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Resonant inelastic scattering of two x-ray photons by a many-electron atom
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A nonrelativistic variant of the quantum theory for the resonant inelastic-scattering process of two x-ray
photons in the deep 1s-shell ionization threshold energy region of a free many-electron atom is established.
A quantitative estimate for the magnitude of the observed differential cross section is given.
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I. INTRODUCTION

An x-ray free-electron laser (XFEL) realizes the possibility
of investigating the fundamental processes of the nonlinear
interaction of soft- and hard-x-ray radiation with a many-
electron system [1]. To such processes, in particular, belongs
the resonant inelastic scattering of two photons by an atom.
This terminology is retained here due to its analogy to the
process (Landsberg–Mandelstam, Raman, Compton) of scat-
tering of a single photon by an atom [2], molecule [3], or
solid matter [4]. Resonant inelastic scattering of two photons
of hard XFEL radiation by matter in a condensed phase has
recently been studied experimentally for the metallic films
of germanium (Ge, nuclear charge Z = 32, energy of the
absorbed XFEL photon is h̄ω ∼= 5.6 keV) [5], zirconium (Zr,
Z = 40, h̄ω ∼= 9 keV) [6], and copper (Cu, Z = 29, h̄ω ∼=
8.8 keV, 4.5 keV) [7]. Such experiments prompt the task
of constructing a theory for the process. In this paper, we
construct the nonrelativistic variant of the quantum theory of
resonant inelastic scattering of two x-ray photons in the deep
1s-shell ionization threshold energy region of a free many-
electron atom. The main result of the theory—prediction
of the resonant Kα,β-emission structure of the scattering
spectrum—is consistent with the experimental results [5–7].
For the subject of the study, we take the atom of zinc (Zn,
Z = 30, the configuration and term of the ground state are
[0] = 1s22s22p63s23p63d104s2[1S0]). This choice is dictated
by the spherical symmetry of the ground state of Zn, as
well as by the availability of the gaseous phase of Zn [8,9]
for conducting high-precision XFEL experiments. We also
note that the information about photon-scattering spectra of
atomic Zn may be useful, for example, during the analysis
of the structure and composition of thin films of matter [10],
and the study of the prevalence of heavy metals in stellar
atmospheres [11].

II. THEORY

In the third order (over the α fine structure constant) of
the nonrelativistic quantum perturbation theory the process
of resonant inelastic scattering of two photons in the 1s-shell
ionization threshold energy region of the Zn atom takes place

*sanovikov@gmail.com

over two interfering (for a fixed value of orbital quantum
number of the excited single electron state, l) channels:

ω + ω + [0] →
{

D0,2

Q1 → D0,2

}
→ Y0,2 + ωC. (1)

In Eq. (1) in the LS-coupling approximation the selec-
tion rules determine the initial |0〉 = [0] ⊗ (a+

ω )2|0f 〉, in-
termediate Dl = Xl ⊗ |0f 〉, Xl = 1sxl[1S0(l = 0), 1P1(l =
1), 1D2(l = 2)], Q1 = X1 ⊗ (a+

ω )|0f 〉, and final YC = Yl ⊗
(a+

C )|0f 〉, Yl = np5εl[1P1(l = 0, 2)] scattering states, where
xl > F is the Fermi level (set of atomic valence shell quantum
numbers), ω (ωC) is the energy of the incident (scattered)
photon, a+

ω (a+
C ) is the creation operator for the incident (scat-

tered) photon, and |0f 〉 is the wave function of photon vacuum
of quantum electrodynamics [12]. Here and thereafter, we
assume the atomic system of units (me = e = h̄ = 1), and
the filled shells of the atomic configuration are not shown.
The transition |0〉 → Dl occurs over the contact interaction
operator:

Ĉ = 1

2c2

N∑
n=1

(Ân · Ân), (2)

where c is the speed of light in vacuum, Ân is the electro-
magnetic field operator in the second quantization picture at
time t = 0, and N is the number of electron in the atom.
Transitions |0〉 → Q1 → Dl → Yl occur via the operator of
radiative absorption (emission):

R̂ = −1

c

N∑
n=1

(p̂n · Ân), (3)

where p̂n is the momentum operator of the nth atomic
electron. Corresponding to the channels (1), the scattering
probability amplitudes take the following form:

Al =
∫ ∞

0
dx

〈0|Ĉ|Dl〉〈Dl|R̂|YC〉
�x + iγ1s

, (4)

Bl =
∫ ∞

0

∫ ∞

0
dxdy

〈0|R̂|Q1〉〈Q1|R̂|Dl〉〈Dl|R̂|YC〉
(�x + ω + iγ1s )(�y + iγ1s )

, (5)

where �x = x − 2ω + I1s , I1s is the 1s-shell ionization en-
ergy threshold, γ1s = �1s/2, and �1s is the natural linewidth
of the 1s-vacancy decay. The imaginary parts iγ1s of the
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energy denominators remove the singularity of the integrand
functions of the improper integrals (4) and (5). In Eqs. (4) and
(5), the matrix elements are calculated through the methods
of the photon creation (annihilation) operator algebra and
the theory of irreducible tensor operators representations (see
Appendix A). During the construction of the differential cross
section of the process, we carry out the summation over the
projections of the full momentum of the final Yl states of the
atom (M = −1, 0,+1), and the averaging over the projec-
tions over the initial atomic state [M = 0, (2J + 1)−1 = 1].
During the construction of the single-electron matrix element
of the free-free radiative transition and overlap integrals for
the continuous energy spectrum wave functions, the plane-
wave approximation is taken |x〉 ≈ sin (r

√
2x). In this case,

taking into account the equality [13] [�(α) is the Euler gamma
function]: ∫ ∞

0
xα−1e−ρx cos(bx)dx

= �(α)

(b2 + ρ2)α/2
cos

{
α arctan

(
b

ρ

)}
, (6)

Re α > 0, Re ρ > |Im b|.
Then, for Im b = 0 and ρ → 0 we obtain (δ is the Dirac δ-
function)

(x − y)〈x|r|y〉 ∼= 2ixδ(x − y), α = 2, (7)

〈x|ε〉 ∼= δ(x − ε), α = 1. (8)

For small energies of the l electrons of the continuous spec-
trum, the l-symmetry-dependent effect of delocalization of
radial parts of wave functions of electrons in the deep 1s-
vacancy field is significant. As a result, analytical structures of
integrals (7) and (8) outside of the plane-wave approximation
are made more complex (see Appendix A). Going beyond the
plane-wave approximation framework is a subject of future
investigations.

The physical interpretation for the scattering probability
amplitudes in the Feynman diagram representation is shown
in Figs. 1(a) (amplitude Al) and 1(b) (amplitude Bl). The
remaining wide set of the scattering amplitudes is not taken
into account due to the assumed Tamm–Dancoff approxi-
mation [14,15]. In this approximation, for a fixed set of
Ĉ and R̂ operators in the Feynman diagram representation
only the amplitudes whose dissections contain the minimal
number of photons, electrons, and vacancies, are taken into
account. The Tamm–Dancoff approximation is widely used in
atomic physics [16], yet it still does not have an analytical
justification (see, for example, Silin et al. [14]). In particu-
lar, the question remains about the gauge invariance of this
approximation, and as a result, about such invariance of the
theory developed in this work.

Note that the |0〉 → D2 transition is suppressed relative
to the |0〉 → D0 transition: 〈1s|j2|εd〉 � 〈1s|j0|εs〉. For the
R̂ operator, let us make the dipole approximation [exp(±i�k ·
�rn) ∼= 1, where �k is the wave vector of the incident (scattered)
photon, and �rn is the radius-vector of the nth atomic electron],
since for the Zn atom with ω ∼= 5 keV (λ ∼= 2.48 Å) and
average 1s-shell radius of 〈r1s〉 = 0.027 Å, the inequality

FIG. 1. Partial probability amplitudes for the resonant inelastic
scattering of two XFEL photons by the Zn atom in the Feynman
diagram representation. Right arrow is the electron [ε ≡ ε(s, d )], left
arrow is the vacancy (n ≡ npj ). Light (dark) circle shows interaction
vertex over the contact (radiative) transition operator. Double line
shows the state obtained in the Hartree–Fock field of the 1s vacancy.
ω (ωC) is the incident (scattered) photon. Time direction for the
process is t1 < t2.

λ/〈r1s〉 ∼= 92 � 1 holds. Let us also take into account the
applicability of Fermi’s golden rule [17]:

h̄E−1
0 � τXFEL � τ0, (9)

for the Zn atom (the energy and lifetime of the ground state
are E0

∼= 48.807 keV and τ0
∼= ∞, respectively) is satisfied:

τXFEL � 10−5 fs, 1 fs = 10−15 s. Here, the duration of the
XFEL pulse, for example, for the conducted experiments is
τXFEL

∼= 2.5 [5], 10 [6], and 30 [7] fs. Then, taking into ac-
count the ratio of the statistical weights for the npj vacancies
of the final states [branching coefficient (l + 1)/l = 2], and
summing the scattering probabilities over the s and d channels
(1), we obtain for the full scattering differential cross section:

dσ⊥
dωC

≡ σ
(1)
⊥ = ηωC

∑
j

μj

∫ ∞

0

ψ (ε)

∈j

dε, (10)

μj = (2j + 1)γj

(
ωjRj

ω

)2

, (11)

∈j = (�2
ε + γ 2

1s

)[
(�ε − �j )2 + γ 2

j

]
, (12)

ψ (ε) = γ1sζ

[
a1ζ − a2S

(�ε + ω)2 + γ 2
1s

]
+ a3S

2. (13)

Here, the following quantities are defined: η/r2
0 = (1/6) ×

10−36, r0 is the classical electron radius, γj = �j /2, �j is
the natural linewidth of the npj vacancy decay, the energy of
the resonance for Kα,β emission (Kα1,β1 , j = 3/2; Kα2,β3 , j =
1/2) is ωj = I1s − Ij , where Ij is the ionization threshold
energy for the npj shell, Rj is the radial part of the radiative
1s → npj transition amplitude, �j = ωj − ωC , ζ = ε(ε +
I1s )M , M is the radial part of the radiative 1s → εp transi-
tion amplitude, S is the radial part of the contact [0] → X0

transition, a1 = 1.112/γ1s , a2 = 28.86 and a3 = 208.23. The
quantity γj in Eq. (10) appears because of the substitution of
the Dirac δ function δ(2ω − ωC − Ij − ε) in Fermi’s golden
rule for a Lorentzian Lj = (γj/π )[(2ω − ωC − Ij − ε)2 +
γ 2

j ]−1 with the subsequent integration (the εl electron is not
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registered in the experiment) over ε ∈ [0; ∞). The symbol
“⊥” in Eq. (10) corresponds to the choice for the scheme of
the assumed XFEL experiment: the wave vectors (polariza-
tion vectors) of the linearly polarized incident and scattered
photons belong (perpendicular, ⊥) to the scattering plane. We
note that, in light of the assumed dipole approximation as well
as the Tamm–Dancoff approximation, the expression (10)
does not depend on the ωC-photon-scattering angle (isotropic
scattering):

d3σ⊥
dωCd�Cdε

→ 1

4π
σ

(1)
⊥ , (14)

where �C is the solid angle of flight of the scattered pho-
ton. However, outside of the Tamm–Dancoff approxima-
tion, this work’s methods predict (Hopersky and Nadolin-
sky [16]) scattering-angle-dependent x-ray emission of the
quadrupole type (in the sense that �l = 0, 2 during the tran-
sition 1s1/2 → nlj + ωC) through operator Ĉ. Indeed, within
the LS-coupling approximation the selection rules allow, for
example, the following process:

ω + ω + [0] → Q1 → nl4l+1
j εp + ωC,

where lj = s1/2, d3/2,5/2. Probability amplitudes of this pro-
cess do not interfere with the probability amplitudes of pro-
cess (1) and contain the matrix element of the single-electron
contact jl operator of the emissive transition 〈1s|jl (qr )|nlj 〉.
Here,

q = (ω/c)
√

1 + χ2 − 2χ cos θS,

χ = ωC/ω, θS are the scattering angles (the angles between
the wave vectors of the incident and scattered photons) and the
resonant energy of the scattered photon depends [in contrast
to ωC from Eq. (10)] on the XFEL photon energy: ωres

C
∼=

ω + I1s − I (nlj ), where I (nlj ) is the energy of the ionization
threshold of the nlj shell, ω � I1s . Here, (i) the 1s1/2 →
3d3/2,5/2 + ωC transition does not correspond to the well-
known (Blochin [18]) Kβ

II,I
5

resonances of the heavy-atom
x-ray emission spectrum, and (ii) the 1s1/2 → ns1/2 + ωC

transition (n � 1) is allowed, forbidden for the quadrupole
part of operator R̂ by the vacancy quantum number selection
rules (l1 + l2 � 2, j1 + j2 � 2) [17].

Also note that the numerical integration result in Eq. (10)
reproduces the well-known analytical result of the Weisskopf–
Wigner theory [18]:

∫ +∞

−∞
∈−1

j dε =
(

πγ

γ1sγj

)(�2
j + γ 2

)−1
. (15)

In Eq. (15), the “observed” linewidth for the resonance of
the Kα,β emission is defined as a sum of the natural decay
linewidths of the 1s and npj vacancies: γ = γ1s + γj .

The appearance of the deep 1s-vacancy in the shell of
the many-electron atom is accompanied by the effect of
monopole (without changing the symmetry of the atomic
state) rearrangement of the radial parts of the single-electron
state wave functions. We include this effect via the theory
of nonorthogonal orbitals [19]. In case of the Zn atom,

FIG. 2. Differential cross section for the resonant inelastic scat-
tering of two XFEL photons by the Zn atom in the Kα1,2 -emission
region. 2ω ∼= I1s , I1s = 9671.05 eV. ω(ωC ) is the energy of the
incident (scattered) photon. Spectral characteristics of the discrete
spectrum resonances are given in Table I.

we obtain

M = 〈1s0|r|εp〉C, (16)

S = 〈1s0|j0|εs〉C. (17)

Here are defined the correlation function

|εl〉C = N1s

(
|εl+〉 −

∑
m�F

|ml+〉ρl

)
, (18)

N1s = 〈1s0|1s+〉
∏
n�F

〈nl0|nl+〉4l+2, nl �= 1s, (19)

ρl = 〈ml0|ml+〉−1〈ml0|εl+〉, (20)

and the spherical Bessel function j0 = (qr )−1 sin(qr ), q =
2ω/c. The radial parts of the wave functions of the single-
electron l0(l+) states are obtained by solving the integro-
differential equations of the self-consistent Hartree–Fock field
for the [0] ([1s+ε(s, p)+]) atomic configuration. In Eq. (16)
the single-electron operator for the radiative transition is left
in the r form for the radius to account for the inter- and
intrashell correlations (Amusia [19]) during the excitation
(ionization) of the inner 1s shell of the many-electron atom
does not (within ∼1%) change the results of the single-
configuration Hartree–Fock approximation (Hopersky and
Yavna [19]).

III. RESULTS AND DISCUSSION

The calculation results for the differential cross section
(10) for the Zn atom in the XFEL photon energy region
of 2ω ∼= I1s are shown in Figs. 2–5 and in Table I. The
calculation parameters are determined as follows: I1s =
9671.05 eV (our relativistic calculation), �1s = 1.67 eV [20],
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FIG. 3. Same as in Fig. 2, but for a fixed value of ωC (Kα1 ) =
8638.99 eV. Solid curve: Ĉ and R̂ operators and the monopole
rearrangement effect (MRE) are taken into account. Dashed curve:
R̂ operator and MRE are taken into account. Dashed-dot curve: Ĉ

and R̂ operators but not MRE are taken into account.

�j = 0.72 eV (j = 1/2), 0.65 eV (j = 3/2) [20], ωj =
8615.89 eV (j = 1/2), 8638.99 eV (j = 3/2) [21] for the
Kα-emission resonances, and �j = 1.70 eV (j = 1/2), 2.00
eV (j = 3/2) [22], ωj = 9572.35 eV (j = 1/2), 9574.95
eV (j = 3/2) for the Kβ-emission resonances. The last
two values are obtained from the equality ωj = I1s − Ij ,
where I3/2 = 96.10 eV and I1/2 = 98.70 eV are taken from
Ref. [23]. We note that recently measured [24] values for
the Kβ1,3 -emission resonance energies for Zn in the metallic
phase, ωj = 9572.234 eV (j = 3/2), 9569.322 eV (j = 1/2),
deviate only by about 0.03% from the values assumed by us
during the differential-cross-section calculation (10).

In Figs. 2 and 5 and in Table I the subthreshold
(2ω < I1s) discrete structure of the scattering spectrum is rep-
resented only by the most intense channel (1): 1s4p(1P1) →
1s4d(1D2) → (2p, 3p)54d(1P1). Inclusion of a wide series
of other scattering channels in this region of XFEL photon
energies is a subject of future investigation. The “ribbed”
structures of the resonances in Figs. 2 and 5 are due to

σ
(1)
⊥ ∼ [

(2ω − I1s4d )2 + γ 2
1s

]−1[
(2ω − �j − ωC )2 + γ 2

j

]−1
,

(21)

where I1s4d = E(1s4d ) − E(0), �j = E(np5
j 4d ) − E(0),

and E are the total Hartree–Fock energies of the atomic states.
As a result, the differential cross section in the plane of
variables ω and ωC becomes maximal on the straight line

2ω = ωC tan (ϕ) + �j , ϕ = π/4. (22)

FIG. 4. Weisskopf–Wigner effect during the resonant inelastic
scattering of two XFEL photons by the Zn atom in the region of
(a) Kα1,2 and (b)Kβ1,3 emission. ω = 4860 eV, δSO (Kα ) = 23.1 eV,
δSO (Kβ ) = 2.6 eV. ω (ωC) is the energy of the incident (scattered)
photon.

Here, the maximum of the local resonance is determined by
the first factor in Eq. (21). In particular, in Table I the values
of the main maxima of σ

(1)
⊥ with 2ω = I1s4d are presented.

In contrast with the case of resonant inelastic scattering of
a single photon by a many-electron atom [25–30], the braking
absorption of the second XFEL photon by the virtual xp elec-
tron of the continuous spectrum [Fig. 1(b)] determines the ap-
pearance of the ζ function in Eq. (13). As a result, the behavior
of the scattering cross section changes qualitatively in the
near post-threshold (2ω � I1s) XFEL photon energy (Fig. 3).
Indeed, neglecting the contribution of the contact scattering
channel [Fig. 1(a)], we have σ

(1)
⊥ ∼ (1 − I1s/2ω)2M2 and

σ
(1)
⊥ → 0 with ω → I1s/2. In the far post-threshold scat-

tering region the behavior of σ
(1)
⊥ is determined by the

behavior of the amplitude M from (16): σ
(1)
⊥ ∼ M2 → 0

when ω → ∞. Taking into account the scattering channel
over the Ĉ operator recovers σ

(1)
⊥ to a nonzero value. Thus,

the principally important role of the Ĉ operator in process (1)
is established in the 1s-shell many-electron atom ionization
threshold energy region. As ω increases, the role of the Ĉ

operator decreases significantly, and when 2ω � I1s the cross
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FIG. 5. Same as in Fig. 2, but for the region of Kβ1,3 emission.

section of process (1) is practically determined by just the R̂

operator. The effect of monopole rearrangement of electron
shells for the Zn atom only insignificantly (Fig. 3) changes
the calculation result in the “frozen” core atomic ground-state
approximation. Indeed, the Hartree–Fock field of the arising
deep 1s vacancy for the virtual electrons of the continuous
spectrum is strongly screened by the ground-state shells of
the heavy many-electron atom.

The results in Fig. 4(a) demonstrate the Weisskopf–Wigner
effect [18]: �(Kα1 ) = �1s + �3/2 = 2.32 eV, �(Kα2 ) = �1s +
�1/2 = 2.39 eV. The small (∼3%) difference from the val-
ues in Fig. 4(a) is due to the effect of “overlaying” of
the Lorentzian profiles of Kα1 - and Kα2 -emission reso-
nances. For the Kβ1 - and Kβ3 -emission resonances [Fig. 4(b)]
the Weisskopf–Wigner effect is spectrally “washed out” by
the fact that �j (3p) > �j (2p) and δSO (Kβ ) = 2.6 eV <

δSO (Kα ) = 23.1 eV, where δSO is the spin-orbit splitting con-
stant of the npj shell. The absence of analytical solutions
to the Hartree–Fock equation leaves only the possibility of
numerical integration in Eq. (10) (Appendix B). The fact that
it reproduces the Weisskopf–Wigner effect makes it even more
incredible, because both the lower integration limits [ε = −∞
in Eq. (15) and ε = 0 in Eq. (10)], and the integrands [ψ = 1
in Eq. (15) and ψ �= 1 in Eq. (10)] are different. From the
mathematical standpoint an analytical proof of this fact is

TABLE I. Spectral characteristics for the leading 1s → 4p →
4d resonances of the discrete part of the spectrum for resonant
inelastic scattering of two XFEL photons by the atom of Zn in the
Kα,β -emission region. 2ω = I1s4d = 9669.51 eV, I1s = 9671.05 eV.
ω(ωC ) is the energy of the incident (scattered) photon, σ

(1)
⊥ is the

differential scattering cross section.

Kα,β ωC (eV) σ
(1)
⊥ × 1063 (cm2 eV−1)

Kα1 8638.862 8.203
Kα2 8615.938 3.676
Kβ1 9571.382 0.369
Kβ3 9568.883 0.184

doubtlessly of great interest and deserves an independent
investigation.

In works [21,24] the authors did not measure the differ-
ential cross section (10). Therefore, the comparison of the
results of our theory with experiment [21,24] measuring the
x-ray Kα,β-emission spectra of the Zn atom in the metallic
phase carries a vicarious character. Nevertheless, the forms
and relative magnitudes for the differential scattering cross
sections in Figs. 4(a) and 4(b) practically reproduce the forms
and relative magnitudes of the emission spectra in Fig. 2
(Kα1,2 ) of Ref. [21] and Fig. 8 (Kβ1,3 ) of Ref. [24].

Finally, let us provide a qualitative estimate for the mag-
nitude of the “observed” differential scattering cross section
in the presumed XFEL experiment. Due to the theorem about
the sum of probabilities for mutually exclusive events [31];
for example, for ω = 4860 eV and ωC = 8638.99 eV (Kα1 -
emission resonance energy) with the obtained [1] average
laser radiation brightness level of N = 1012 (number of pho-
tons in the XFEL pulse) we obtain C2

Nσ
(1)
⊥ ∼= 6.5 × 10−22

(Mb eV−1), where C2
N is the binomial coefficient. With the

expected [32] average brightness level of N = 1023 we ob-
tain a value quite accessible to experimental measurement:
C2

Nσ
(1)
⊥ ∼= 6.5 (Mb eV−1).

IV. CONCLUSION

Let us formulate the main results of this work. A
nonrelativistic variant of the theory for the process of
resonant inelastic scattering of two x-ray photons in the deep
1s-shell ionization threshold of a free many-electron atom
is constructed within the framework of quantum-mechanical
perturbation theory. The theory is free from the so-called “in-
frared divergence” (ωC → 0 ⇒ σ → ∞), which is inherent
in the theory of resonant Compton scattering of one photon
by an atom [2]. Indeed, according to Eq. (10)
we have ωC → 0 ⇒ σ → 0. The atom Zn is considered.
The theory predicts a pronounced Kα,β -emission structure
of the scattering spectrum. The methods of the current work
also predict the appearance of emission structures of a new
physical type—structures of quadrupole x-ray emission via
the contact-interaction operator—in the spectrum of resonant
inelastic scattering of two x-ray photons by a many-electron
atom. Exploring this prediction in detail is a subject of future
investigation. We establish the principally important role for
the contact-interaction operator in the near post-threshold
scattering region. Due to this fact, the process investigated
here drastically differs from the process of resonant inelastic
scattering of a single photon by a many-electron atom. As the
XFEL photon energy departs further away from the 1s-shell
ionization threshold, the role of contact scattering decreases
and the differential cross section of the process is determined
practically by just the radiative transition operator. It is
also found that, in the energy region for the creation of the
final scattering states of the continuous spectrum, the theory
reproduces the Weisskopf–Wigner effect for the “observable”
Kα,β -emission resonance linewidths. Further development of
the theory concerns, first of all, going beyond the framework
of the Tamm–Dancoff approximation, and taking into account
(i) the wide series of scattering channels in the subthreshold
XFEL photon energy region, (ii) the effects of configurational
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mixing in the scattering channels, and (iii) the completeness
of the set of single-electron states of the discrete spectrum of
the virtual (intermediate) and final scattering states (Hopersky
and Nadolinsky [19]). Of interest is also the generalization
of the theory; in particular to multiply charged atomic ions
of isoelectronic sequences with intense discrete structures of
the photoabsorption spectra. We also note that in the close
near-threshold XFEL photon energy region, for example,
for the Kβ1 -emission discrete resonance energy (Table I),
the equality ωC (Kβ1 ) ∼= 2ω is practically satisfied (to within
∼1%). Therefore, in this laser radiation energy region,
process (1) becomes the practical (but not the theoretical)
analog of the “merging” effect for XFEL photons in the field
of an atom [33] and an atomic ion [34]. The estimate for
the absolute value of the differential scattering cross section
points to the possibility of an experimental discovery of the
predicted Kα,β-emission structures with the XFEL-radiation
brightness level expected in the near future.

APPENDIX A

As an example, let us carry out the construction of the
matrix element 〈D2|R̂|YC〉.

Consider the second-quantization representation:

Ân =
∑

�k

∑
ρ=1,2

�e�kρ (a+
�kρ

+ a−
�kρ

), (A1)

a+
�kρ

|n�kρ〉 =
√

θ (n�kρ + 1)|n�kρ + 1〉, θ = 2πc2

V ω
, (A2)

a−
�kρ

|n�kρ〉 =
√

θn�kρ |n�kρ − 1〉, (A3)

a−
�kρ

a+
�kρ

− a+
�kρ

a−
�kρ

= θ. (A4)

Here, for operator Ân we take the dipole approximation
[exp(±i�k · �rn) ∼= 1], �e�kρ (�k) is the polarization vector (wave
vector) of the photon, ω is the photon angular frequency, n�kρ is
the photon occupation number, and V is the electromagnetic-
field quantization volume [we used V (cm3) = c [35]]. Con-
sider the relation between the forms of the radius and velocity
for the radiative transition operator:

〈γ |P̂ |γ ′ 〉 = i(Eγ − Eγ
′ )〈γ |D̂|γ ′ 〉, (A5)

P̂ =
N∑

n=1

p̂n, (A6)

D̂ =
N∑

n=1

�rn, (A7)

where Eγ,γ
′ are the energies of γ and γ

′
states of the atom.

Let us define the operator

Q(1)
p =

N∑
n=1

C (1)
p (�qn)rn, (A8)

where C (1)
p is the spherical function, rn is the magnitude of

vector �rn, and �qn is the unit vector in the direction of �rn. Taking

into account (A8) we have in the structure of the R̂ operator:

(�eC · P̂ ) → (�eC · D̂) =
+1∑

p=−1

(−1)pC
(1)
−p(�eC )Q(1)

p , (A9)

where �eC is the scattered photon polarization vector. Taking
into account the Wigner–Eckart theorem:

〈X2,M|Q(1)
p |Y2,M〉

= (−1)2−M

(
2 1 1

−M p M

)
(X2‖Q(1)‖Y2), (A10)

where we define the Wigner 3j symbol and M (M) is the
projection of the total angular momentum J = 2 (J = 1).
Taking into account formulas (29.3) and (29.6) of Ref. [36]
and the equalities for the 6j and 9j symbols ([x] ≡ 2x + 1,
δab is the Kronecker–Weierstrass symbol):{

a b 0
d c f

}
= (−1)a+d−f δabδcd√

[c, b]
, (A11)

⎧⎨
⎩

f b d

0 e e

f a c

⎫⎬
⎭ = (−1)b+c+e+f 1√

[e, f ]

{
a b e

d c f

}
,

(A12)

for the reduced matrix element in Eq. (A10) for the case of the
Kα emission, we have:

(X2‖Q(1)‖Y2) = −2
√

5〈1s|r|2p〉δ(x − ε). (A13)

Finally, taking into account the structure of the R̂ operator as
well as formulas (A1) through (A13), we have

〈D2|R̂|YC〉 = i

(
40π

V ωC

)1/2

ω(Kα )〈1s|r|2p〉δ(x − ε)�MM,

(A14)

�MM =
+1∑

p=−1

(−1)p+MC
(1)
−p(�eC ) ·

(
2 1 1

−M p M

)
, (A15)

where ω(Kα ) = ωj for the 2pj shell.
Through the structure (A15), we carry out the summation

over the M and M projections when constructing the differen-
tial scattering cross section. During this, we take into account
the theorem of summation of spherical functions,∑

M

C
(1)
M (�a )C (1)∗

M (�b) = P1(cos �), (A16)

and the condition of orthogonality of the Wigner 3j symbols,∑
jm

(2j + 1)

(
j1 j2 j

m1 m2 m

)(
j1 j2 j

n1 n2 m

)
= δm1n1δm2n2 .

(A17)

In Eq. (A16) we define P1 as the spherical Legendre polyno-
mial, and � as the angle between vectors �a and �b.

During the construction of the Ĉ-operator matrix elements
beyond the dipole approximation for the Bessel jt functions,
the following mathematical results are taken into account:
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(i) Decomposition of the exponent appearing in (2) into a
double functional series (Rayleigh’s formula) [37]:

exp{i(�s · �rn)} =
∞∑
t=0

it [t]jt (srn)Tt , (A18)

Tt =
t∑

p=−t

(−1)pC
(t )
−p(�es )C (t )

p (�qn), (A19)

where s is the magnitude of vector �s, �es is the unit vector in
the direction of �s.

(ii) The integral Plana–Poisson representation for the
spherical Bessel function of the first kind of order t [38]:

jt (x) = 1

t!

(x

2

)t
∫ 1

0
(1 − z2)t cos (xz)dz, x ∈ [0; ∞).

(A20)

(iii) The expression for the reduced matrix element,

(0‖Q(t )‖Xl ) =
√

2δlt 〈1s|jt |xl〉, (A21)

of the contact-interaction operator over the p multipolarity

Q(t )
p =

N∑
n=1

C (t )
p (�qn)jt (srn). (A22)

Beyond the plane-wave approximation for the continuous
spectrum wave functions, the singular multiplicative factors,
in particular, in the radiative transition probability amplitude
(A14), are modified. The corresponding analytical expres-
sions for the overlap integrals and probability amplitudes of
the free-free radiative transitions are obtained in Ref. [39] (and
references therein). In particular, in the single-configuration
Hartree–Fock approximation, for the states obtained in dif-
ferent Hartree–Fock potentials, instead of Eq. (8) we have
(Novikov and Hopersky [39])

〈x|ε〉 → cos(ϕx − ϕε )δ(x − ε) + P
(

ν(x, ε)

x − ε

)
. (A23)

Here, ϕ is full phase shift (the sum of Coulomb and Hartree–
Fock phase shifts) of the electron wave, ν is a function ex-
pressed through the difference of the corresponding Hartree–
Fock potentials, and P is the Cauchy principle value of the
integral. In the case of xl and εl states for a single fixed
Hartree–Fock potential, we have:

cos(ϕx − ϕε ) → 1, (A24)

P
∫ ∞

0

ν(x, ε)

x − ε
dx → 0, (A25)

and we return to the integral 〈x|ε〉 = δ(x − ε).

APPENDIX B

The integration region in (10) is broken up into two subre-
gions:

D1 =
m⋃

i=1

[xi, xi+1], (B1)

D2 = [xm+1,∞), (B2)

where x1 = 0, xm+1
∼= I1s . Over the D1 region, for every

interval [xi, xi+1] we take a linear interpolation of the ψ

function,

ψi = αix + βi, (B3)

and analytically calculate the Riemann integral:

J1 =
m∑

i=1

∫ xi+1

xi

ψi ∈−1
j dx. (B4)

Over the region D2, the following asymptotic form is taken for
the square of the radiative transition operator matrix element
from Eq. (16):

(x + I1s )2M2 = μmx−1 + ρmx−2, (B5)

and the improper integral of the first kind is calculated analyt-
ically:

J2 =
∫ ∞

xm+1

gm ∈−1
j dx, (B6)

gm = μmx + ρm

(x − ω + I1s )2 + γ 2
1s

. (B7)

The choice for the asymptotic form (B5) is determined by an
analytical estimation of the matrix element in the hydrogen-
like approximation for the 1s-electron wave function, and the
plane-wave approximation for the wave function of the xp

electron of the continuous spectrum:

M ∼= x−3/2. (B8)

We note that during the calculation of integrals (B4) and (B6)
the use of the approximation

γj → 0 ⇒ Lj → δ(2ω − ωC − Ij − x) (B9)

leads to the loss of the Weisskopf–Wigner effect:

γ = γ1s + γj → γ1s . (B10)
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