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Laser cooling and magneto-optical trapping of molecules analyzed using optical Bloch equations
and the Fokker-Planck-Kramers equation
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We study theoretically the behavior of laser-cooled calcium monofluoride (CaF) molecules in an optical
molasses and magneto-optical trap (MOT), and compare our results to recent experiments. We use multilevel
optical Bloch equations to estimate the force and the diffusion constant, followed by a Fokker-Planck-Kramers
equation to calculate the time evolution of the velocity distribution. The calculations are done in three
dimensions, and we include all the relevant energy levels of the molecule and all the relevant frequency
components of the light. Similar to simpler model systems, the velocity-dependent force curve exhibits Doppler
and polarization-gradient forces of opposite signs. We show that the temperature of the MOT is governed mainly
by the balance of these two forces. Our calculated MOT temperatures and photon scattering rates are in broad
agreement with those measured experimentally over a wide range of parameters. In a blue-detuned molasses,
the temperature is determined by the balance of polarization-gradient cooling, and heating due to momentum
diffusion, with no significant contribution from Doppler heating. In the molasses, we calculate a damping rate
similar to the measured one, and steady-state temperatures that have the same dependence on laser intensity and
applied magnetic field as measured experimentally, but are consistently a few times smaller than measured. We
attribute the higher temperatures in the experiments to fluctuations of the dipole force which are not captured
by our model. We show that the photon scattering rate is strongly influenced by the presence of dark states in
the system, but that the scattering rate does not go to zero even for stationary molecules because of the transient
nature of the dark states.
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I. INTRODUCTION

Ultracold molecules can be used to test fundamental
symmetries, investigate the behavior of strongly interacting
quantum systems, process quantum information, and study
collisions and chemistry at low temperature. Direct laser
cooling is one way to produce molecules at microkelvin
temperatures. Laser cooling has been used to cool several
diatomic molecules [1–4] and even a polyatomic molecule
[5], and magneto-optical traps (MOTs) of SrF [6–9], CaF
[10–12], and YO [13] have been demonstrated. Some of
the properties of these laser-cooled and magneto-optically
trapped molecules are similar to their atomic counterparts,
while other properties are strikingly different and not fully
understood. For example, the spring constants and damping
coefficients are both roughly 100 times smaller in molecular
MOTs compared to typical alkali-metal atomic MOTs, and the
temperature of the molecular MOTs is up to 100 times higher
than the Doppler limit, whereas atomic MOTs normally have
temperatures close to the Doppler limit.

The main differences between the properties of laser-
cooled molecules and most laser-cooled atoms stems from
the different way in which a closed optical cycling transition
is achieved. For atoms, it is usual to drive a transition from
a ground state of angular momentum F to an excited state
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of angular momentum F ′ = F + 1, referred to as a type-I
transition. In this case, there are no dark states, so the atom
can scatter the laser light indefinitely. The transition used for
laser cooling of molecules is between the lowest rotational
level of an electronically excited state and the first rotationally
excited level of the ground electronic state. This choice avoids
decays to multiple rotational states [14], but introduces type-II
transitions that have F ′ � F . In this case, there are dark states
among the ground-state sublevels. These dark states have a
great effect on the scattering rate and associated position
and velocity-dependent forces, which in turn influence the
properties of a molasses or MOT.

In previous work [15], we studied these position- and
velocity-dependent forces in three-dimensional (3D) molasses
and MOTs operating on type-I and type-II transitions, for
idealized systems with a single hyperfine ground state and
a single hyperfine excited state. In this paper, we present
a general method for modeling laser cooling and magneto-
optical trapping of molecules, calculate the forces on a real
molecule, work out the effect of these forces on the properties
of a molasses and a MOT, and compare our findings to exper-
imental results. Some findings are also compared to previous
work that used a rate-model approach [16,17]. We begin by
presenting a general model which can be applied to any laser-
cooled atom or molecule. Then, we focus our attention on CaF
molecules cooled using the A 2�1/2 − X 2�+ P(1) transition
since MOTs and molasses of these molecules have recently
been studied in depth [11,12,18]. We examine the predictions
of the model and compare them to the results of experiments,
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first for a molasses and then for the computationally more
complex case of the MOT.

II. METHOD

Generalized optical Bloch equations

We start with a set of optical Bloch equations (OBEs)
which describe the time evolution of the internal state of the
molecule in the presence of a set of near-resonant laser fields
with angular frequencies ωk , and a static magnetic field. To
derive the OBEs, we use an identical method to that described
in our earlier work [15], generalized to the case of multiple
lower and upper hyperfine components. We do not rederive

these equations here, but we do present them in a general
form useful to any laser-cooling experiment where multiple
transitions participate.

The basis states of the system are labeled |e/g, Fa,Ma〉s,
where e denotes an electronically excited state and g a
ground electronic state, Fa is the angular momentum, Ma

is the z projection of angular momentum, and a is an in-
dex labeling the state. Where there is no ambiguity, we use
the shorthand |e/g, Fa,Ma〉s ≡ |e/g, a〉s. The state |e/g, a〉s
has energy h̄ωe/g,a and it is convenient to define the time-
dependent Heisenberg picture operators |e/g, a〉〈e/g, b| =
e−iωe/g,a t |e/g, a〉se

iωe/g,bt
s〈e/g, b|. We find that the expectation

values 〈|e/g, a〉〈e/g, b|〉 evolve according to the following
generalized optical Bloch equations:

d〈|g, a〉〈e, b|〉
dτ

=
∑
k,q,c

iGkfk,q

2
√

2
ei(ωe,b−ωg,c−ωk )τ

s〈g, c|d̄q |e, b〉∗s 〈|g, a〉〈g, c|〉

−
∑
k,q,c′

iGkfk,q

2
√

2
ei(ωe,c′−ωg,a−ωk )τ

s〈g, a|d̄q |e, c′〉∗s 〈|e, c′〉〈e, b|〉

+
∑
q,n

i(−1)qβq s〈e, Fb,Mb|μ̄−q |e, Fb, n〉s 〈|g, Fa,Ma〉〈e, Fb, n|〉

−
∑
q,m

i(−1)qβq s〈g, Fa,m|μ̄−q |g, Fa,Ma〉s 〈|g, Fa,m〉〈e, Fb,Mb|〉 − 1

2
〈|g, a〉〈e, b|〉, (1)

d〈|e, a〉〈e, b|〉
dτ

=
∑
k,q,c

iGk

2
√

2

(
fk,qe

i(ωe,b−ωg,c−ωk )τ
s〈g, c|d̄q |e, b〉∗s 〈|e, a〉〈g, c|〉

− (fk,q )∗e−i(ωe,a−ωg,c−ωk )τ
s〈g, c|d̄q |e, a〉s 〈|g, c〉〈e, b|〉)

+
∑
q,n

i(−1)qβq s〈e, Fb,Mb|μ̄−q |e, Fb, n〉s 〈|e, Fa,Ma〉〈e, Fb, n|〉

−
∑
q,m

i(−1)qβq s〈e, Fa,m|μ̄−q |e, Fa,Ma〉s 〈|e, Fa,m〉〈e, Fb,Mb|〉 − 〈|e, a〉〈e, b|〉, (2)

d〈|g, a〉〈g, b|〉
dτ

=
∑
k,q,c′

−iGk

2
√

2

(
fk,qe

i(ωe,c′−ωg,a−ωk )τ
s〈g, a|d̄q |e, c′〉∗s 〈|e, c′〉〈g, b|〉

− (fk,q )∗e−i(ωe,c′−ωg,b−ωk )τ
s〈g, b|d̄q |e, c′〉s 〈|g, a〉〈e, c′|〉)

+
∑
q,n

i(−1)qβq s〈g, Fb,Mb|μ−q |g, Fb, n〉s 〈|g, Fa,Ma〉〈g, Fb, n|〉

−
∑
q,m

i(−1)qβq s〈g, Fa,m|μ−q |g, Fa,Ma〉s 〈|g, Fa,m〉〈g, Fb,Mb|〉

+
∑

q,c′,c′′
s〈g, a|d̄q |e, c′〉∗s s〈g, b|d̄q |e, c′′〉s ei(ωe,c′−ωe,c′′ +ωg,b−ωg,a )τ 〈|e, c′〉〈e, c′′|〉. (3)

In these equations, the first two terms represent interactions
with the lasers, the next two terms capture the effect of an
applied magnetic field, and the remaining terms are caused
by spontaneous emission. The summations are over the laser
frequencies k, the polarizations q = −1, 0, 1, all ground states
|g, c〉, all excited state |e, c′〉 or |e, c′′〉, and all sublevels
−Fa � m � Fa and −Fb � n � Fb. Spontaneous emission

has been introduced via the radiation reaction approximation
[19], in which the total electric field interacting with the
molecular dipole d̂ is written as the sum of the applied electric
fields from the lasers and a reaction field ÊRR = 1

6πε0c3
d3

dt3 d̂ ≈
ik3

6πε0
d̂, where in the last step we have assumed that the laser

frequencies are so close that ωk can be replaced by a single
ω. We have made the rotating wave approximation and have
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assumed that the magnetic field is small enough that all
Zeeman shifts are linear. For the specific case of CaF which
we consider later, this is a good approximation for fields below
10 G, which is the relevant range for both the molasses and the
MOT. To put the equations into natural units, we have used
a dimensionless time τ = �t and dimensionless angular fre-
quencies ωi = ωi/�, where � is the natural decay rate of the
excited state. The classical electric field with frequency com-
ponent ωk is written as Ek (x, t ) = Ek

∑
q fk,q (x)ε∗

q cos(ωkt )
and has intensity Ik = 1

2cε0E2
k . Here, x(t ) is the position of

the molecule at time t and the εq are the usual spherical basis
vectors. The dimensionless parameter Gk is defined by Gk =√

Ik/Isat, where Isat = πhc�/(3λ3) is the usual expression
for the saturation intensity. The applied magnetic field is
written as B = h̄�

μB

∑
q βqε

∗
q , which defines the dimensionless

quantity β. The dimensionless matrix elements of the electric
dipole moment operator are

s〈g, a|d̄q |e, b〉s = (−1)Fa−Ma
√

2Fb + 1 s〈g, Fa‖d‖e, Fb〉s√∑
c | s〈e, Fb‖d‖g, Fc〉s|2

×
(

Fa 1 Fb

−Ma q Mb

)
,

where the sum over c includes all ground states. The dimen-
sionless matrix elements of the magnetic moment operator are

s〈e/g, Fa,m|μ̄q |e/g, Fa, n〉s

= −gFa
(−1)Fa−m

√
Fa (Fa + 1)(2Fa + 1)

(
Fa 1 Fa

−m q n

)
,

where gFa
is the magnetic g factor of the state |e/g, a〉.

We use these equations to calculate how the internal state
of a moving molecule evolves over time. The equations may
contain far-off-resonant couplings, particularly if there are
large energy splittings among the ground or excited states.
These terms have almost no effect on the results, but can
greatly slow down the simulations, so we remove terms
oscillating at frequencies greater than a certain threshold,
typically 10�. In general, for a real multilevel molecular
system in which each transition can be excited by several
laser frequencies, the molecular operators do not come to a
steady state, but continue to vary as a function of time even
if the molecule is stationary. If the Hamiltonian is periodic in
time, then once any transients relating to the initial conditions
die away, the expectation values of the molecular operators
also become periodic in time, with the same periodicity as
the Hamiltonian [20]. In this work, we use rounded values for
all frequencies and speeds which sets the periodicity of the
Hamiltonian, and hence ensures the molecular operators will
eventually reach a periodic quasisteady state.

Starting with the population evenly distributed over all
ground states, we solve the initial-value problem for the
ordinary differential equations (1)–(3) using an explicit
Runge-Kutta numerical method, implemented using the
MATHEMATICA software package, propagating the molecular
operators for a large number of time steps (τ ≈ 1000). We
check how closely the system has reached the quasisteady
state after this initial propagation period by comparing the val-
ues of the internal state variables and the velocity-dependent

force (defined below) averaged over the next two time peri-
ods of the Hamiltonian. A large difference in the calculated
values indicates that a longer time period should be used. An
alternative method of finding the periodic steady state is to
calculate the eigenvectors of the propagation matrix [20]. This
may be faster, though so far in our investigations both solution
methods take a similar amount of time.

The quasisteady-state expectation values of the molecular
operators are now used to calculate several relevant properties.
One is the expectation value of the force operator, f̂ =
d P̂/dt = −∇Ĥ , which may be written as

F = 〈 f̂ 〉 =
∑

k,q,c,c′

−h�Gk

2
√

2λ
e−i(ωk+ωg,c−ωe,c′ )τ

× s〈e, c′|d̄q |g, c〉s 〈|e, c′〉〈g, c|〉∂fk,q (x)

∂x
+ c.c.

(4)

We calculate the force, averaged over one period of the Hamil-
tonian’s oscillation, as the molecule is dragged at constant
velocity through the light field. Repeating this for various
velocities gives the velocity-dependent force curve, and the
gradient of this curve around the equilibrium velocity gives
the damping coefficient. We note that this method of deter-
mining the velocity-dependent force has been used in several
studies on laser cooling of atoms, e.g., [19,21], and is known
to give good agreement with the force obtained from Monte
Carlo simulations when the speed is high enough [19]. That
comparison suggests that for the molecular system considered
in this paper, the method will be accurate for all speeds above
0.1 m/s.

Another important quantity is the momentum diffusion
tensor, whose components are

Dij = 1

2

d

dt

(〈P̂i P̂j 〉 − 〈P̂i〉〈P̂j 〉
)

= Re
∫ t

−∞
[〈f̂i (τ )f̂j (t )〉 − 〈f̂i (τ )〉〈f̂j (t )〉]dτ. (5)

Here, P̂i and f̂i are the Cartesian components of the mo-
mentum and force operator, respectively. The momentum
diffusion tensor is diagonal if we choose the quantization
axis as one of the coordinate axes, and if the laser beams
also propagate along a coordinate axis [19]. If, furthermore,
the laser configuration is identical along all three coordi-
nate axes, then the three diagonal coefficients are all equal,
Dxx = Dyy = Dzz = D. The diffusion constant includes the
effects of (i) the random momentum kicks due to spontaneous
emission, (ii) the random momentum kicks due to fluctuations
in the difference between the number of photons absorbed
from each of the laser beams, and (iii) the fluctuations in
the dipole force that arise as the molecule hops between its
quantum states in the presence of the intensity and polar-
ization gradients of the light [22,23]. Evaluating Eq. (5) for
a molecule in motion through a complicated light field is
a substantial challenge since the term 〈f̂i (τ )f̂j (t )〉 involves
the expectation value of products of molecular operators at
different times of the form 〈(|g〉〈e|(τ ))(|e〉〈g|(t ))〉, which are
distinct from the expectation values of the operators yielded
by solving the OBEs. Mølmer [24] provides a method for
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calculating D for a stationary atom with a single lower and
upper hyperfine state interacting with a single laser beam.
However, this method is not straightforward to apply to our
case since, in the presence of several laser beams of different
frequencies, there is no longer a stationary solution to the
OBEs. A later paper [25] provides a method for calculating
the first-order velocity dependence of the diffusion tensor for
a simpler system, which could potentially be adapted to our
case. Instead, we choose to approximate the diffusion tensor
by a simple expression that ignores stimulated emission and
only considers the random nature of spontaneous emission
and the corresponding absorption events. In this approxima-
tion, the diffusion constant Ds is related to the total excited-
state population Ne = ∑

c′ 〈|e, c′〉〈e, c′|〉 according to

Ds = 1

3
h̄2k2�Ne. (6)

This approximation neglects the extra diffusion caused by the
light standing-wave pattern, so it can only provide a lower
limit to the diffusion constant. As with the force, we average
the diffusion constant over a period of the Hamiltonian in
subsequent calculations of the temperatures and damping
constants.

From the force and diffusion constant, we can predict
how the fraction of molecules in the phase-space element
dx dv dt , denoted by W (x, v, t )dx dv dt , evolves over time.
This evolution is governed by a Fokker-Planck-Kramers equa-
tion [26,27], which for a molecule of mass m, moving in 3D, is

∂W (x, v, t )

∂t
+

∑
i

vi

∂W (x, v, t )

∂xi

=
∑

i

∂

∂vi

[−Fi (x, v)

m
W (x, v, t )+ Dii (x, v)

m2

∂W (x, v, t )

∂vi

]
.

(7)

Using the methods discussed above, we find F (x, v) and
Ds (x, v). To calculate their effective values for a millimeter-
sized cloud of moving molecules, we average them over a
cube of size λ, and also average over all directions of motion.
These average values are labeled F̃i (x, v) and D̃s (x, v), and
they are the ones we use in Eq. (7). Due to the symmetric
arrangement of the laser beams, the force transverse to the
direction of motion averages to zero, leaving only a force
in the direction of motion. Thus, the average force can be
written as F̃ (x, v)v̂, where v is the speed and v̂ is a unit
vector in the direction of v. In the special case where the
intensity and magnetic field are uniform over the size scale of
the molecular distribution, the position dependence vanishes
from Eq. (7), which we find reduces to the following equation
for the probability density W (v, t ):

∂

∂t
v2W (v, t ) = ∂

∂v

[−F̃ (v)

m
v2W (v, t )+ v2D̃s (v)

m2

∂W (v, t )

∂v

]
.

(8)

We are often interested in the steady-state solution of this
equation, which is

W (v) = W0 exp

[
m

∫ v

0

F̃ (u)

D̃s (u)
du

]
. (9)

The fraction of molecules with speeds between v and
v + dv is W (v) 4πv2dv, and W0 is chosen so that∫

W (v) 4πv2dv = 1. If the force is a linear drag force F̃ (v) =
−αv and the diffusion constant does not depend on speed,
then this integral leads to a Maxwell-Boltzmann speed dis-
tribution with temperature T = D̃s/kBα. More generally, for
any other W (v), we calculate v2, the variance in the speed, and
so get the equivalent temperature of a Maxwell-Boltzmann
speed distribution with that variance,

T = m

3kB

∫ u

0
v2W (v) 4πv2dv, (10)

where u is the upper speed to which the functions F̃ and D̃s

have been found, chosen to be sufficiently high so as not to
affect the distribution W .

We can now apply these general equations to the laser
cooling of calcium monofluoride. In order to do this, it is
helpful to summarize some salient experimental details so we
can assess what features of the problem need to be considered.

III. APPLICATION TO LASER COOLING AND
MAGNETO-OPTICAL TRAPPING OF CaF

Our aim is to develop a comprehensive understanding
of laser cooling and magneto-optical trapping of molecules.
We focus here on the experimental results obtained for
dc MOTs and optical molasses of CaF [10–12], though
we expect our methods, and many of our conclusions,
to be equally applicable to other molecules and to radio-
frequency MOTs [8]. Figure 1(a) shows the relevant en-
ergy levels and optical transitions used in the experiments.
We use the notation Iij to refer to the total intensity of
the lasers addressing the v = i → v′ = j transition. The
main cooling laser drives the transition A 2�1/2(v = 0, J =
1/2) ← X 2�+(v = 0, N = 1) which has a natural linewidth
of � = 2π × 8.3 MHz and a saturation intensity of Isat =
4.9 mW/cm2. Population that leaks into X 2�+(v = 1, N =
1) is returned to the cooling cycle using a second laser which
we refer to as the repump laser. Additional lasers (not shown
in the figure) are used to recover population that leaks to
higher-lying vibrational states, but they play such a minor
role that we can safely neglect them in the simulations. The
cooling laser has four main frequency components to address
the four hyperfine ground states shown in Fig. 1(b). The fre-
quency components are derived from a single laser beam; one
portion is passed through an electro-optic modulator (EOM)
at 74.5 MHz, making three sidebands which address the F =
1−, F = 0, and F = 2 states, while another portion is passed
through an acousto-optic modulator at 48 MHz to address
the F = 1+ state [11]. These components are overlapped
and directed onto the molecules in three orthogonal pairs of
counterpropagating circularly polarized beams in the standard
MOT configuration. In the simulations, their intensities are
all equal and their frequencies are ω0 + �00 + ωk , where
�00 is a common detuning of the v = 0 → v′ = 0 laser,
ω0 is the frequency of the X2�+(v = 0, N = 1, F = 2) →
A2�1/2(v = 0, J = 1/2, F = 1) transition, and ωk = 2π ×
{−2.90, 24.15, 72.29, 146.00} MHz. With this definition of
�00, the simulations predict that the maximum scattering
rate at high intensity occurs when �00 = 0, and that there
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FIG. 1. (a) Main levels used in the laser cooling of CaF. (b) The hyperfine levels in the A 2�1/2(v = 0) and X 2�+(v = 0) states and the
frequencies of the main cooling laser used to address them. Also indicated is the polarization of each frequency component, as used in the
experiments described in [10,11] and in our simulations. Here, σ± means that the restoring beams of the MOT drive �M = ±1 transitions in
a coordinate system whose z axis is along the magnetic field. The numbers to the left of the lines are the hyperfine intervals in MHz. (c) The η

parameter as a function of the intensity and detuning of the cooling laser. η is the the total population in X 2�+(v = 0) and A 2�1/2(v = 0) in
the case where decays to X 2�+(v = 1) are forbidden, divided by the total population when decays to this level are allowed.

is Doppler cooling when �00 < 0. In the experiment, the
EOM produces additional, unwanted sidebands, but these are
detuned from any transition by more than 70 MHz, so we
neglect them. The repump laser has the same set of four
frequency components, but here the common detuning is fixed
at zero.

The parameters used for modeling the MOT and the mo-
lasses are summarized in Table I. When modeling the MOT,
we use laser beams that have Gaussian intensity distribu-
tions with 1/e2 radii of 8.1 mm, as in the experiment. The
magnetic field is B = A(x + y − 2z), with A = 15.3 G/cm.
When modeling the molasses, we assume a homogeneous
magnetic field randomly oriented with respect to the coordi-
nate axes, and typically use beams with a uniform intensity
equal to the true peak intensity. This is valid because the cloud
of molecules in the molasses is much smaller than the beam
size. When we calculate the capture velocity of the molasses,
we consider the full beam profile.

The simulation process is as follows. We first round
all angular frequencies and detunings to ωmin and round
velocities to ωminλ/(2π ), choosing ωmin = 10−2� when
examining the behavior at high velocity and ωmin =
10−3� if we want more resolution at low velocities.
After this procedure, the dimensionless laser frequen-
cies ωk/� are ω̄k = {−0.36, 2.91, 8.71, 17.59} or ω̄k =
{−0.354, 2.909, 8.708, 17.588}. This makes the equations
periodic, with period T = 2π/ωmin. Then, for a particular
choice of laser intensity, detuning, and applied magnetic field,

TABLE I. Typical experimental parameters used in the simula-
tions. The columns list the intensity of cooling laser, intensity of
repump laser, detuning of cooling laser, 1/e2 radius of intensity
distribution, and radial magnetic field gradient. The intensity is the
peak intensity due to all four frequency components and all six
beams.

I00 (mW/cm2) I10 (mW/cm2) �00 (�) w (mm) A (G/cm)

MOT 2.9–466 591 −0.75 8.1 15.3
Molasses 2.9–466 591 2.50 8.1 0

we solve the OBEs for a molecule moving at constant velocity
v until the quasisteady state is reached. From these results, we
calculate the force and excited-state population averaged over
the period T . We do this for random selections of different
initial positions, directions of travel, and laser phases, and then
average together the results to obtain the mean force and pop-
ulation at this speed v = |v|. By repeating this procedure for
a range of v, we obtain the velocity dependence of the force
and the excited-state population. We use the bootstrap method
[28] to estimate the uncertainty on the mean curve derived
this way. Using rounded equations allows the subwavelength
position-dependent fluctuations in the force and excited-state
population to be averaged over completely.

The system described above consists of 28 molecular
states, and thus 405 unique coupled equations. This sys-
tem is small enough that a quasisteady-state solution to the
OBEs, and the associated force and diffusion constant, can
be computed in around 140 s on a single processor. How-
ever, the process of averaging over different trajectories and
laser phases described above typically requires hundreds of
individual steady-state solutions of the OBEs, which makes it
desirable to speed up the calculation. One way to do that is
to neglect decay to X 2�+(v = 1). This approximation has
to be treated with caution because unlike the other states
neglected, there is often significant population in this state.
Since the repump light is on resonance, we do not expect the
A 2�1/2(v = 0) ← X 2�+(v = 1) transition to contribute di-
rectly to the position-dependent or velocity-dependent forces,
but it does contribute indirectly by altering the populations of
the various states. In particular, neglecting X 2�+(v = 1) will
lead to an overestimate of the populations in X 2�+(v = 0)
and A 2�1/2(v = 0), which in turn leads to an overestimate
of the force and the diffusion constant. We have investigated
this by solving the rate equations for the system [17] with
and without the X 2�+(v = 1) levels. For this investigation,
we fix I10 and vary I00 and �00 over wide ranges. In all
cases, we find that including the X 2�+(v = 1) levels reduces
the population in A 2�1/2(v = 0) and X 2�+(v = 0) by a
common factor η(I00,�00). In light of these observations, we
suggest that fairly accurate results can be found by solving the
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FIG. 2. Acceleration and excited-state population as a function of speed. For each curve, the shaded band indicates the 67% confidence
interval determined from the distribution of multiple simulations. (a) Acceleration curves for I00 = 456 mW/cm2. Blue curve (positive
acceleration at higher speeds): η = 1.29, �00 = 2.61�; red curve (negative acceleration at higher speeds): η = 1.32, �00 = −2.39�. (b)
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orange: 112 mW/cm2, η = 1.32; yellow: 46 mW/cm2, η = 1.16. (c) Steady-state excited-state fraction when I00 = 456 mW/cm2, η = 1.45,
and �00 = 2.61�. (d) Excited-state fraction when I00 = 228 mW/cm2, η = 1.48, �00 = −0.64�. In (c),(d), the solid curve is calculated from
the optical Bloch equations, while the dashed line is the prediction of a rate-equation model [16].

OBEs without including the X 2�+(v = 1) levels, and then
dividing both the force and the excited-state population by the
correction factor η. The value of η is plotted as a function
of I00 and �00 in Fig. 1(c). To validate this approach, we
solve the OBEs for a few specific parameters both with and
without the v = 1 levels. We find that when �00 = 2.5� (as
used in the molasses), the η-scaled force and excited-state
population curves agree very well with the full simulations at
both high and low values of I00. The agreement is also good
when �00 = −0.75� (as used in the MOT) and the intensity
is low, but less good at higher intensity. For the highest I00

used, the η-scaled excited-state population is accurate, but the
η-scaled force is 60% lower than given by the full simulations.
This underestimate should be kept in mind when considering
simulations of the MOT at the highest intensities.

IV. FORCES AND EXCITED-STATE POPULATIONS IN
THE CaF MOT AND MOLASSES

The essential properties of a CaF MOT and molasses can
be understood from the velocity dependence of the accel-
eration and the excited-state probability, particularly at low
velocity. Figure 2(a) shows the acceleration in the direction
of the velocity, av(v), as a function of the speed of a CaF
molecule, for both red-detuned and blue-detuned light. The
magnetic field is set to zero and the other parameters are
given in the caption. For high speeds, the acceleration is

negative for red-detuned light and positive for blue-detuned
light, corresponding to normal Doppler cooling or heating.
At lower speeds, polarization-gradient forces dominate over
Doppler forces and the acceleration changes sign. We note
that despite the complexity of the CaF system, the force curve
is very similar to those found for type-II systems with just
one ground state and one excited state [15], and we conclude
that the mechanisms at work are the same as those for simpler
systems [15,29,30]. For a stationary molecule excited on a
type-II transition between integer-valued1 hyperfine levels,
there is one dark state when F = F ′ and two dark states when
F = F ′ + 1. A moving molecule will tend to be pumped into
a dark state near the intensity antinodes, where the pumping
rate is highest, and will tend to make a nonadiabatic transition
back to a bright state close to the nodes, where the splitting be-
tween bright and dark states, arising from the ac Stark shift, is
smallest. For blue-detuned light, the ac Stark shift is positive,
so the bright states have higher energy at the antinodes than
at the nodes. Thus, the molecule will continually lose energy
to the light field, leading to a cooling force. For red-detuned
light, the sign of the ac Stark shift is reversed, so the molecule
continually receives energy from the light field. In Fig. 2(a),
the speed where the force crosses zero is around 5 m/s. This

1If F is half integer, the transition from F to F ′ = F is only dark
in circularly polarized light [31].
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is the rms speed of a 60 mK Maxwell-Boltzmann distribution,
giving an approximate temperature scale where the Doppler
and polarization-gradient forces are balanced.

Figure 2(b) shows how the acceleration curve changes as
the intensity is reduced. Here, the detuning is negative and
close to that typically used for the MOT. Both the range and
magnitude of the sub-Doppler force is reduced as the intensity
is lowered. This explains the experimental observation that
lowering the intensity lowers the temperature.

Figures 2(c) and 2(d) show the excited-state fraction as a
function of speed for a positive detuning close to the one used
in the molasses and for a negative detuning close to the one
used for the MOT, respectively. Here, we compare the popula-
tion found by solving the OBEs (solid lines) to the predictions
of a rate model (dashed lines), described fully in Ref. [16]. At
all velocities, the OBEs predict a lower excited-state fraction,
and hence a lower scattering rate, than predicted by the rate
model, indicating that transient dark states play an important
role in reducing the scattering rate. Close to zero velocity,
the excited-state fraction dips even further, as the molecule
optically pumps into the dark states. The excited-state fraction
does not quite drop to zero at zero velocity, as would be
expected for an isolated type-II transition driven by a single
laser frequency. This behavior can be understood with the help
of the level structure shown in Fig. 1(b). Population cannot
build up in F = 0 since regardless of the laser polarization
this can always be excited to F ′ = 1. The presence of the
nearly degenerate pair of excited hyperfine states F ′ = 0 and
F ′ = 1 means that any molecules in F = 1− or F = 1+ can
always interact with the elliptical light field formed by the
superposition of three pairs of σ+σ− beams whose phases
are not controlled. Population might be expected to build up
in F = 2 since this can only be excited to F ′ = 1 and so it
appears to be an isolated type-II transition. However, when
multiple lasers with different frequencies and polarizations
drive the same type-II transition, the states that are dark to one
laser beam are, in general, bright to the other. Except in certain
special cases, for instance if one of the two fields driving the
F → F − 1 transition is circularly polarized and the other
linear, there is no guaranteed time-independent orientation
of the dipole which is simultaneously orthogonal to all of
the applied frequency components of light. The molecule
therefore never decouples completely from the light field,
even at zero velocity.

It is also worth noting that as well as dark states formed
between Zeeman sublevels of a particular hyperfine state,
there can also be Raman dark states which are superpositions
of two or more Zeeman sublevels from different hyperfine
states. The laser sidebands are phase coherent, so we can
expect these Raman dark states to be stable. To assess their
importance, we artificially destabilize these dark states by
adding a term to the right-hand side of Eq. (3) of the form
−γ (1 − δ(ωa − ωb ))〈|g, a〉〈g, b|〉, where δ(x) is the Kro-
necker delta function and we set γ = 10, so that coherences
between hyperfine levels are rapidly damped away. We find
that this increases the excited-state fraction by about 20%,
reduces the range of the polarization-gradient force by about
50%, and reduces the magnitude of this force by 33%, with-
out changing its slope at low velocities. This shows that
optical pumping into Raman dark states, and nonadiabatic

transitions out of these states, is an important part of the
polarization-gradient cooling mechanism in this multilevel
system.

V. SIMULATIONS OF THE MOLASSES

A. Damping constant and capture velocity

We now compare the results of our simulations to experi-
mental data. We start by considering cooling in the molasses
since this is easier to simulate than the MOT. We simulate
the case where �00 = 2.61� and I00 = 456 mW/cm2, and
assume that the molasses is loaded from a thermal distribution
with a temperature of 1.4 mK, which is common in the experi-
ments. Figures 3(a) and 3(b) show the excited-state population
(Ne) and the acceleration (av) as functions of the speed.
For a linear damping, av = −αv/m, we would expect the
temperature of an initially hot sample to decay exponentially
with a 1/e time constant of td = m/2α. Taking the gradient
of av near zero velocity, we find α = 10.2(0.5) × 103 s−1,
implying a characteristic damping time of td = 49(2) μs.
However, the av curve is only linear for speeds below about
0.5 m/s, while the initial velocity distribution extends to
significantly higher speeds. To get a better estimate of the
damping time, we solve Eq. (7), taking the diffusion constant
given by Eq. (6), and the av and Ne curves shown in Figs. 3(a)
and 3(b). The resulting velocity distributions are shown for
four different times in Fig. 3(b). From distributions such as
these, we obtain the predicted temperature as a function of
time, which is shown by the blue line in Fig. 3(c). The figure
also shows recent experimental data obtained at an intensity of
I00 = 456 mW/cm2 and under conditions where the magnetic
field is carefully zeroed and the laser detuning is switched
rapidly from the MOT to the molasses phase. The predicted
damping time is 101(1) μs, fairly close to the measured time
of 160(30) μs. The predicted final temperature is 30 μK,
about five times lower than the measured value of 144 μK. We
attribute this discrepancy to the incomplete treatment of the
diffusion constant, which omits the fluctuations in the dipole
force. For a type-I transition in a one-dimensional lin ⊥ lin
configuration, the diffusion related to the fluctuations of the
dipole force is approximately �2/�2 times greater than Ds

[23]. There are intensity gradients in the 3D molasses, so
we can expect the same mechanism to be present. If the
type-II transition exhibits similar scaling, this would lead to a
sevenfold increase in the temperature, bringing it closer to the
experimentally observed result. A more thorough treatment
of the diffusion constant for this multilevel system in 3D is
desirable. We also note that at 30 μK, the thermal de Broglie
wavelength of 40 nm is approaching the wavelength of the
light, so the validity of the classical treatment of the molecular
position and momentum begins to break down. A full quantum
treatment of the position and momentum of the molecule
is called for to fully analyze these lowest-temperature
cases.

Next, we consider the capture velocity of the molasses.
We calculate av (v) for many different intensities and then use
the known laser-beam profile to generate the map av (v, r ),
where r is the displacement from the center of the molasses.
We then consider a CaF molecule traveling outwards from
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FIG. 3. Predicting the temperature of a CaF molasses. For all curves, parameters are I00 = 456 mW/cm2, η = 1.29, and �00 = 2.61�.
(a) Excited-state population as a function of speed. (b) Thick, negative blue curve: acceleration parallel to velocity vs speed. Other curves:
speed distribution W (v, t ) for t = {0, 0.1, 0.2, 1} ms. The initial distribution has a temperature of 1.4 mK and the distributions get narrower
with time. (c) Lower, blue curve: simulated temperature as a function of molasses cooling time. Green diamonds: experimental data. Upper
green line: fit of experimental data to T = Tfinal + (Tinit − Tfinal )e−t/τcool . (d) Displacement vs time for molecules of various initial speeds,
showing which are effectively cooled to rest. Curves are labeled by the initial speed. Inset: fraction of molecules captured in the molasses as a
function of starting temperature.

the center of the molasses and plot its displacement as a
function of time. Figure 3(d) shows a series of these curves for
several different starting velocities. Here, the parameters are
�00 = 2.61� and I00 = 456 mW/cm2. The maximum speed
at which the molasses is able to bring the molecule to rest is
vc = 3.1 m/s. To estimate the fraction of molecules that can
be cooled, we integrate a Maxwell-Boltzmann speed distri-
bution up to vc for a range of temperatures. The results are
plotted in the inset to Fig. 3(d). For initial temperatures below
5 mK, all the molecules are cooled by the molasses. At higher
temperatures, a fraction of them escape from the molasses
before they can be cooled.

B. Dependence of temperature on intensity, detuning, and
magnetic field

To investigate the effects of a background magnetic field,
we apply the same procedure as described above, with a
randomly oriented uniform field applied. We first solve the
OBEs to calculate av (v) and Ds (v) for various magnetic field
strengths. Figure 4(a) shows the linear slope of the accel-
eration close to zero velocity, α = −( dav

dv
)
v=0

, and Ne(0) =
3Ds (0)
h̄2k2�

as a function of the absolute value of the mag-
netic field. We see that the damping decreases linearly with
magnetic field strength, whereas the diffusion constant in-
creases linearly over the range considered. If we simply use
these linear gradients, along with kBT = Ds/α, we would
expect the temperature T in μK as a function of the magnetic

field B in mT to be T (B ) = 21 + 130B + 200B2 + 310B3,
where terms of the order of B4 have a negligible contribution
over the range of B considered here. To investigate the effects
of the full velocity dependence of av (v) and Ds (v), we find
the steady-state temperature using Eq. (8). The results are
shown in Fig. 4(b) and show a very different dependence to
the one expected from the linear approximation made above.
The temperature fits well to a purely quadratic dependence
on B, with a curvature of 1070(30) μK/(mT)2. The experi-
ment also found a quadratic dependence, but with the larger
coefficient of 5740(30) μK/(mT)2. The discrepancy between
predicted and measured curvatures can again be explained by
a systematic underestimation of the temperature because of
the missing part of the diffusion constant, again by a similar
factor of 5.6.

Figure 4(c) shows how the molasses temperature depends
on the laser intensity, I00. Here, the blue circles give the
predicted steady-state temperature, the orange crosses give the
temperature after 5 ms of molasses cooling, and the green dia-
monds are the experimental data points. At high intensity, we
see once again a fivefold underestimation of the temperature.
As the intensity is decreased, both in the simulation and in
the experiment, the temperature is reduced. This is because
the low-velocity part of av is independent of intensity, but
lowering the intensity reduces the excited-state fraction and
hence the diffusion constant. In both the experiment and the
simulation, the optimum intensity is around 100 mW/cm2. At
lower intensities than this, the temperature rises and we see a
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FIG. 4. (a) Excited-state population Ne at zero velocity, and the damping constant α as a function of magnetic field. (b) Molasses
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(d) Molasses temperature as a function of laser detuning, �00, with I00 = 467 mW/cm2. Values of η for points running left to right are
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difference between the predicted steady-state temperature and
its value after only 5 ms of cooling. This rise in temperature
at low intensity occurs because the velocity range of the
sub-Doppler force is so low that it can only cool the slowest
molecules, so the value of av averaged over the velocities
of the molecules is reduced. At very low intensities, I00 �
20 mW/cm2, we see that the temperature of the molasses after
5 ms is close to 1 mK, which is the temperature at which the
molasses was loaded, implying that the molasses no longer
cools the distribution at all. In fact, for these intensities, the
entire molecular distribution is heated to velocities greater
than 5 m/s and we could not find a steady-state temperature
(which is why there are no blue circles plotted for these low
intensities).

Figure 4(d) shows how the temperature depends on de-
tuning. The temperature decreases rapidly as the detuning is
increased from zero, reaches a minimum around �00 = 3�,
exactly as in the experiments, and then gradually increases
with further increases in detuning. As can be seen from
Fig. 1(b), some of the laser-frequency components become
resonant with some hyperfine levels as the detuning is scanned
over this range. Surprisingly, we do not see any structure in the
plot of temperature versus detuning that reflects the hyperfine
structure of the molecule. Indeed, at the detuning where the
temperature is minimized, the lowest-frequency component of
the laser is near-resonant with the upper F = 1 level, but this
does not appear to raise the temperature.

VI. SIMULATIONS OF THE MOT

A. Method for modeling the MOT

The MOT is more complicated to model than the molasses
because the position dependence of the magnetic field and
laser intensity modify the force and excited-state population.
This means that both av and Ds depend on the axial and radial
displacement from the MOT center, as well as the speed. Be-
fore discussing how we deal with the additional complication,
let us first focus on the behavior of a molecule at the very
center of the MOT. The top two panels in Fig. 5 plot av and Ne

at the center of a MOT with I00 = 234 mW/cm2 and �00 =
−0.64�. The lower panel shows the steady-state molecular
speed distribution found from these av (v) and Ne(v) using
Eq. (9). The change in sign of the damping force at a speed
of around 2.5 m/s, where Doppler cooling turns into Sisyphus
heating, leads to a peak in the speed distribution at this point.
The temperature of this distribution, calculated using Eqs. (9)
and (10), is 14.5 mK, far higher than the Doppler-limited
temperature of 570 μK for this detuning and intensity. The
distribution looks nothing like a Maxwell-Boltzmann distribu-
tion at this temperature, which is shown, for comparison, by
the orange dashed line. Nevertheless, and remarkably, we find
that when a collection of molecules with speeds drawn from
this distribution expands freely, their rms width σ increases as
a function of time according to σ 2(t ) = σ 2

0 + kBT t2/m, with
the same temperature T as found above.
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Next we consider what happens away from the center of the
MOT. Figure 6 shows contour plots of av (x, v) and Ne(x, v)
as a function of speed v and displacement x along the x

axis. In Fig. 6(a), cooling is indicated in blue-yellow and
heating in red-orange. In Fig. 6(b), darker regions indicate low
excited-state probability and lighter regions indicate higher
probability. Focusing on the heating at low velocity, we see
that as the distance from the center of the MOT increases,
the gradient of the force curve at zero velocity decreases, the
maximum value of the force also decreases, and the range
over which the polarization-gradient heating acts is reduced.
All are due to the increasing magnetic field which reduces the
effectiveness of the polarization-gradient force. Around 5 mm

from the center, the heating force has almost vanished and the
force curve is dominated by Doppler cooling. At even larger
distances, the decreasing laser intensity reduces the Doppler
cooling force. Figure 6(b) shows that as the displacement
from the MOT center increases towards ∼3 mm, the excited-
state population increases for all speeds, but increases most
strongly when the speed is low. Since the temperature in the
MOT is primarily determined by the zero crossing point of
av (v), these changes in Ne do not have much effect on the
temperature. They affect the total scattering rate of the MOT,
tending to make it brighter than the equivalent molasses.
Once the displacement grows larger than around 7.5 mm, the
decreasing laser intensity strongly reduces the excited-state
fraction. Experimentally, it is found that for the choice of
parameters used here, the radial rms width of the cloud is
about 2.0 mm. Therefore, for accurate predictions of the MOT
properties, we must account for the position dependence of av

and Ne.
Using our calculation of av (x, v) and Ne(x, v), it is pos-

sible to calculate the complete phase-space distribution by
numerically solving Eq. (7). Because this is difficult, we adopt
a simpler method where we assume that the density distribu-
tion is already known from experiment, and that momentum
and position are uncorrelated. In this case, the phase-space
distribution is W (x, v, t ) = U (x)P (v, t ). Integrating Eq. (7)
over the spatial coordinates, and using the fact that U (x) → 0
as {x, y, z} → ±∞, we obtain

∂

∂t
v2P (v, t ) = ∂

∂v

[−F (v)

m
v2P (v, t ) + v2DS (v)

m2

∂P (v, t )

∂v

]
,

(11)

where

F (v) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
U (x)F̃ (x, v)dxdydz, (12)

FIG. 6. (a) av and (b) Ne as a function of displacement along the x axis and speed v. Parameters are I00 = 468 mW/cm2, � = −0.64�. η

ranges from 1.65 in the center to 1.09 at x = 10 mm.

063415-10



LASER COOLING AND MAGNETO-OPTICAL TRAPPING OF … PHYSICAL REVIEW A 98, 063415 (2018)

(a) (b)

(c) (d)
Laser intensity, I00 (mW�cm2)

Te
m

pe
ra

tu
re

(m
K)

Laser intensity, I00 (mW�cm2)

Sc
at

te
rin

g
Ra

te
(1

06
s�

1
)

Laser intensity, I00 (mW/cm2)
O

sc
ill

at
io

n
Fr

eq
ue

nc
y

(H
z)

Laser intensity, I00 (mW�cm2)

D
am

pi
ng

co
ns

ta
nt

(s
�

1
)

1 5 10 50 100 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 50 100 500
0

20

40

60

80

100

1 5 10 50 100 500
0

500

1000

1500

0.5 1 5 10 50 100 500

0.5

1

5

10

FIG. 7. A comparison between experimentally measured properties of the CaF MOT [11] (green diamonds) and the numerical simulations
(other points) as a function of I00. The detuning is � = −0.64� in the simulations and � = −0.75� for the experimental data. (a) Temperature.
Blue circles show the predicted steady-state temperature. Orange crosses show the temperature following the intensity ramp performed in the
experiment (see main text). The black dashed line is the predicted Doppler cooling limit (see Eq. (14) of Ref. [11]). (b) Photon scattering rate.
(c) Damping rate for radial oscillations. Red triangles: damping rate inferred from the gradient of the acceleration curve at zero velocity. Blue
circles: damping rate inferred from the time constant for the temperature to approach equilibrium. (d) Frequency of radial oscillations.

Ds (v) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
U (x)D̃s (x, v)dxdydz, (13)

are the position-weighted averages of the force and diffusion
constant. Note that similar to Eq. (6), Ds is related to the
position-weighted excited-state population, Ne, as Ds (v) =
h̄2k2�Ne(v)/3.

The force is the sum of a trapping term, which is anti-
symmetric under x → −x, and a damping term, which is
symmetric. Assuming U (x) is symmetric, we see that the
trapping term makes no contribution to the integral and we
only need to use the damping term. To perform the integrals,
we find F̃ (x, v) and D̃s (x, v) by repeatedly solving the OBEs
using the methods discussed previously, where the intensity
and magnetic field take their values at position x in the MOT.
We take U (x) to be the density distribution measured in the
experiment,

U (x) = 1

σ 2
x σz(2π )3/2

e
− x2+y2

2σ2
x e

− z2

2σ2
z , (14)

where σx and σz are the measured rms widths in the radial and
axial directions. We then calculate the weighting integrals to
arrive at F and Ds . As we shall see, this approach reproduces
many of the the observed properties of the MOT.

B. MOT properties

Measurements of the MOT temperature as a function of
I00 [11] are plotted as green diamonds in Fig. 7(a), while
the calculated steady-state temperatures found by solving
Eq. (11) are shown as blue circles in this figure. We see fairly
good agreement for the points between 10 and 500 mW/cm2.
Below 10 mW/cm2, the predicted steady-state temperature
decreases with decreasing intensity, whereas the measured
points trend upwards. Here, at least part of the discrepancy
might be caused by the long thermalization time of the MOT
at these low intensities. In the experiments, the intensity is first
held at 468 mW/cm2 to load the MOT, then ramped down to
its new value over 20 ms, then held at this value for 5 ms,
before measuring the temperature. We replicate this procedure
numerically by first calculating the velocity distribution for a
MOT with I00 = 468 mW/cm2, then calculating how this dis-
tribution is modified when I00 is varied as in the experiment.
The results of these simulations are shown as orange crosses
in the figure. At high intensities, this procedure gives the same
temperature as in the steady state (the orange crosses lie on
top of the blue circles). At lower intensities, we see that the
20 ms cooling ramp and/or 5 ms hold time are not slow enough
for the temperature to reach the steady state. As a result, the
temperature rises at low I00. The agreement between simula-
tion and experiment is reasonably good over the whole range
of intensities (spanning three orders of magnitude). Notably,
our model gives far better predictions of the temperature than
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the Doppler-limited temperature predicted by a rate-equation
model, which is plotted as the black dashed line in the figure.

Once Eq. (11) has been solved in the steady state to give
P (v) = limt→∞ P (v, t ) at each intensity, it can be used to
calculate the scattering rate, which is

Rsc = �

∫ ∞

0
Ne(v)P (v) 4πv2dv. (15)

This scattering rate is plotted in Fig. 7(b) and is seen to agree
excellently with the measured scattering rate. By comparison,
the rate-equation model, which cannot capture optical pump-
ing into transient dark states, overestimates the scattering rate
by a factor of 2 [11].

Experimentally, it is found that following a radial push, the
cloud executes damped harmonic motion, with the position r

of the center of the cloud, following the equation

r ′′ = −ω2r − br ′.

Here, ω is the angular oscillation frequency and b is the
damping rate. The green diamonds in Fig. 7(c) show the
measured damping rate as a function of intensity. We can
determine the damping rate from the simulations in two
different ways. First, we can calculate the slope of F (v)/m

around the zero crossing velocity v0, α′ = −( dav

dv
)
v=v0

, which
should be equal to b. The results obtained this way are plotted
as red triangles in Fig. 7(c). Alternatively, we can perturb the
steady-state distribution P (v) by changing it to P (v − vpush ),
where vpush = 2.3 m/s is the speed given to the molecules in
the measurements of the damped oscillations. We then find τd ,
the 1/e time constant with which the temperature is damped,
which should be related to the velocity damping constant
by b = 1/(2τd ). These points are plotted as blue circles in
this figure. Both methods yield similar results and both have
the same qualitative shape as the experimentally measured
distribution. At low intensities, the agreement between the
simulations and the experiment is good. However, the sim-
ulations overestimate the damping constant by a factor of 3
or 5 at higher intensities. While not perfect, the agreement
here is again better than the rate-equation model, which
overestimates the damping constant by a factor of 2 to 3 at
low intensities and 5 to 10 at higher intensities.

Figure 7(d) shows the trap oscillation frequency ω/(2π ) as
a function of I00. The trapping force is much weaker than the
damping forces or local dipole forces, so special care must be
taken to resolve its contribution. The procedure is as follows.
We apply a homogeneous magnetic field along (x̂ + ŷ)/

√
2

for a particular I00. We fix the speed at v = 3 m/s and we
solve the OBEs repeatedly for a random choice of directions
and for a range of positive and negative magnetic fields. We
calculate the component of the force along (x̂ + ŷ)/

√
2 and

average together the results from many simulations. For each
choice of direction, we ensure that the exact opposite direc-
tion is included in the set of simulations. This ensures that
the dominant velocity-dependent part of the force (ideally)
averages to zero. Because, in the MOT, the magnetic field is
proportional to the displacement, the slope of the acceleration
at zero magnetic field is proportional to ω2. The uncertainty in
determining ω is large because of the noise from the residual
damping force. Nevertheless, the oscillation frequencies agree
reasonably well with the experimentally measured results.

In the CaF MOT, the confining force is expected to arise
primarily from a dual-frequency effect between the two laser
components closest in frequency to the F = 2 hyperfine com-
ponent [17]. This dual-frequency effect should only occur if
the two frequency components have opposite polarizations.
We have simulated the MOT trapping force for the case
where all frequency components have identical polarization
and find that the trapping force vanishes. This result verifies
that the dual-frequency mechanism is indeed the mechanism
responsible for trapping the molecules.

The capture velocity of the MOT can be found by calcu-
lating the maximum velocity a molecule can have as it enters
the MOT region (taken to be at a radius of 10 mm) if it is to
be captured. Using the force map F̃ (x, v) for the radial plane,
at an intensity of I00 = 468 mW/cm2, we calculate a capture
velocity of 14 m/s. This is close to the measured value of
11.2+1.2

−2.0 m/s [11].

VII. SUMMARY AND CONCLUSIONS

We have presented a general method for modeling laser
cooling and magneto-optical trapping of atoms and molecules,
and used the method to understand recent results from ex-
periments with CaF molecules. Our method uses generalized
optical Bloch equations to calculate the three-dimensional
steady-state force and momentum diffusion constant, taking
into account all relevant levels of the molecule and all fre-
quency components of the light. Then, we use the Fokker-
Planck-Kramers equation to determine the evolution of the
velocity distribution, and the steady-state distribution. Our
simulation results show broad agreement with experimental
results across a wide range of parameters and help to improve
our understanding of laser cooling and magneto-optical trap-
ping of molecules.

In our previous work [15], we considered model systems
with just one hyperfine ground state and one hyperfine excited
state. We found that for type-II systems driven by red-detuned
light, there is Doppler cooling at high speed, but Sisyphus
heating at low speed. For blue-detuned light, the forces are
reversed. In the present work, we have modeled all the levels
of CaF relevant to laser cooling and find that the velocity-
dependent force curves are very similar to those found for
the simpler systems. Notably, the force curve crosses zero
at two speeds: zero, and a specific speed where the Doppler
and Sisyphus forces cancel. By solving the Fokker-Planck-
Kramers equation, we find the velocity distributions resulting
from these unusual force curves. When the light is blue
detuned and the initial velocity is small enough, the velocity
is damped towards zero and the distribution is approximately
thermal. In this regime, the temperature can be determined
from the damping constant at low velocity, and the momentum
diffusion constant. When the light is red detuned, the velocity
distribution is far from being a thermal distribution and peaks
near the special velocity where the force crosses zero, as
we would intuitively expect. Despite its nonthermal nature,
we find that the ballistic expansion of a cloud with such a
velocity distribution is similar to that of a Maxwell-Boltzmann
distribution, allowing a temperature to be assigned. This
temperature is predicted to be about 10 mK at the highest
intensities used in the experiments and is predicted to decrease
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as the laser intensity is lowered, mainly because the zero
crossing of the force curve shifts to lower speed at lower
intensity. All these predictions agree well with experimental
results. Thus, we quantitatively confirm the hypothesis that
the balance between Doppler cooling and Sisyphus heating is
responsible for the high temperatures observed in molecular
MOTs, and also in type-II atomic MOTs. In this regime, mo-
mentum diffusion does not play a strong role in determining
the temperature.

The excited-state population calculated from the optical
Bloch equations is smaller than predicted by a rate model
[16,17] at all speeds, and drops dramatically at low speeds as
the molecules are optically pumped into transient dark states.
We find that dark states formed between Zeeman sublevels of
a particular hyperfine level, and Raman dark states which are
superpositions of Zeeman sublevels from different hyperfine
states, all play a role in reducing the scattering rate. Similarly,
nonadiabatic transitions out of these dark states are important
to the Sisyphus cooling or heating mechanism in this system.
Our calculated scattering rate in the MOT agrees very well
with the measured values across a wide range of intensities.
We note that the excited-state population does not drop to zero
at zero velocity, showing that there are no time-independent
dark states. This is because different frequency components
of the light have different polarizations. When a type-II
transition is driven by two components of light, there is a
time-independent dark state if they have the same polarization
(but different detunings) or if they have the same detuning (but
different polarizations). If the different frequency components
have different polarizations and different detunings, we find
there is no time-independent dark state, except in some special
cases.

Previous work using a rate model approach concluded that
the confining force in a static MOT of CaF is due mainly to
a dual-frequency mechanism that arises when two frequency
components of opposite polarization address the same transi-
tion with different detunings [17]. This mechanism, which is
also analyzed in Ref. [32], provides both Doppler cooling and
strong confinement in cases where little or no confining force
is present with one frequency component alone or with two
components of the same polarization. Our simulations using
the OBEs support the conclusion that this dual-frequency
mechanism is responsible for the trapping force in the CaF
MOT.

Simulations of molecules loaded from a MOT into a mo-
lasses predict that the temperature drops on a timescale of

about 100 μs, similar to what is measured. Heating in the
molasses is due to the randomness of photon-absorption and
spontaneous-emission events, and due to fluctuations of the
dipole force. Our model does not include the last of these,
which is particularly difficult to calculate. Across a wide range
of parameters, the model consistently predicts steady-state
temperatures 3 to 6 times lower than measured, indicating that
the dipole force fluctuations contribute significantly to heating
of the molasses. A method for treating this heating mechanism
for a multilevel system in 3D would be valuable. At low veloc-
ities, the acceleration curve is independent of intensity, but the
scattering rate decreases with decreasing intensity. As a result,
the temperature of the molasses decreases with decreasing
intensity. This is seen in the simulations and the experiments.
The cooling time gets longer at low intensities, however, and
at very low intensities there seems to be no cooling at all. Ap-
plying a magnetic field to the molasses increases the scattering
rate at zero velocity and decreases the damping constant, so
the temperature increases with magnetic field. The model pre-
dicts a quadratic dependence of the temperature on magnetic
field, which is also the dependence seen experimentally.

The methods presented in this work can also be used to
study laser cooling and trapping of other diatomic or poly-
atomic species, or for investigating unusual magneto-optical
trapping arrangements. To this end, we have presented the
equations in a general form so that they can be used by others.
We have already used our model to study a blue-detuned MOT
of 87Rb [33], and to investigate laser cooling of SrF and YbF
molecules [4], where we find the same qualitative behavior
as described here for CaF. Future applications include the
study of MOTs for molecules with very different energy-level
structures, the investigation of �-enhanced gray molasses
cooling [34], and other novel cooling schemes, and the study
of laser cooling within optical dipole traps [35].

The data underlying this paper are available at Zenodo and
used under the Creative Commons CCZero license [36].
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