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Wavelength dependence of high-order harmonic yields in solids
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We theoretically investigate the wavelength dependence of high-order harmonic yields in solids driven by a
mid-infrared laser field. By solving the three-dimensional two-band density matrix equations in the wavelength
range of 2.0–7.5 μm, it is shown that, in the limit of slow dephasing (dephasing time T2 → ∞), the high-
order harmonic yield from a crystal follows a scaling of λ−4 for a fixed energy interval. The λ−4 scaling is
attributed to the wave-packet spreading (λ−3) for the overall yield and the energy distribution effect (λ−1) due
to the increase of the cutoff. For the crystal with a finite dephasing time T2, we find that the exponential factor
x of λ−x increases with a decay of T2. An apparent and rapid fluctuation on a fine wavelength mesh is also
observed in the harmonic yields. The fine-scale oscillation originates from the quantum interference effect, and
the corresponding modulation period δλ scales as λ−1.
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I. INTRODUCTION

When matter is irradiated by an intense laser pulse, the
laser-matter interaction gives rise to many interesting strong-
field phenomena [1–4]. One of the most prominent processes
among these phenomena is the high-order harmonic genera-
tion (HHG) [5,6]. HHG from gas targets provides an effective
route to generate coherent attosecond pulses [7] in the ex-
treme ultraviolet spectral regimes and to explore the electronic
structures [8,9] and ultrafast dynamics [10] of atomic and
molecular systems. The recent experimental observation [11]
of nonperturbative harmonics from bulk ZnO crystal opens
up an avenue to study the HHG in solid-state materials. The
high density of a crystal target guarantees the superiority of
the high conversion efficiency for the solid HHG [12,13]. In
addition, the electronic state information of a solid target can
imprint itself on the harmonic spectrum [14–16]. Hence the
solid HHG provides a useful scheme to reconstruct the energy
band structure [17,18] of a crystal with an all-optical method
and even to probe the attosecond electronic dynamics [19,20]
in condensed matter.

In comparison to atomic or molecular systems, the high
density and periodicity of a solid target lead to the distinctly
different characteristics in harmonic radiations [21–24], as
the laser-driven electrons in solids are always influenced by
the periodic potential [12]. For example, the cutoff energy
of the solid HHG depends linearly on the field strength
[11,25,26] instead of the quadratic dependence in the gas
HHG. The emergence of the multiple-plateau structure is
also a typical feature of the high-order harmonic spectra
from solids [27–29]. The mechanism of the solid HHG is an
interesting topic of wide debate. It is generally considered that
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the solid HHG is contributed by two major channels [30–32]:
an intraband current arising from the Bloch oscillation in
individual bands and an interband current due to electron tran-
sitions between the valence and conduction bands. Currently,
some theoretical models and intuitive pictures [32–40] have
been built to describe the HHG process in solids.

The scaling law of the harmonic yield on wavelength λ is a
fundamental issue of great concern in the attosecond science
community [41,42]. For the HHG from rare-gas atoms, theo-
retical calculations [43–46] and experiment studies [47] reveal
a wavelength scaling of λ−x with 5 � x � 6 for a fixed energy
interval at a constant intensity. This power law with x ≈ 5
is ascribed to two contributions [44]: the spreading of the
returning wave packet produces a λ−3 scaling for the overall
yield and the increase of the cutoff energy Ecutoff ∝ λ2 brings
out an additional factor of λ−2. When a finer wavelength mesh
is adopted, it is surprisingly found that the harmonic yield
does not smoothly decrease with the fundamental wavelength,
but exhibits a rapid oscillation, and its modulation period
scales as λ−2 [45]. The semiclassical analysis based on the
strong-field approximation (SFA) reveals that the rapid oscil-
lation stems from the interference effect of the rescattering
electron trajectories. As another perspective, Frolov et al. [46]
attribute the fine-scale oscillation to the quantum threshold
phenomena, which are sensitive to the symmetry of the bound-
state wave function. However, the wavelength scaling law for
the high-order harmonic yield in solids is a recent area of
study.

In this work, the wavelength dependence of high-order
harmonic yields in solids is investigated by solving the three-
dimensional (3D) two-band density matrix equations (DMEs)
for the ZnO crystal. The driving wavelengths range from 2.0
to 7.5 μm, i.e., within the mid-infrared (MIR) region [48].
It is found that the harmonic yield for a fixed energy interval
follows a λ−4 scaling for the crystal with an infinite dephasing
time T2. The origin of the wavelength scaling law in solid
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HHG is attributed to the spreading of the wave packet and the
increase of the cutoff energy. When the decoherence process
is considered, it is shown that the exponential factor x of λ−x

increases with the decrease of the dephasing time T2. The fine-
scale oscillation originating from the quantum interference
effect is also found in the harmonic spectra. The modulation
period of the fine-scale oscillation for solid HHG scales as
λ−1, unlike the case of λ−2 in gas HHG.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework and present the band structure
of the solid target in our simulations. In Sec. III, we inves-
tigate the wavelength scaling of high-order harmonic yields
in the solid target and discuss the influence of the dephasing
time on the wavelength scaling. In Sec. IV, the fine-scale
oscillation of the harmonic yield and the corresponding modu-
lation period are studied. We summarize our works in Sec. V.

II. THEORETICAL MODEL

In our simulation, the interaction of a strong laser pulse
with the ZnO crystal is described by a three-dimensional
(3D) two-band model with the tight-binding approximation.
Atomic units are used throughout this paper unless otherwise
stated. The ZnO crystal has the wurtzite structure and the
coordinate directions are chosen as ex ||�–M , ey ||�–K , and
ez||�–A in our calculation. The dispersion relation of the
band m is written as the sum of bands along each individual
direction [26], i.e.,

Em(k) = Em,x (kx ) + Em,y (ky ) + Em,z(kz), (1)

where m = (v, c) stands for the valence and conduction
bands, respectively. The band in each direction can be ex-
panded with the Fourier series as

Ev,i (ki ) =
∞∑

j=0

C
j

v,i cos (jkiai ), (2)

Ec,i (ki ) = Eg +
∞∑

j=0

C
j

c,i cos (jkiai ), (3)

where i = (x, y, z) stands for three individual axes and
(ax, ay, az) = (5.32, 6.14, 9.83) are the lattice constants in
three directions. Eg is the band-gap energy at the � point and
is given by Eg = 3.3 eV in the model. Besides, Eg is also the
minimum band-gap energy of the valence band (VB) and the
conduction band (CB). The expansion coefficients C

j

v,i and

C
j

c,i are obtained with a nonlocal empirical pseudopotential
method for �–M and the nearest-neighbor expansion for �–K

and �–A. All resulting parameters can be found in Ref. [26].
Figure 1(a) shows the band structures of the valence and
conduction bands for �–M in the reciprocal space. The corre-
sponding energy difference εg,x (kx ) = Ec,x (kx ) − Ev,x (kx ) is
also presented in Fig. 1(b) with the red solid line. It is worth
noting that εg,x (kx ) depends linearly on kx approximately as
guided by the yellow dashed lines. The approximate linear
dependence of the band gap is typical in the current solid HHG
studies [30,35,49].

(a)

(b)

(c)

FIG. 1. (a) Band structures and the (b) band gap (red solid line)
of conduction and valence bands along the �–M direction. (c) High
harmonic spectra contributed by the intraband, interband, and overall
currents. The black arrow indicates the minimum band-gap energy
Eg = 3.3 eV in panel (c).

The response of the laser-driven electron in a crystal is
described by the 3D two-band DMEs [26,32]:

π̇ (K,t ) = −π (K,t )

T2
− i�(K,t )w(K,t )e−iS(K,t ), (4)

ṅv (K,t ) = −i�∗(K,t )π (K,t )eiS(K,t ) + c.c., (5)

ṅc(K,t ) = i�∗(K,t )π (K,t )eiS(K,t ) + c.c., (6)

where nv and nc are the populations of the valence and
conduction bands, respectively. π is the off-diagonal ele-
ment of the density matrix. w = nv − nc is the popula-
tion difference between the valence and conduction bands.
The crystal momentum k in the first Brillouin zone (BZ)
is shifted with the vector potential A(t ) as K = k − A(t ).
�(K,t ) is the Rabi frequency and is given by �(K,t ) = F(t ) ·
d[K + A(t )], where F(t ) is the laser field and d(k) is the
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transition dipole moment. In our simulation, d is assumed to
be k independent and is chosen as d = (3.46, 3.46, 3.94). The
same treatment can be found in previous works [26,32,50].
S(K,t ) is the classical action and is represented as S(K,t ) =∫ t

−∞ εg[K + A(τ )]dτ , where εg = Ec − Ev is the band gap
between the conduction and valence bands. T2 is the dephas-
ing time stemming from the coherence decay in solids. The
DME is equivalent to the semiconductor Bloch equation [51]
in the single-electron limit [32].

The HHG in solids is contributed by the intraband current
jra and the interband current jer, which are given by

jra(t ) =
∑

m=c,v

∫
BZ

vm[K + A(t )]nm(K,t )d3K, (7)

jer(t ) = d

dt

∫
BZ

p(K,t )d3K, (8)

respectively. Herein, vm(k) = ∇kEm(k) is the band velocity
and p(K,t ) is the polarization given by

p(K,t ) = d[K + A(t )]π (K,t )eiS(K,t ) + c.c. (9)

The total laser-induced current j(t ) is obtained by j(t ) =
jra (t ) + jer (t ). High-order harmonic spectra contributed by jra,
jer, and j(t ) are calculated by the Fourier transform of the
corresponding currents.

The ZnO crystal is irradiated by pulses polarized along
the �–M (x axis) direction. All electrons are initially oc-
cupied in the valence band in our simulation. The Gaussian
envelope with a full width at half maximum of 40 fs and a
total duration of 180 fs is adopted for all laser pulses. The
carrier-envelope phase (CEP) is fixed as φ = 0◦. The laser
wavelengths adopted are within the MIR region and range
from 2.0 to 7.5 μm. Figure 1(c) shows the harmonic spectra
contributed by the intraband, interband, and overall (intra-
band + interband) currents, where the black arrow indicates
the position of the minimum band-gap energy Eg = 3.3 eV.
The laser wavelength is 3.5 μm and the laser intensity is
3.2 × 1011 W/cm2. The dephasing time is chosen as T2 = ∞.
One can see clearly that the intraband processes are dominant
for harmonics with photon energies below the minimum band-
gap energy Eg , whereas the interband processes dominate the
higher-order harmonics spanning the plateau region. This is
in agreement with the previous conclusion that the observed
harmonic spectrum is separated into the below-threshold re-
gion (dominated by the intraband mechanism) and the plateau
region (dominated by the interband mechanism) by the min-
imum band gap for MIR driver pulses [30,32,34,37]. The
harmonic plateaus shown in Fig. 1(c) are somewhat noisy and
some harmonics cannot be recognized clearly in the spectra.
This is because the absence of dephasing time, i.e., T2 = ∞,
masks the clean odd harmonics in the plateau as has been
pointed out in Ref. [32]. A clearer harmonic spectrum can
be obtained if a finite dephasing time T2 is adopted in our
simulation.

The study of wavelength scaling law focuses on the har-
monic yield per unit energy range and unit time in the har-
monic plateau. This average harmonic yield is denoted as �I .
In this work, the total duration of the laser pulses is fixed
as 180 fs. The energy range is fixed at 4 to 8 eV. Thus, the
harmonic yield �I can be calculated by integrating the power

spectrum of the harmonic radiations, i.e.,

�I =
∫ 8 eV

4 eV
|j(ω)|2dω. (10)

The fact that the harmonic plateau always starts from Eg =
3.3 eV guarantees that the lower bound of 4 eV in Eq. (10)
is always located in the plateau region. The upper bound in
Eq. (10) is chosen as 8 eV because we have verified that it does
not exceed the cutoff energies of the harmonics for all adopted
laser pulses. Thus the integration interval (4 to 8 eV) is always
located in the plateau of the harmonic spectrum. Considering
that the harmonic yields in plateau regions are nearly equal,
any energy range can be chosen as the integration interval
as long as it is in the plateau region. Thus our conclusions
are independent of the chosen energy range in the harmonic
plateau.

III. WAVELENGTH SCALING IN HHG YIELD

Our study aims to reveal the HHG yield in solids as a
function of the driving wavelength at a constant intensity.
It has been widely accepted that the harmonic yield in gas
follows a wavelength scaling law of λ−x [6,43–47]. Thus we
adopt a power law with the form

�I = βλ−x (11)

to fit the relation using the sample wavelength λ and the
corresponding harmonic yield �I . In Eq. (11), we take its
logarithm and it reads

ln�I = lnβ − xlnλ. (12)

In order to evaluate the value and uncertainty of x, a least-
squares method is used to fit the equation using calculated
ln�I and lnλ in Eq. (12). The uncertainty �x of x is obtained
by solving the 95% confidence interval (x − �x, x + �x)
with the assumption that it obeys the normal distribution.
The correlation coefficient r is also obtained to evaluate the
goodness of the fit. The detailed calculation procedure for x,
�x, and r can be found in the Appendix.

Figures 2(a)–2(c) show the harmonic yield �I as a func-
tion of the driving wavelength λ in double logarithmic coordi-
nates with the laser intensities fixed at 2.2 × 1011, 3.2 × 1011,
and 4.2 × 1011 W/cm2, respectively. The dephasing effect is
neglected provisionally, i.e., dephasing time T2 = ∞. The
driving wavelength ranges from 2.0 to 7.5 μm and the wave-
length spacing is 250 nm. One can see clearly that the sample
points agree with the fitting straight-lines very well in the
double logarithmic coordinate. The correlation coefficients for
the three intensities are −0.9965, −0.9979, and −0.9934,
respectively. The fact that all three correlation coefficients
are very close to −1 suggests that ln�I is highly negative
correlative to lnλ, i.e., �I ∝ λ−x . The fitted exponents x

with their uncertainties �x are 3.98 ± 0.15, 4.07 ± 0.12, and
4.10 ± 0.21, respectively. One can see clearly that all three
fitted x values are very close to 4. Considering the uncertainty
�x, the value of 4 is always located in the 95% confidence
interval (x − �x, x + �x). Therefore, the harmonic yield
should follow a λ−4 scaling. The wavelength scaling of λ−4

in solids is distinctly different from that of λ−(5−6) in gases.
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FIG. 2. Wavelength dependence of the harmonic yield �I for
the laser intensities of (a) 2.2 × 1011 W/cm2, (b) 3.2 × 1011 W/cm2,
and (c) 4.2 × 1011 W/cm2,respectively. The results are obtained by
solving the 3D two-band DME. The double logarithmic coordinates
are adopted in panels (a)–(c).

In order to clarify the mechanism of λ−4 scaling in solid
HHG, we investigate the wavelength scaling of the harmonic
yield from ZnO crystal in reduced dimensions. Figures 3(a)–
3(c) show the harmonic yields as a function of the driving
wavelength in the double logarithmic coordinates by solving
the 2D two-band DME. The laser intensities adopted are
the same as those in Figs. 2(a)–2(c). One can see that the
power-law distribution still satisfies because all three correla-
tion coefficients (−0.9953, −0.9938, and −0.9903) are very
close to −1. The fitted exponents x with uncertainties �x

are 2.89 ± 0.16, 2.96 ± 0.13, and 2.91 ± 0.19, respectively.
The obtained three exponents equaling approximately to 3
indicate that the harmonic yield follows a λ−3 scaling in a
2D system. Likewise, the harmonic yields calculated by the
1D two-band DME are shown in Figs. 3(d)–3(f). It is found
that the three fitted exponents (1.95 ± 0.13, 2.06 ± 0.18, and
1.98 ± 0.15) are very close to 2 within the 95% confidence
interval, which suggests that the harmonic yield follows a λ−2

scaling in a 1D system. The correlation between ln�I and
lnλ is still very significant because the correlation coefficients
−0.9901, −0.9872, and −0.9876 are very close to −1. The
wavelength scalings obtained from 3D (λ−4), 2D (λ−3), and
1D (λ−2) models suggest that the exponential factor x of
λ−x will fall off by 1 if the dimensionality of a system is

reduced by 1. This is clear evidence that the wavelength
scaling can be contributed by the wave-packet spreading. The
wave-packet spreading gives rise to a λ−1 scaling in each
dimension, which constitutes the λ−3 scaling for the real 3D
system.

The interband HHG in solids can be described by the
electron-hole recollision model [32,52], which is similar to the
three-step process in gas HHG. Specifically, the laser-driven
electron tunnels from the valence band first, the electron-hole
pair is subsequently accelerated in valence and conduction
bands in the laser field, and finally the laser-driven electron
recombines with the hole accompanied by the harmonic ra-
diations. The propagations of the electron-hole pair in va-
lence and conduction bands will result in the spreading of
the wave packet. Similarly to the gas HHG, the spreading
of the wave packet leads to a λ−3 scaling for the overall
yield.

Many studies have verified that the cutoff energy of the
ZnO crystal is linearly dependent on the laser wavelength in
the MIR regime. For example, Vampa et al. [26] pointed out
that the cutoff energy of the ZnO crystal (denote as Ecutoff ) is
proportional to A0, i.e.,

Ecutoff ∝ A0, (13)

where A0 is the amplitude of the vector potential. The linear
dependence of the cutoff energy on A0 is attributed to the
fact that the energy gap of the conduction and valence bands
(denote as εg) is approximately a linear function of the crystal
momentum k in the positive k axis [see Fig. 1(b)] [35],
namely,

εg (k) ∝ k. (14)

The semiclassical motion equation k(t ) = k0 + A(t ) suggests
that

k(t ) ∝ A(t ). (15)

Combining Eqs. (14) and (15), Eq. (13) can be obtained
by [35]

Ecutoff = max{εg[k(t )]} ∝ max[k(t )]

∝ max[A(t )] = A0. (16)

Therefore, as in the case of the gas HHG, the extension of the
cutoff energy Ecutoff ∝ λ results in an additional factor λ−1 in
the wavelength scaling for a fixed energy interval. Our results
reveal that the λ−4 scaling for the solid HHG is contributed
by the spreading of the wave packet (λ−3) for the overall
yield and the increase of the cutoff energy (λ−1). It is worth
noting that the relation max[A(t )] = A0 may not precisely
hold especially for the long wavelengths because the laser
pulse contains only a few optical cycles. However, we have
verified that the relative error rates of max[A(t )] and A0 are
less than 5% for the laser pulses adopted in this work. Thus,
the duration of adopted laser pulses is enough long and the
relation max[A(t )] = A0 is still valid in our research. In fact,
further investigations reveal that the wavelength scaling law is
not distinctly affected by the CEP effect for the chosen laser
pulses in this work.
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FIG. 3. Wavelength dependence of the harmonic yield �I by solving the two-band 2D [panels (a)–(c)] and 1D [panels (d)–(f)] DMEs.
The laser intensities are same as those in Figs. 2(a)–2(c). The double logarithmic coordinates are adopted in panels (a)–(f).

The wavelength scaling for the solid harmonic yield will
change when the decoherence process is taken into account.
Figures 4(a) and 4(b) show the exponential factor x of λ−x

as a function of the dephasing time T2. Here the laser in-
tensity is fixed at 3.2 × 1011 W/cm2. One can see that the
exponential factor x decreases rapidly with the increasing
T2 in the region of the short dephasing time. When T2 is
long enough, as indicated by the horizontal dashed line in
Fig. 4(b), x approaches asymptotically the limiting value x =
4.07, which corresponds to the case of T2 = ∞. A logarithmic
coordinate is adopted for the T2 axis in Fig. 4(b) considering
the extremely slow decay of x in the corresponding region.
Our results reveal that the dephasing time plays an important
role in the wavelength scaling for the solid HHG yield. In
solids, the dephasing time is due to the inelastic scattering
by lattices and the electron-electron interaction. The decay

10

8

6

4
100 20 30 40 50 4.0

4.5

5.0

T2(fs)
102 103 104 105

(a) (b)

T2(fs)

FIG. 4. The exponential factor x as a function of the dephasing
time T2 in the ranges of (a) 0–50 fs and (b) 50–2 × 105 fs. The
logarithmic coordinate is adopted for the T2 axis in panel (b). The
horizontal dashed line indicates the x value in the case of T2 = ∞.

of x with increasing T2 suggests that the dissipations arising
from the decoherence effect in solids will further suppress the
harmonic yield for a longer wavelength. The suppression of
the harmonic yield due to the dephasing can be intuitively
understood by the viewpoint that dissipations in solids damp
out the electronic interband transitions, which are the origin
of the interband HHG in solids.

IV. FINE-SCALE OSCILLATIONS

The harmonic yields shown in Figs. 2(a)–2(c) and
Figs. 3(a)–3(f) exhibit another feature that the harmonic ef-
ficiencies do not vary smoothly but slightly fluctuate with the
increasing λ like in gas HHG. In order to explore the fluctua-
tions of the harmonic yields in detail, a much finer wavelength
mesh with the spacing of 10 nm is adopted to investigate the
harmonic yields. It is found that the fine-scale oscillations of
the harmonic yields on wavelength also appear in solids. We
choose three wavelength regions to demonstrate the fine-scale
oscillations on λ in the HHG yield. Figures 5(a)–5(c) show the
HHG yields in the regions of 2.5–3.3, 3.4–3.8, and 5.4–5.8
μm, respectively. The laser intensity is 3.2 × 1011 W/cm2.
From Figs. 5(a)–5(c), one can see clearly that the harmonic
yield exhibits a fluctuation behavior with the alternating peaks
and valleys. The oscillation periods δλ for three wavelength
regions are different and approximately equal to 160, 100, and
80 nm, respectively.

In gas HHG, the origin of a fine-scale oscillation in
harmonic yield is attributed to the quantum path interfer-
ence [45]. Specifically, based on the SFA model, the time-
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FIG. 5. Harmonic yield as a function of the laser wavelength
with the spacing of 10 nm in the regions of (a) 2.5–3.3 μm, (b)
3.4–3.8 μm, and (c) 5.4–5.8 μm. The laser intensity is fixed at
3.2 × 1011 W/cm2.

dependent dipole moment can be expressed as [6]

x(t ) = i

∫ t

−∞
dt ′

∫
d3p · d∗[p − A(t )]

× F(t ′) · d[p − A(t ′)]e−iS(p,t ′,t ) + c.c., (17)

where S(p, t ′, t ) = ∫ t

t ′ {[p − A(t ′′)]2
/2 + Ip}dt ′′ is the semi-

classical action and Ip is the ionization potential. As has
been pointed out in Ref. [45], the interference oscillations
in harmonic yields for the gas HHG are controlled by the
evolution phase of the time-dependent dipole moment, i.e., the
semiclassical action S(p,t ′, t ). By using the Keldysh approxi-
mation w(t ) ≈ 1, the interband current can be written as [32]

jer(t ) = d

dt

∫ t

−∞
dt ′

∫
BZ

d3k · d(k)e−(t−t ′ )/T2

× F(t ′) · d∗[κ (t ′)]e−iS(k,t ′,t ) + c.c., (18)

where κ (t ′) = k + A(t ′) − A(t ), and the classical action
S(k, t ′, t ) = ∫ t

t ′ εg[κ (τ )]dτ . From Eq. (18), one can see that
the evolution phase of the interband current in solids is
controlled by the classical action S(k, t ′, t ). The concept

of quantum trajectories in solid HHG has been built by
the electron-hole recollision model [26,52]. By comparing
Eqs. (17) and (18), it can be concluded that the evolution phase
S(k, t ′, t ) in solids also will lead to the similar interference
oscillations in harmonic yields due to the interference effects
of quantum trajectories as in the case of the gas HHG.
Therefore, the fine-scale oscillations presented in solid HHG
yields are also due to the interference effects of quantum
trajectories.

The oscillation period δλ for the solid HHG can be deduced
using a similar method as in the gas case. When the saddle-
point integration is introduced in Eq. (18), the classical ac-
tion S can be written as S(k, ti , tf ) = ∫ tf

ti
εg[κ (τ )]dτ , where

the bounds of the integration are the ionization time ti and
the recombination time tf of the electron (or hole). Con-
sidering Eq. (14) and the relation κ (τ ) = k + A(τ ) − A(tf ),
it is found that εg[κ (τ )] ∝ κ (τ ) ∝ A(τ ) = F0/ω0 sin(ω0τ ).
Thus,

S =
∫ tf

ti

εg[κ (τ )]dτ ∝
∫ tf

ti

F0

ω0
sin(ω0τ )dτ

= F0

ω2
0

cos(ω0ti ) − cos(ω0tf ) ∝ λ2. (19)

That is, S scales as λ2. Considering that the interference
oscillation is induced by the evolution phase S(k, ti , tf ), the
modulation period of the oscillation corresponds to a phase
change of S by 2π [45]. Therefore,

2π = δS = dS

dλ
δλ. (20)

According to Eq. (19), we obtain

dS

dλ
∝ λ. (21)

Based on Eqs. (20) and (21), it can be concluded that

δλ ∝ λ−1. (22)

This result suggests that the oscillation period of the harmonic
yield on wavelength is not a constant but is dependent on
the wavelength itself. The derivation of λ−1 scaling for the
oscillation period δλ further verifies that fine-scale oscilla-
tions in solid HHG originate from the quantum interference
effects.

In order to verify Eq. (22), we extract the oscillation period
δλ from the harmonic yields obtained by solving the 3D
two-band DME. Then δλ and λ are fitted with the form of
δλ = αλ−x . Here the value and uncertainty of the exponent x

are calculated with the same procedures as those in Eq. (11).
Figure 6 shows the oscillation period δλ as a function of λ

for the wavelength ranging from 2.0 to 7.5 μm in the double
logarithmic coordinate. One can see that the distribution of
sample points follow the fitting straight-line in the double log-
arithmic coordinate. The correlation coefficient r = −0.9816
suggests that the correlation between ln δλ and ln λ is quite
significant. The fitted x with its uncertainty is 1.06 ± 0.15.
This is in good agreement with the theoretical prediction of
1, very well within the uncertainty of fit. It is worth noting
that the deductions shown previously are not confined in the
3D system. Thus, the fine-scale oscillations in harmonic yield
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±

wavelength (   m)

FIG. 6. The oscillation period δλ as a function of the driving
wavelength λ. The laser intensity is 3.2 × 1011 W/cm2. The double
logarithmic coordinate is adopted.

can also be observed in the reduced dimensionality (1D and
2D) systems with the same scaling laws as the case of the
3D system. This conclusion has been verified numerically by
solving the 2D and 1D two-band DMEs.

The above discussions are focused on the prototype of bulk
ZnO crystal. When the band structure of a crystal satisfies
εg (k) ∝ kn (n = 1 for the ZnO crystal specifically), Eq. (16)
should be revised as Ecutoff ∝ (A0)n. The wavelength scaling
of the HHG yield due to the wave-packet spreading and the
increase of the cutoff becomes �I ∝ λ−(3+n). Similarly, the
scaling of the oscillation period shown in Eq. (22) should
be obtained as δλ ∝ λ−n. The gas HHG originates from the
electronic transitions from the free state (Ec = k2/2, the crys-
tal momentum k degenerates into the mechanical momentum
p in this case) to the ground state (Ev = −Ip, Ip is the
ionization potential). Thus, the scalings of �I ∝ λ−5 in the
gas harmonic yield and δλ ∝ λ−2 in the fine-scale oscillation
can be directly obtained according to εg = k2/2 + Ip ∝ k2.
Table I summarizes the wavelength dependencies of �I and
δλ for the ZnO crystal, the gas system, and the matter satis-
fying the relation εg (k) ∝ kn (called the kn-type matter). One
can see that the wavelength dependencies of �I and δλ are
entirely determined by the exponential factor n in the equation
εg (k) ∝ kn for both gas and solid HHG. This result reveals
that the different wavelength scalings of the harmonic yield
and the oscillation period for gases and solids are essentially
attributed to the different dependencies of the energy gap εg

on the crystal momentum k.

V. CONCLUSION

In summary, we investigate the wavelength dependence of
the harmonic yield in solids driven by MIR laser pulses. It

TABLE I. Wavelength dependencies for the harmonic yield and
the oscillation period of the fine-scale oscillation.

Species εg ∝ �I ∝ δλ ∝
ZnO crystal k λ−(3+1) λ−1

Gas system k2 λ−(3+2) λ−2

kn-type matter kn λ−(3+n) λ−n

turns out that the wavelength scaling in solid HHG differs
from the case in gas HHG. Nevertheless, the wavelength
scaling for solid HHG is contributed by mechanisms similar
to those for the gas HHG. Specifically, the yield of solid HHG
in MIR laser fields exhibits a λ−4 scaling for a fixed energy
interval in the absence of dephasing effects. The λ−4 scaling
originates from the wave-packet spreading for the overall
yield (λ−3) and the increase of the cutoff (λ−1). Moreover,
the decoherence process is found to have a remarkable impact
on the wavelength scaling. The harmonic yield in solids
decreases more rapidly when the dephasing is considered.
The fine-scale oscillations in harmonic yield due to the quan-
tum interference can be found in solids. Theoretical analysis
and numerical simulation indicate that the oscillation period
scales as λ−1. Our work also further reveals that the different
wavelength scalings and oscillation periods for the gas and
solid HHG essentially originate from the different energy-gap
equations on crystal momentum.
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APPENDIX: THE LEAST-SQUARES FIT
AND ITS UNCERTAINTY

In this Appendix, we illustrate the detailed procedure to fit
Eq. (12) with the least-squares method. For the given simple
data pairs [(xi, yi ), i = 1, ..., n], the goal is to fit them with
the form

y = a + bx. (A1)

According to the least-squares method, the parameter b is
calculated by

b =
∑n

i=1 (xi − x̄)(yi − ȳ)∑n
i=1 (xi − x̄)2 , (A2)

where x̄ and ȳ are the mean values of x and y, respectively.
The parameter a is obtained by

a = ȳ − bx̄. (A3)

The correlation coefficient r is given by

r =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

. (A4)

The standard deviation of b is denoted as σb and is calculated
by

σb =
√ ∑n

i=1 (Yi − yi )2

(n − 2)
∑n

i=1 (xi − x̄)2 , (A5)

where Yi = a + bxi . The 95% confidence interval (b − �b,
b + �b) is obtained by assuming that it obeys the normal
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distribution and searching the �b satisfying the integration∫ b+�b

b−�b

1√
2πσb

exp

[
− (x − b)2

2σ 2
b

]
dx = 0.95. (A6)

In Eq. (12), we choose ln λi = xi and ln �Ii = yi in our fitting
procedure, where λi is the sample wavelength and �Ii is the
corresponding harmonic yield.
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