗× �Dlj mj ) · k̂]. (A51)

Finally, according to Eq. (10) in Ref. [10], the scattering wave function is expanded as

ψ
(−)
�k (�r ) = 4π

∑
lj ,mj

ψ
(−)
lj mj

(�r )Y ∗
lj mj

(k̂) (A52)

and therefore the dipole transition vector reads as

�D = 〈ψ (−)
�k | �d|ψi〉,

= −4π
∑

lj ,mj ,q

〈
ψ

(−)
lj mj

∣∣
√

4π

3
rY1,q êq |ψi〉Ylj mj

(k̂),

= −4π
∑
lj ,mj

�Dlj mj Ylj mj
(k̂). (A53)

Then, putting together Eqs. (A47), (A49), (A51), and (A53), and using Eqs. (13) and (A25), we obtain

b1 = |Ẽ |2(4π )2

(
1 1 1
σ −σ 0

)
1

4π

√
3

2

∑
lj ,mj ,λj ,μj

∫
d�kY

∗
λj ,μj

Ylj ,mj
[(i �Dλj μj ∗× �Dlj mj ) · k̂]

= 1

8πk
σ |Ẽ |2

∫
d�k[(i �D∗× �D) · �k] = 3

4π

jL
z

k
, (A54)

which shows that Ritchie’s expression for b1 is equivalent to the one derived here.

6. Circular pump + linear probe

In this Appendix, we derive Eqs. (36) and (37) from Eqs. (31)–(35) for the case when the pump is circularly polarized
according to Eq. (6) and the probe is linearly polarized along x̂L. From the selection rules already discussed in Sec. IV D, we
immediately see that the first and last terms in �jL

diag [Eq. (31)], �jL
noncopl [Eq. (33)], and the second term in �jL

ellip [Eq. (34)] vanish.

Furthermore, the remaining terms in �jL
diag [Eq. (31)] are purely imaginary and also vanish, which only leaves �jL

lin [Eq. (35)] and

the first term in �jL
ellip [Eq. (34)]. Replacing the field terms in Eq. (34), we obtain

�jL
ellip(k) = iσ Ẽ

30

( �dM
0,2×�dM

1,0

) ·
∫

d�M
k

[( �DM∗
2 · �DM

1

)�kM
]
eiω21τ ẑL + c.c., (A55)
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whereas for Eq. (35) we obtain

�jL
lin(k) = iσ Ẽ

60

{∫
d�M

k

[( �dM
0,2× �DM∗

2

) · �kM
]( �dM

1,0 · �DM
1

) +
∫

d�M
k

[( �dM
0,2× �DM

1

) · �kM
]( �DM∗

2 · �dM
1,0

)

+
∫

d�M
k

[( �DM∗
2 ×�dM

1,0

) · �kM
]( �dM

0,2 · �DM
1

) −
∫

d�M
k

[( �dM
1,0× �DM

1

) · �kM
]( �dM

0,2 · �DM∗
2

)}
eiω21τ ẑL + c.c., (A56)

where Ẽ = Ẽ∗
1 Ẽ∗

2 Ẽ1Ẽ2. Now, in order to extract �dM
0,2 and �dM

1,0 from the integrals we begin by reordering the expression as

�jL
lin(k) = iσ Ẽ

60

{∫
d�M

k

[( �DM∗
2 ×�kM

) · �dM
0,2

]( �DM
1 · �dM

1,0

) +
∫

d�M
k

[( �DM
1 ×�kM

) · �dM
0,2

]( �DM∗
2 · �dM

1,0

)

−
∫

d�M
k

[( �DM∗
2 ×�kM) · �dM

1,0

]( �DM
1 · �dM

0,2

) −
∫

d�M
k

[( �DM
1 ×�kM) · �dM

1,0

]( �DM∗
2 · �dM

0,2

)}
eiω21τ ẑL + c.c., (A57)

to apply the vector identity (�a · �c)(�b · �d ) − (�a · �d )(�b · �c) = (�a×�b) · (�c×�d ), which yields

�jL
lin(k) = iσ Ẽ

60

( �dM
0,2×�dM

1,0

) ·
{ ∫

d�M
k

[( �DM∗
2 ×�kM

) �DM
1

] +
∫

d�M
k

[( �DM
1 ×�kM

) �DM∗
2

]}
eiω21τ ẑL + c.c. (A58)

Now we use the vector identity (�a×�b)�c = (�a · �c)�b − (�b · �c)�a to get

�jL
lin(k) = iσ Ẽ

60

( �dM
0,2×�dM

1,0

) ·
∫

d�M
k

{
2
( �DM∗

2 · �DM
1

)�kM − (�kM · �DM
1

) �DM∗
2 − (�kM · �DM∗

2

) �DM
1

}
eiω21τ ẑL + c.c. (A59)

Adding Eqs. (A55) and (A59) yields Eqs. (36) and (37).
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