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We provide an in-depth analysis of high-order above-threshold ionization of atoms and molecules by strong
laser pulses, using three different theoretical approaches beyond the electric dipole approximation: (i) the
numerical solution of the time-dependent Schrödinger equation, (ii) the classical three-step model, and (iii)
the quantum-orbit model. In the classical and quantum-orbit models, we include an accurate description of
the rescattering step by target-specific differential scattering cross sections. The considerable forward shift
of the photoelectron momentum distributions along the laser propagation direction can be understood in terms of
the nondipole electron motion after rescattering. An explanation of the additionally observed forward-backward
asymmetry of the signal strength requires the accurate modeling of the rescattering step and the electron
dynamics before the rescattering event. For the H2

+ molecular ion, we compare the cases of parallel and
perpendicular alignment of the molecular axis and we show that the interference pattern and its modification
due to the nondipole effects are orientation dependent. Compared to atoms, the nondipole effects in molecular
high-order above-threshold ionization appear more pronounced and amenable to experimental observation.
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I. INTRODUCTION

Over the past decades, many ultrafast imaging methods
using the recollision of laser-ionized bursts of coherent elec-
tron wave packets have been developed to self-probe atomic
or molecular structure and dynamics on its subfemtosecond
time scale [1]. In principle, every observable that is influ-
enced by the electron recollision can be used to obtain struc-
tural information, e.g., fragment kinetic energy release from
molecules [2] and high-harmonic generation spectra [3–6].
The improvements in the velocity-map imaging technique [7]
and in the cold-target recoil-ion momentum spectroscopy [8]
made it possible to use directly photoelectron momentum dis-
tributions of the rescattered electrons suggested in Refs. [9,10]
for imaging molecules. This so-called laser-induced electron
diffraction (LIED) technique has been successfully used to
probe the structure of static atoms and molecules [11,12] as
well as nuclear and also electronic valence-shell dynamics in
molecules [13,14].

The physical basis of LIED is formed by high-order above
threshold ionization (HATI). In this process, the ionized elec-
tron absorbs many more photons than the minimum number
necessary for ionization, leading to a characteristic appear-
ance of peaks in the energy spectrum separated by the photon
energy [15]. In the simplest possible picture, the “direct”
electrons can be described in a two-step model consisting of
(i) laser-induced ionization and (ii) potential-free accelera-
tion of the electron as a classical particle in the laser field
[16,17]. Depending on the ionization times some electrons
are driven back to the parent ion during their acceleration
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and they may scatter elastically off the potential before they
are subsequently accelerated in the field for a second time.
This process leads to the high-energy electrons in HATI that
form a plateau in the energy spectrum reaching up to the
≈10Up cutoff [18,19], where Up = E2

0/(4ω2) is known as the
pondermotive potential for a linearly polarized laser field with
amplitude E0 and frequency ω. (We use atomic units unless
otherwise stated.) The return of the electron to the parent
ion is called the recollision step. Hence, motivated by the
earlier proposed model for high-harmonic generation [20,21],
we speak of the three-step model of HATI.

However, in order to interpret the emission strength of the
momentum distributions more complex, quantum-mechanical
theories including the scattering step properly have to be used.
As the ab initio study by the numerical solution of the time-
dependent Schrödinger equation (TDSE) is only possible for
a small number of electrons, approximate theories are needed
that additionally help to understand the underlying physical
processes. A starting point is often the strong-field approx-
imation (SFA) which was originally formulated for direct
electrons in Refs. [22–24]. Here, it is assumed that once the
electron has been released, its motion is fully governed by the
laser field and the influence of the ionic potential is neglected.
The rescattering off ionic potentials has been included in the
context of SFA by means of a Born series where the first-order
term in the binding potential is often called improved SFA
(ISFA) [25,26]. The application of the saddle-point method
allows a fruitful analytical treatment known as the quantum-
orbit model (QOM) [27,28], which provides an intuitive de-
scription of the strong-field processes. The neglect of “distor-
tion” of the incident plane wave caused by the potential in the
first Born approximation (1BA) limits the reliability range of
ISFA depending on the energy of the recolliding electron, the
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shape of the potential, and the dimensionality of the problem.
In three dimensions the 1BA yields the correct differential
cross section (DCS) for a bare Coulomb potential, but it is
not exact if the potential includes a short-range contribution
as it is usually the case for optimized single-electron effective
potentials. To improve the laser-assisted rescattering beyond
the 1BA we follow the low-frequency approximation that
has been invented for laser-assisted electron-atom scattering
by Kroll and Watson [29] and introduced to the context of
HATI by Milošević [30,31]. Within this theoretical framework
it is possible to give a derivation of the factorization of
HATI amplitudes in products of the field-free elastic scattering
DCS σ and a factor describing the returning wave packet.
After additional approximations, this leads to the quantitative
rescattering theory (QRS) [32,33]. For diatomic molecules,
the two-center interference influences strongly the DCS and
the resulting minimum in the momentum distribution [34,35]
can be used to reconstruct bond lengths [13].

In nearly all theoretical calculations of HATI, the electric
dipole approximation is used, where it is assumed that the
incident electric field is spatially homogeneous over the field-
target interaction region and furthermore the magnetic field
is completely neglected. Thus, for ionization of a spherically
symmetric system, the photoelectron momentum distribution
has to be symmetric under interchange of the forward and
backward directions and no radiation-pressure effects take
place. Here, “forward” denotes the laser propagation direc-
tion. However, in a few experiments focusing on “direct”
(nonrescattered) as well as low-energy rescattered electrons,
the transfer of photon momentum to the photoelectrons has
been observed by Smeenk et al. [36], Ludwig et al. [37],
and Maurer et al. [38]. The experimental findings have been
analyzed in different theoretical frameworks ranging from
the numerical solution of the TDSE beyond the dipole ap-
proximation [39,40] over nondipole versions of the strong-
field approximation [41–45] to trajectory-based simulations
[46]. The nondipole work on strong-field dynamics includ-
ing recollision mostly focused on high-harmonic generation
[47–51] or considered HATI for quite high intensities beyond
those used in typical table-top experiments [52,53]. Recently,
we presented the HATI results from the numerical solution
of the nondipole TDSE in the regime of moderate laser
intensities [54]. Our central findings were a deformation of
the momentum distribution shape, which can be explained
in terms of a nondipole three-step model, and an additional
forward-backward asymmetry in the emission strength, which
turned out to be outside the scope of the three-step model.

Our goal in the present paper is to investigate the nondipole
effects in HATI and especially the observed asymmetry in
more detail. To this end, we present results from the numer-
ical solution of the nondipole TDSE for an atomic helium
model and a model of the H2

+ molecular ion. Expand-
ing our nondipole three-step model by treating the scatter-
ing step properly, the asymmetry is analyzed qualitatively.
A nondipole version of the low-frequency approximation
and corresponding quantum-orbit model is derived to inter-
pret quantitatively the whole photoelectron momentum dis-
tributions in the high-energy rescattering regime for short-
range potentials. In addition, we discuss the shortcomings
of our quantum-orbit model for long-range potentials with

Coulombic tails. Finally, the nondipole modifications of the
two-center molecular interference pattern in H2

+ are analyzed
with the help of the classical three-step model.

II. METHODS

A. Physical setup

We consider the ionization process of a single-active-
electron model under the influence of a linearly polarized
plane-wave laser pulse of three cycle duration, fully repre-
sented by the electric field

E(r, t ) = E(η) = −E0 sin2(ωη/6) cos(ωη)ex, (1)

with the retarded time η = t − z/c. The incident pulse travels
in z direction with speed of light c = 1/α ≈ 137. The used
frequency of ω = 0.056 a.u. corresponds to 814 nm wave-
length and the field strength of E0 = 0.151 a.u. corresponds
to an intensity of 8.0 × 1014 W/cm2. The electric field points
along the x axis of the coordinate system and the correspond-
ing magnetic field B = ez × E/c points along the y axis. In
the used Coulomb gauge the electromagnetic scalar potential
is chosen to be zero and the vector potential A(r, t ) = A(η)
is related to the physical fields by E = −∂tA and B = ∇ × A.
For the laser parameters under consideration, an expansion of
the vector potential in 1/c can be applied:

A(r, t ) ≈ A(t ) + z/c E(t ). (2)

Compared to the dipole approximation this leading-order
correction in 1/c results in a linear position dependence of the
electric field and a spatially homogeneous magnetic field such
that all considered effects are described in electric quadrupole
and magnetic dipole approximation.

In two dimensions, we model the helium atom with two
different single-active electron potentials: (i) a long-range
soft-core potential

VC(r ) = −e−0.575 r + 1√
r2 + 0.75

, (3)

which has a Coulombic −1/r behavior at large r , and (ii) a
short-range soft-core potential

VY(r ) = − 2.0√
r2 + 0.5

e−0.41 r , (4)

with a cutoff radius rc ≈ 2.2 a.u. The ground states of both
potentials reproduce the ionization potential Ip ≈ 0.9 a.u. of
helium.

As a nontrivially structured target we study the simplest
diatomic molecule: the molecular ion H2

+. It is modeled in
two dimensions as described in Ref. [55] with the potential

VH2
+ (r) = −

∑
j=1,2

1√
r2
j + 0.5

, (5)

where rj = r − Rj with Rj being the positions of the nuclei.
The nuclei are kept fixed during the action of the pulse at
the equilibrium internuclear distance of R = 2 a.u. such that
the H2

+ electronic ground-state energy of ≈−1.11 a.u. is
reproduced. To obtain a system that is symmetric under the
interchange of the forward and backward directions (invariant
under reflection at the x axis) in dipole approximation, the
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molecular axis can either be aligned parallel or perpendicular
to the electric field.

B. Numerical solution of the TDSE in 2D

To calculate ab initio photoelectron momentum distribu-
tions for ionization, we perform numerical simulations of the
TDSE. Here, we only summarize roughly the used scheme
that was introduced and described in detail in Ref. [54].

The dynamics of the system is determined in leading order
of 1/c by the nonrelativistic Hamiltonian

H = 1

2
[p + A(t )]2 + z

c
[p + A(t )] · E(t ) + V (r), (6)

where we have used the expansion of the vector potential
as given in Eq. (2). Applying a unitary transformation U =
exp(−iχ ) with a Hermitian operator

χ = z

c

(
p · A(t ) + 1

2
A2(t )

)
(7)

to this initial system in Coulomb gauge and using the form
invariance of the TDSE, i∂t ψ̃ (r, t ) = H̃ ψ̃ (r, t ), leads to the
transformed Hamiltonian

H̃ = 1

2

[
p + A(t ) + ez

c

(
p · A(t ) + 1

2
A2(t )

)]2

+V
(

r − z

c
A(t )

)
. (8)

No direct coupling between the position and momentum oper-
ator appears in H̃ . Hence, in the special case of vanishing po-
tential, the introduced canonical momenta in the transformed
system are conserved in contrast to the canonical momenta in
the original system.

The resulting TDSE is solved numerically using the stan-
dard Fourier split-operator method [56] with a time step of
�t = 0.005 a.u. The space is divided into an inner region,
where the complete Hamiltonian H̃ is implemented, and an
outer region, where the asymptotic tail of the long-range
potentials is neglected [57]. The size of the numerical inner
grid is 209 a.u. in x and 819 a.u. in z direction with spacings
of �x = 0.1 a.u. and �z = 0.2 a.u. After the end of the
pulse the photoelectron momentum distribution is obtained
from the outer grid with a resolution of �px = 0.015 a.u. and
�pz = 0.004 a.u.

C. Low-frequency approximation beyond the dipole
approximation

The quantum-mechanical calculation of the photoelectron
momentum distributions requires the knowledge of the over-
lap between the time-evolved state of the system U (tf , t0)ψ0

and the scattering state |ψ (−)
p (tf )〉 corresponding to an asymp-

totic momentum p:

Mp(tf ) = 〈ψ (−)
p (tf )|U (tf , t0)|ψ0〉. (9)

The time-evolved field-free initial state of the system is a
good approximation for the bound state in the presence of
the field in length gauge [58,59]. Hence we transform our
initial system, formulated in Coulomb gauge with the Hamil-
tonian H of Eq. (6), by using the unitary transformation

U ′ = exp[i A(t ) · r] to a modified “length” gauge form
H ′ = H0 + HI (t ) involving the field-free Hamiltonian H0 =
p2/2 + V (r) and the interaction operator

HI(t ) = E(t ) ·
(

r + z

c
p
)
. (10)

The full time-evolution operator can be rewritten by using
Dyson equations

U (tf , t0) = U0(tf , t0) − i

∫ tf

t0

dt ′ U (tf , t ′)HI(t
′)U0(t ′, t0),

(11)

U (tf , t ′) = UF (tf , t ′) − i

∫ tf

t ′
dt UF (tf , t )V U (t, t ′). (12)

Here, U0 denotes the field-free time-evolution operator such
that the time evolution of the initial state is simply given
by ψ0(t ′) = U0(t ′, t0)ψ0 = exp[iE0(t0 − t ′)]ψ0. The propa-
gator UF corresponds to the potential-free Hamiltonian HF =
p2/2 + HI(t ) that describes the time evolution of an electron
in the electromagnetic field in leading order of 1/c. It can be
expressed

UF (t, t ′) =
∫

dk
∣∣ψF

k (t )
〉〈
ψF

k (t ′)
∣∣, (13)

in terms of nondipole Gordon-Volkov states [47]∣∣ψF
k (t )

〉 = e−iSF (k,t )|v(k, t )〉 (14)

consisting of plane waves |v〉 with wave vector

v(k, t ) = k + A(t ) + ez

c

(
k · A(t ) + 1

2
A2(t )

)
(15)

and a phase factor with the generalized action

SF (k, t ) = 1

2

∫ t

dζ v2(k, ζ ). (16)

Inserting Eq. (12) into Eq. (11) the S-matrix element (9) can
be written as

Mp(tf ) = MD
p (tf ) + MR

p (tf ), (17)

with the amplitude for direct electrons

MD
p (tf ) = −i

∫ tf

t0

dt ′ 〈ψ (−)
p (tf )|UF (tf , t ′)HI(t

′)|ψ0(t ′)〉
(18)

and the rescattering term

MR
p (tf ) = (−i)2

∫ tf

t0

dt ′
∫ tf

t ′
dt 〈ψ (−)

p (tf )|UF (tf , t )

× V U (t, t ′)HI(t
′)|ψ0(t ′)〉. (19)

Up to this point no approximation has been made. If we
restrict ourselves to direct electrons described by Eq. (18) and
approximate the exact scattering state |ψ (−)

p 〉 by a plane wave
|p〉 with the same final momentum p, we obtain the “direct”
SFA beyond the electric dipole approximation [52]. However,
in this work we are interested in the high-energy region
of the momentum distribution corresponding to rescattered
electrons. If we replace the exact scattering state by a plane
wave and the full time-evolution operator U (tf , t ) by the
Gordon-Volkov propagator UF (tf , t ) in the amplitude of ATI
with rescattering, we retrieve the nondipole ISFA of Ref. [52].
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Here, the laser-assisted scattering is treated in first Born
approximation (1BA) such that the “distortion” of the incident
plane wave |v(k, t )〉 caused by the potential is neglected.

The reliability of the ISFA is restricted by the accuracy
of the 1BA which depends on the energy of the rescattering
electron, the shape of the potential, and the dimensionality
of the problem. Since in two dimensions even for a bare
Coulomb potential the exact quantum-mechanical DCS and
the 1BA only agree asymptotically for large energies, we
include rescattering effects beyond the 1BA by means of a
LFA [30]. The main idea is that in analogy with the three-step
model the motion of the electron can be separated in different
stages of potential-free acceleration of the ionized electron
wave packet in the laser field and field-free potential scat-
tering that changes the velocity from v(k, t ) to v(p, t ). The
approximation to the full dynamics should work well if the
change of the electron velocity v(k, t ) due to the laser field is
small while the electron passes over the range of the potential
[31]. To satisfy this condition the potential should have a much
smaller support than the typical excursion amplitude of the
electron in the laser field, which makes the approximation
questionable for long-range potentials with Coulombic tail.

Mathematically, the LFA is an approximation to the laser-
assisted scattering amplitude

Rp,k(t, t ′) = 〈
ψF

p (t )
∣∣V U (t, t ′)

∣∣ψF
k (t ′)

〉
, (20)

which can be read off from Eq. (19). Following the derivation
in Ref. [31] but including leading-order nondipole effects
properly the scattering amplitude can be expanded in powers
of the laser frequency ω. The zeroth-order term yields the LFA

RLFA
p,k (t, t ′) = 〈

ψF
p (t )

∣∣T0(Ẽ(k, t ))
∣∣ψF

k (t )
〉

(21)

with the “kinetic energy” of the laser-driven electron

Ẽ(k, t ) = v2(k, t )/2. (22)

Here, we introduced the field-free T operator for scattering off
the potential V

T0(E) = V + V GV (E)V (23)

and the stationary Green’s operator in the absence of the laser
field

GV (E) = (E − H0 + iε)−1, ε → 0+. (24)

The T -matrix elements can be reexpressed

t (vout, vin ) = 〈vout|T0(Ein )|vin〉 = 〈vout|V
∣∣ψ (+)

vin

〉
(25)

in terms of the field-free stationary scattering state |ψ (+)
κ 〉

[60]. Finally, we obtain an approximation for the amplitude
of rescattered electrons

MLFA
p (tf ) = (−i)2

∫ tf

t0

dt ′
∫ tf

t ′
dt

∫
dk

× t (v(p, t ), v(k, t ))D(k, t ′)eiSp,k (t,t ′ ) (26)

with a matrix element describing the ionization

D(k, t ′) = 〈v(k, t ′)|HI(t
′)|ψ0〉 (27)

and the combined action

Sp,k(t, t ′) = SF (p, t ) − SF (k, t ) + SF (k, t ′) + Ipt ′, (28)

where the partial actions SF defined in Eq. (16) are used.
Since the calculation of the off-shell T -matrix elements is
quite demanding, further approximations are desirable.

D. Saddle-point analysis

In the long-wavelength limit (Up > Ip � ω) the fivefold
integral in Eq. (26) can be approximated by means of the
saddle-point method. To this end the stationary points of the
action S with respect to all appearing integration variables are
searched for: ∂xSp,k(t, t ′) = 0 with x ∈ {t ′, t, k}. The saddle
point ks corresponding to the momentum integration is deter-
mined in first order of 1/c by

0 = −
∫ ts

t ′s
dτ

(
v(ks , τ ) + ks,z

c
A(τ )

)
. (29)

This equation can be analytically solved in first order of 1/c,

ks ≈ −α(ts , t ′s )

ts − t ′s
+ 1

c

(
α2(ts, t ′s )

(ts − t ′s )2
− α2(ts, t ′s )

2(ts − t ′s )

)
ez, (30)

with the integrals α(t, t ′) = ∫ t

t ′ dτ A(τ ) and α2(t, t ′) =∫ t

t ′ dτ A2(τ ). The first term of Eq. (30) is familiar from the
dipole limit. The corrections point along the propagation
direction of the light and represent classically the required
initial velocity to compensate the drift motion of the electron
due to the nondipole part of the Lorentz force.

The stationarity conditions with respect to the ionization
time t ′s and the return time ts lead to the relations

Ẽ(ks , t
′
s ) = −Ip, (31)

Ẽ(ks , ts ) = Ẽ(p, ts ). (32)

Formally, these two conditions represent the energy conser-
vation in the ionization process and the rescattering process.
Efficient recollision requires an initial velocity with nonzero
z component, which can be interpreted as giving rise to an in-
creased effective ionization potential. This implies a reduced
ionization rate [47,52] and forces the solutions to be complex
even when Ip = 0. The energy conservation in the rescattering
process reduces the T -matrix element to the scattering sphere
defined by the energy of the incoming electron and hence
it has only to be evaluated on shell. The T -matrix elements
are calculated in two spatial dimensions as described in the
Appendix.

The complex-valued ionization and return time t ′s , ts are
determined numerically after inserting the analytical form of
the intermediate momentum ks from Eq. (30) in the system
of Eqs. (31) and (32). For the used short laser pulse only
two main branches of trajectories with travel times Re(ts − t ′s )
less than one laser cycle give non-negligible contributions.
The two trajectories are referred to as the “short” and “long”
trajectory [61]. In the usual saddle-point approximation the
integral in Eq. (26) is approximated by a sum over the rele-
vant contributions corresponding to the different saddle-point
solutions. However, close to the classical cutoff both solutions
merge and beyond the long trajectory has to be skipped.
Hence, for an adequate description of the whole rescattering
plateau, we use the uniform approximation as described in
Ref. [62].
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The contribution of a single trajectory s to the rescattering
amplitude is given by

MLFA
p,s = (−i)2 C t (v(p, ts ), v(ks , ts )) eiSp,ks (ts ,t ′s ), (33)

with the prefactor C arising from the Hessian matrix

C =
√

(2πi)4

det(Ht,t ′,k[Sp,k(t, t ′)])
. (34)

Here, we have dropped the ionization matrix element D,
which has a pole at the saddle points. Since both relevant
trajectories start in a small time window close to Re(t ′s ) ≈ T ,
the prefactor for ionization arising from the matrix element D

has only minor influence on the spectrum in HATI and can
be neglected. For a Yukawa potential we found in 1BA that
the influence of the imaginary parts of the velocities entering
the T -matrix element is negligible and hence they are also
ignored in the calculation of all T -matrix elements. Following
Ref. [61] we refer to the resulting model as quantum-orbit
model (QOM).

III. RESULTS AND DISCUSSION

A. TDSE results

The asymptotic photoelectron momentum distribution
from ionization of the molecular ion H2

+ with a three-cycle
laser pulse is shown in Fig. 1: (a) parallel and (b) perpendic-
ular orientation of the molecular axis relative to the electric
field. Both spectra show the same division into a strong contri-
bution of low-energy electrons concentrated along the px axis
and a weaker contribution of high-energy electrons, which
extend over a large range of momenta pz. Due to the shortness
of the pulse, ATI peaks are avoided in the high-energy region
[28] and the nearly circular ring structures which are caused
by the interference between short and long rescattering tra-
jectories [61,63] show a strong asymmetry between positive
and negative px . The carrier envelope phase of the pulse in
Eq. (1) is such that the rescattering electrons with the highest
energy are emitted with positive momenta px and that their
cutoff energy is close to the classical value of E ≈ 10Up of
a cw field [18,19]. For both orientations of H2

+ the intensity
distributions on top of the circular interference structure show
a nontrivial structure-dependent variation compared to our
work on helium [54]. For parallel alignment the signal is
reduced along a line nearly parallel to the pz axis at px ≈
3 a.u.; see Fig. 1(a). On the other hand, for perpendicular
alignment, more pronounced minima are aligned parallel to
the px axis; see Fig. 1(b). Previously, the intensity variation
has been attributed to the double-slit interference occurring
when the returning electrons are rescattered by the diatomic
molecular ion [34,35]. In contrast to the dipole limit, the exact
positions of the minima indicated by the red solid lines are
not symmetric with respect to the polarization axis and offer
the opportunity to observe directly the symmetry breaking in
propagation direction (z direction). These shifts depend on
px : close to the cutoff, larger shifts of around 0.12 a.u. are
observed, whereas for smaller px , the minima are shifted by
only ≈0.05 a.u.

As in our previous work on helium [54] we divide
the observed deviations from the dipole approximation in

p z
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FIG. 1. Photoelectron momentum distribution w(p) from ioniza-
tion of H2

+ with (a) parallel and (b) perpendicular orientation of the
molecular axis relative to the electric field by a three-cycle pulse
with 814 nm wavelength and peak intensity of 8 × 1014 W/cm2. The
red lines are the numerically determined positions of the interference
minima.

two major classes: (i) the minima and maxima resulting
from the interference between short and long trajectories
are shifted in z direction, i.e., their positions are no longer
symmetry about the polarization axis; (ii) also the strength
of the peaks are different in forward and backward direc-
tions. In the following we refer to the second effect as
asymmetry.

The momentum shifts extracted from the TDSE for the
molecular ion H2

+ are only hardly influenced by the align-
ment and in our numerical accuracy they are the same as for
helium. This negligible dependence on the target structure is
in perfect agreement with the classical interpretation given
in Ref. [54]. There, it has been shown in a classical three-
step model that the shift is caused by the acceleration of
the electron in the electromagnetic field after the rescattering
event. The gained additional momentum is equal to the energy
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FIG. 2. Forward-backward asymmetry quantified as the ratio of
the signal strengths in forward and backward directions for H2

+ at
(a) parallel and (b) perpendicular alignment. The panels show results
for the inference rings 1, 5, 10, and 15 (from the top curve to the
bottom curve), where the label “1” denotes the outermost ring.

gain after rescattering divided by the speed of light c and
should only depend on the laser field.

On the other hand, the forward-backward asymmetry is
quantified at each px by taking the ratio of the signals of
one interference maximum in forward direction and one in
backward direction, where each signal is obtained by pz

integration over one peak. In Fig. 2 the asymmetry extracted
from the TDSE for H2

+ is shown for selected interference
rings. For example, the label “5” denotes the fifth interference
ring when counting inwards. The asymmetry ratio depends
strongly on the ring number such that its deviation from unity
(where the signals in forward and backward directions are
equally strong) gets smaller when moving to inner rings. The
atomic or molecular structure is imprinted on the asymmetry
ratio and especially its px dependence. For example, for
H2

+ aligned parallel to the electric field, the outer ring only
shows positive ratios indicating a stronger emission in forward
than in backward direction with a modulation feature around
px ≈ 3 a.u. In contrast, for the perpendicular alignment, a
single maximum with values as high as ≈1.26 is observed
that decreases strongly while going to higher momenta px

such that an inverted asymmetry with stronger emission in
backward direction is found for momenta px larger than ≈4.8
a.u. For the inner rings, e.g., ring number 15, a substructure
is visible on top of the signal. We believe that it can be
attributed to the following issues: (i) close to the center of
the distribution the falling tail of the strong signal of direct
electrons act as a background that leads to additional inter-
ference; (ii) in contrast to the outer rings the inner rings have
a smaller modulation depth and hence the integration of the
signal depends noticeably on the used integration limits.
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FIG. 3. (a) Initial velocity v0,z and z component of the incoming
rescattering velocity vin,z as a function of the recollision energy in Up

for the classical model. (b) Offset angle �θ of the incoming electron
with respect to the polarization axis using the laser parameters of
Fig. 1. The dashed lines correspond to short trajectories, whereas the
solid lines correspond to long trajectories.

B. Generalized three-step model beyond the electric dipole
approximation

To gain deeper physical insight we extend our classical
model for HATI introduced in Ref. [54] by treating the scat-
tering step more carefully. Mainly, this simple model follows
the idea of the three-step model [19,21] that the motion of
the electron can be split in different stages: (i) laser-induced
ionization, (ii) acceleration of the electron away and back to
the parent ion, and (iii) scattering off the ionic potential and
further acceleration in the field. Additionally, leading-order
nondipole effects are included.

After the ionization has launched an electron at the ion-
ization time ti , the potential-free acceleration of the electron
is described classically by Newton’s equation. The magnetic
part of the Lorentz force causes a drift motion of the electron
in propagation direction. For an exact return to the initial
position r = 0 at the recollision time tr and hence an efficient
recollision process, the electron has to start with an initial
velocity v0 = −|v0|ez against the propagation direction of the
light [47]:

v0,z = − 1

2c(tr − ti )

∫ tr

ti

dτ [A(τ ) − A(ti )]
2. (35)

Since long trajectories experience larger drifts compared to
short trajectories, the magnitude of their initial velocities has
to be larger; see Fig. 3(a). In first order of 1/c, the resulting
trajectory is only modified along the propagation direction of
the light by the nondipole part of the Lorentz force. Hence the
return condition in polarization direction, x(ti ) = x(tr ), is the
same as in the dipole limit and defines the mapping between
the ionization time ti and return time tr .
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For this potential-free trajectory starting from the posi-
tion of the ion with initial velocity v0 = −|v0|ez we find
in first order of 1/c a conserved canonical momentum of
k = −A(ti ) + A2(ti )/(2c)ez + v0 in the transformed system
defined by the Hamiltonian of Eq. (8) without potential.
The nondipole corrections to the intermediate momentum k
have the same form as in the classical limit of the QOM
[compare Eq. (30)]. During the scattering the electron feels
the potential and the canonical momentum is changed from
k to the momentum p. If we assume that the influence of the
potential on the further motion is negligible, the momentum
p is conserved and matches up with the measurable velocity.
Close to the ionic core, z ≈ 0, the connection between the
classical velocity v(κ, tr ) of the electron and the conserved
canonical momentum κ is given in first order of 1/c by
Eq. (15). Hence the incoming velocity of the electron before
the scattering event reads

vin = A(tr ) − A(ti ) + 1

2c
[A(tr ) − A(ti )]

2 ez + v0. (36)

For fixed times ti , tr the energy conservation during rescat-
tering implies that the outgoing velocities vout = v(p, tr ) after
the scattering event lie on a circle of radius K (tr , ti ). Here,
we have introduced the magnitude of the incoming velocity
K (tr , ti ) ≈ |A(tr ) − A(ti )| that is in first order of 1/c the same
as in the dipole limit. In our previous work [54] we have
shown that the second stage of acceleration in the field maps
the scattering circle of outgoing velocities onto an ellipse.
In first order of 1/c, its center is located at δp = −A(tr ) +
A2(tr )/(2c)ez and the principal axes are rotated by 45◦ relative
to the xz frame defined by light polarization and propagation.

For high kinetic energies of the incident electron such that
the change of velocity due to the laser field is small while
the electron passes over the nonzero part of the potential, we
can neglect the influence of the laser field on the scattering
process and assume field-free elastic scattering off the par-
ent ion. Hence we approximate the corresponding scattering
probability by the elastic scattering DCS

σ (K, θ ) ≡ dP

d�
∝ |t (vout, vin )|2. (37)

For rotationally symmetric systems such as atoms the DCS
depends only on the magnitude of the velocity K as well
as the relative scattering angle θ = �(vout, vin ). In dipole
approximation, where the motion during the first acceleration
is confined on the polarization axis and hence the incoming
velocity vin has no component in propagation direction, the
scattering probability for opposite outgoing velocities vout,z

and −vout,z at the same vout,x are equal, i.e., the signal strength
is symmetric about the polarization axis. However, taking
nondipole effects into account the nonzero z component of
the incoming velocity breaks the symmetry of the scattering
probability with respect to the polarization axis. Instead, the
DCS is rotated on the scattering circle by an angle �θ ≈
vin,z/vin,x with respect to the x axis. This symmetry breaking
is schematically illustrated in Fig. 4.

The z component of the incoming rescattering velocity is
positive for high return energies K2/2; see Fig. 3(a). Close
to the cutoff it is dominated by the momentum K2/(2c)
transferred from the light field to the electron during its first

vin pz

Δθ
px

σ(K,θ)

θ=180°

FIG. 4. Schematic sketch (with exaggerated value of 1/c) of the
scattering probability for an electron with incoming velocity vin. The
black solid line in the px-pz plane represents the scattering circle on
which the possible outgoing velocities vout lie. Due to the nondipole
part of the Lorentz force acting during the first acceleration, the
incoming velocity is at an angle �θ relative to the px axis and
therefore the scattering probability is not symmetric about the px

axis.

stage of acceleration; cf. Eq. (36). However, for a quantitative
interpretation, the initial velocity v0 has to be taken into
account, even though it is typically smaller by a factor of
≈4. The resulting offset angle �θ is mostly positive and has
a maximum of ≈0.54◦ for the given laser parameters; see
Fig. 3(b). From Eq. (36) it follows that the z component of the
incoming velocity scales quadratically with the electric-field
strength E0 and the wavelength λ. Since the x component
varies linearly in both parameters, the offset angle �θ is
predicted to increase linearly with the field strength and the
wavelength. During the recollision of the electron with the
much heavier core an arbitrary amount of momentum can be
exchanged. Since this exchange is determined by the DCS
of the system, the asymmetry depends strongly on the used
target gas and the scaling with the field parameters is not
universal. For example, for a zero-range potential with its flat
DCS [53] the asymmetry vanishes and hence the information
on the incoming velocity is completely removed during the
scattering. In contrast to the nondipole shift of the boundary,
according to the three-step model the asymmetry can be
completely attributed to the motion of the electron before
rescattering and the rescattering process itself.

To compare the classical model and the TDSE results, we
consider the short-range model of Eq. (4) for helium with cut-
off radius rc ≈ 2.2 a.u. such that the region of non-negligible
potential strength is small compared to the typical excursion
amplitude of the electron estimated by E0/ω

2 ≈ 48 a.u. for
the used laser parameters. For the classical boundary, opposite
points with the same px nearly belong to the same ellipse and
hence differ only hardly in their ionization and return times.
Thus we can neglect the influence of the ionization probability
as well as the spread of the electron wave packet on the
asymmetry. Hence we estimate the asymmetry as the ratio
of the DCSs calculated on the classical boundary in forward
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FIG. 5. (a) Shift of the interference maxima for the interference
rings 1, 10, and 19 (from the top curve to the bottom curve):
solid lines are numerical TDSE results; dashed thin lines are results
from the QOM. (b) Forward-backward asymmetry quantified as the
ratio of the interference pattern signal strength for the short-range
potential: solid lines are numerical TDSE results; dashed thin lines
are QOM results and long-dashed thick line is classical estimation
obtained by calculating the ratio of the DCSs (see text for discus-
sion). This panel show results for interference rings 1, 5,10, 15, and
19 (from top to bottom).

and backward directions. The result, shown in Fig. 5(b), is
in good agreement with the exact asymmetry for the outer
ring extracted from the TDSE calculation. In this special case,
the DCS is (in the relevant energy region) a monotonically
falling function of the return energy and the scattering angle
θ between zero and 180◦. The angle between the velocity of
the incoming electron and the outgoing electron with positive
vout,z component is smaller than the angle for an outgoing
electron with negative vout,z component. Hence the scattering
probability is higher in forward direction. This explains qual-
itatively the asymmetry ratios larger than one.

C. Comparison of the QOM and the numerical solution of
TDSE

Since, in contrast to the outer ring, the interference between
long and short trajectories strongly affects the signal strength
for the inner rings, the quantum-orbit model (QOM) is used
to interpret the spectra. Note that we include only the rescat-
tering signal in the QOM results. Figure 6 shows 1D slices
at px = 1 and 4 a.u. through the photoelectron momentum
distribution for the short-range helium model calculated by
solution of TDSE as well as within the QOM. Here, the QOM
results have been rescaled such that they match the outer
peaks of the TDSE results with positive pz. For the slice at
px = 4 a.u. the position of minima and maxima as well as the
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FIG. 6. Comparison of 1D slices through the 2D momentum
distribution for the short-range potential at fixed px : (a) px = 1.0 a.u.
and (b) px = 4.0 a.u. Shown are the exact numerical TDSE result
(red solid line) and the QOM result (black dashed line).

overall shape of the spectrum are perfectly reproduced by the
QOM. For smaller momenta px the distribution is still well
reproduced close to the cutoff where rescattering electrons
dominate. Closer to the px axis there are deviations. Naturally,
in the region where “direct” electrons dominate, the QOM
signal is completely off.

A reliable numerical value that quantifies the shifts of
the interference peaks in light propagation direction is given
by �pz = (p+

z + p−
z )/2, where p+

z and p−
z are the average

values of pz calculated over one peak in forward and one
peak in backward direction, respectively. The shifts extracted
from the QOM distributions are in perfect agreement with
the exact TDSE results as seen in Fig. 5(a). Compared to
the outer ring, the inner interference stripes show slightly
smaller shifts. As the phase of the preexponential amplitude
in Eq. (33) depends only weakly on the momentum p, the
appearance of the interference stripes can be mainly attributed
to the difference of the action S between both trajectories
[64]. However, close to the center of the plateau the absolute
positions of the extrema are also influenced by the phases
of the T -matrix elements that reach a difference of π for
both rescattering trajectories. Substituting all expressions [ex-
cept the phase SF (p, t ) accumulated after the scattering] by
the corresponding expressions in dipole approximation and
evaluating the resulting formula with the solutions of the
saddle-point equations in the dipole limit leaves the location
of the minima and maxima in the interference pattern nearly
unchanged. Therefore, in agreement with the classical model,
the shifts of the inner rings can be entirely attributed to the
acceleration of the electron in the electromagnetic field after
the rescattering event.
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The asymmetry, calculated within the QOM using the same
procedure as in TDSE, is compared to the exact results in
Fig. 5(b) for selected interference rings. For the used short-
range potential, the QOM results reproduce the overall trends
when going to inner rings as well as the magnitude of the
TDSE results. The observed difference between the classical
result and the QOM in Fig. 5(b) can be completely attributed
to the averaging over the whole interference stripe in the
QOM calculation. As expected from the classical model an
accurate description of the scattering step in terms of T -matrix
elements is important. We have calculated the photoelec-
tron distributions for some other short-range potentials (not
shown), e.g., one with a structural minimum in the DCS as it
is present in xenon. For all of them, the QOM model is able
to reproduce the key features in the spectrum as well as in the
extracted asymmetry.

As a final consistency check for our interpretation, we treat
the dynamics after rescattering in the dipole limit. To correct
for the different mappings of the outgoing velocities vout to the
final momenta p, we modify the action and solve the resulting
saddle-point equations. We also insert the dipole energy in
the T -matrix elements. Within these modifications, we can
compare various observables directly to the calculations in the
dipole limit. The obtained asymmetry is still in reasonable
agreement with the full nondipole calculation (not shown)
showing that only the modified incoming angle of the electron
is responsible for the asymmetry in the signal strength. How-
ever, in the inner part of the rescattering plateau no simple
interpretation of the asymmetry only in terms of the T -matrix
elements is possible, because the rescattering velocities differ
for long and short trajectories. This problem is well known
from the reconstruction of DCSs in LIED carried out in QRS
[30,32].

In order to quantitatively compare the QOM with exact
results for long-range potentials with Coulombic tails, we
concentrate on the long-range helium model. A slice through
the momentum distribution at px = 4.0 a.u. is presented in
Fig. 7(a). As for the short-range potential, the QOM result is
rescaled such that the outer ring with positive pz matches the
TDSE result. Over the whole rescattering plateau the positions
of interference extrema are well reproduced by the QOM,
indicating that the difference in the sum of Coulomb phase
and additional short-range phase between both relevant tra-
jectories represents accurately the true phase difference accu-
mulated due to the potential. However, the forward-backward
asymmetry is only qualitatively modeled by the QOM as
shown in Fig. 7(b). Especially the inversion of the ratio near
px = 3.3 a.u. observed in the exact result is not visible in
the QOM. The difference in absolute signal strength and
in the modulation depth of the interference structure close to
the center of the distribution can be at least partially attributed
to Coulomb corrections of the ionization rate [65]. On the
outer boundary, however, two points with the same px belong
approximately to the same scattering event, so we believe
that the Coulomb corrections of the ionization rate are not
responsible for the deviations in the asymmetry. Rather, the
long-range Coulombic tail influences the whole motion of the
electron, especially the “propagation” in the continuum, and
hence no clear separation between acceleration and rescatter-
ing is possible. To confirm that the Coulomb-laser coupling
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FIG. 7. (a) Comparison of 1D slices through the 2D momentum
distribution for the long-range potential at fixed px = 4.0 a.u. Shown
are the exact numerical TDSE result (red solid line) and the QOM
result (black dashed line). (b) Corresponding forward-backward
asymmetry quantified as the ratio of the interference pattern signal
strength for the interference rings 1, 5, and 10: solid lines are
numerical TDSE results; dashed lines are QOM results.

is important, we studied classical trajectories in the Coulomb
potential, as used in classical Monte Carlo simulations. We
found that, during the entire motion starting from the tunnel
exit, the Coulomb potential changes not only the energy of
the electron but also its direction, causing modifications in the
scattering probability.

D. H2
+ molecular ion: A simple model

In this section, we combine the classical rescattering model
with a target-specific scattering DCS of H2

+ in order to
explain the TDSE results for H2

+. The prominent suppression
in the HATI spectra for H2

+, shown in Fig. 1, is caused by
destructive double-slit interference in the diatomic molecule
[34,35]. There are four geometrical paths available to the
recolliding electron depending on its initial position at one
or the other center of the dimer as well as the center where
the electron scatters off. It was shown in Ref. [66] that
the matrix element related to the scattering process can be
approximated by

tH2
+ (vout, vin ) ∝ cos

(
R · (vout − vin )

2

)
tH(vout, vin ). (38)

Here, the T -matrix element tH(vout, vin ) represents the elastic
scattering of the electron off an atomic ion and it is calculated
as described in the Appendix using a scattering potential
with the shape of one of the terms in Eq. (5). In the cosine
term, related to the interference, the explicit dependence
on the molecular orientation defined by the molecular axis
leads to scattering properties different from atoms where the
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FIG. 8. (a) Asymmetry for H2
+ at parallel or perpendicular

alignment calculated within the classical model as the ratio of the
DCSs from Eq. (38). (b) Signal on the classical boundary in the
region of the two-center interference minimum at perpendicular
alignment from the TDSE calculation for positive pz (dark blue line)
and negative pz (light green line). The black dashed lines are the
quadratic fits to determine precisely the positions of the minima. (c)
Same as in (b) but calculated within the classical model. The solid
lines correspond to the full calculation, whereas the dashed colored
lines are calculated by neglecting the nondipole part of the incoming
velocity vin.

T -matrix element only depends on the relative scattering an-
gle θ . If only one trajectory dominates in the relevant region of
the momentum distribution, the model predicts the following
relation for the positions of the minima:

R · (vout − vin ) = π. (39)

We notice that the mapping of the outgoing velocity vout

to the final momentum p = vout − A(tr ) + 1/c[A2(tr )/2 −
vout,x A(tr )]ez as well as the incoming velocity vin influence
the exact positions.

For perpendicular alignment, the signal on the classical
boundary interpolated from TDSE data is shown in Fig. 8(b)
for momenta pz close to the minima. From quadratic fits
(black dashed lines) the positions of the minima are deter-
mined to pz ≈ −1.347 a.u. and pz ≈ 1.578 a.u. Both minima
are shifted by ≈0.116 a.u. to larger pz compared to the dipole
limit where their position is given by ≈±1.463 a.u. Even
though the positions in the dipole limit ±π/2 ≈ ±1.571 a.u.
predicted by the model of Eq. (39) are too large, the relative
shift of ≈0.112 a.u. agrees well with the exact calculation;
see Fig. 8(c). The combination of the shift of the classical
boundary of about ≈0.082 a.u. and the z component of the
incoming velocity of about ≈0.030 a.u. explain the shift of
the structural minima compared to the dipole limit. In contrast
to atomic targets, where the nondipole part of the incoming

velocity vin rotates the structures due to the DCS clockwise,
for dimers at perpendicular orientation, the z component of
the incoming velocity vin shifts the minima to larger pz; see
Fig. 8(c).

For parallel alignment, according to the model of Eq. (39)
only the x components of the incoming and outgoing ve-
locities determine the interference minimum. Hence the
nondipole part of the incoming velocity has no influence on
the position of the minimum. Its px position is the same in
forward and backward directions and agrees with the value
from the dipole limit.

In Fig. 8(a) the asymmetry ratios for the outer inference
ring calculated with the classical model of Sec. III B and the
T -matrix elements of Eq. (38) are shown for both orientations
of the molecule. Here, the main features of the exact results,
shown in Fig. 2, are reproduced. For parallel alignment the
modulation structure is much sharper in the model calculation
which can be attributed to the deeper minimum. The structure
appears because for fixed px two opposite points on the true
classical boundary do not exactly belong to the same ellipse
and hence do not have exactly the same DCS. For perpendicu-
lar alignment the inverted asymmetry for large momenta px is
mainly caused by the nondipole part of the incoming velocity
vin entering the cos2 interference factor of the DCS.

IV. CONCLUSIONS

We have analyzed HATI in atoms and diatomic molecules
beyond the electric dipole approximation with a focus on the
forward-backward asymmetry in the signal strength. We have
first presented photoelectron momentum distributions from
the numerical solution of the TDSE for the molecular ion
H2

+ in the high-energy rescattering regime. For perpendicular
orientation of the molecular axis relative to the electric field
and for the realistic laser parameters used in this work, the
two-center interference minima in the rescattering plateau
region are shifted by ≈0.11 a.u. to larger pz compared to the
dipole limit.

By including properly the rescattering step and the asso-
ciated elastic differential cross section in the beyond dipole
three-step model [54] we have studied the mechanisms un-
derlying the forward-backward asymmetry for atomic tar-
gets. The drift of the electron during its first acceleration
and the corresponding component in propagation direction of
the incoming velocity before rescattering induce a scattering
probability that is not symmetric about the polarization axis.
In order to model the inner part of the plateau region with
its interference pattern arising from long and short rescat-
tering trajectories, we have extended the low-frequency ap-
proximation [30] beyond the dipole approximation and hence
have approximated the laser-assisted scattering amplitude by
the field-free scattering amplitude. For short-range potentials
the corresponding quantum-orbit model offers a quantitative
interpretation over the whole rescattering plateau. We have
found that Coulomb effects in long-range potentials lead to
modifications in the forward-backward asymmetry and hence
prevent a simple analysis in terms of the elastic scattering
differential cross section.

The nondipole shifts of the positions of the two-center
interference minima for H2

+ are well described by the
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classical model. They become more pronounced with increas-
ing laser intensity or wavelength. With the further develop-
ment of midinfrared high-power lasers and the improvements
in the experimental techniques it will be possible to observe
the nondipole effects in the rescattering plateau. While the
shift of interference structures resulting from long and short
rescattering trajectories will be hard to detect after intensity
averaging and the analysis of the asymmetry requires the
knowledge of the deformed scattering ellipses, the broken
symmetry should be directly observable in the two-center
interference. We expect that the observed minima are, even
after focal averaging [34], sufficiently pronounced to measure
and analyze experimentally the underlying beyond dipole
dynamics. If the positions of the minima are used to determine
bond lengths and probe the nuclear dynamics, the neglect
of nondipole corrections can lead to errors in the recon-
structed lengths that have similar size as today’s experimental
accuracy [13].
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APPENDIX: T -MATRIX ELEMENT

In this appendix we describe our method for the calculation
of field-free scattering T -matrix elements in two dimensions
for rotationally symmetric potentials V (r ). In the special
case of short-range potentials the general theory has been
invented in Ref. [67] and recently extended to asymptotically
Coulomb-like potentials in Ref. [68]. We mainly follow the
conventions introduced in Ref. [69].

For short-range potentials, the exact scattering states ψ
(+)
k

with outgoing boundary conditions can be expanded in terms
of partial waves RE,m(r )

ψ
(+)
k (r) =

∞∑
m=−∞

imeiδm
RE,m(r )√

r
eim(θr−θp ), (A1)

with the energy-dependent scattering phases δm. Hence the
partial waves have to fulfill the radial time-independent
Schrödinger equation (TISE)(

−1

2
∂2
r + m2 − 1/4

2r2
+ V (r ) − E

)
RE,m(r ) = 0. (A2)

This ordinary differential equation is integrated outwards on
an equally spaced grid using the Numerov scheme. If we set
l = m − 1/2, Eq. (A2) has the same form as in three dimen-
sions. Therefore, in the special case of vanishing potential the
solutions are given by the ordinary Bessel functions Jm, Ym.
From the asymptotic behavior at large distances r the phase
shifts δm(E) can be read off from

RE,m(r )√
r

∝ AJm(kr ) + BYm(kr )

∝ 1√
r

sin
(
kr − m

π

2
+ π

4
+ δm(E)

) (A3)

to tan(δm(E)) = −B/A. Asymptotically, the full scattering
state consists of an incident plane wave and a scattered

circular outgoing wave

ψ
(+)
k (r) � eik·r +

√
i

k
fk (θ )

eikr

√
r
. (A4)

The introduced scattering amplitude f is directly proportional
to the on-shell T -matrix element in elastic scattering theory

t (p, k) = 〈p|V |ψ (+)
k 〉 ∝ fk (θ ) (A5)

and can be completely expressed in terms of scattering phase
shifts

fk (θ ) =
√

2

π

∞∑
m=−∞

eiδm sin(δm)eimθ , (A6)

with θ being the relative angle between the incoming momen-
tum k and the outgoing momentum p.

We consider long-range potentials that are asymptotically
Coulomb-like and hence can be divided into

V (r ) = VC (r ) + VS (r ) (A7)

with the bare Coulomb interaction VC (r ) = −Z/r and the
short-range part VS (r ). The asymptotic behavior of the scatter-
ing states is given by regular and irregular Coulomb functions
Fl,Gl with index l = m − 1/2. In addition to the phase shift
δm due to the short-range part VS in the presence of the
Coulomb potential two terms appear in the analog of Eq. (A3):
one representing the Coulomb phase shift σm = arg �(m −
1/2 + iγ ) with the Sommerfeld parameter γ = −Z/k and
another −γ ln(2kr ) representing the long-range nature of the
potential, in the sense that plane waves do not asymptotically
become the solutions of the TISE.

Analogous to three dimensions the resulting scattering
amplitude can be divided into

fk (θ ) = f C
k (θ ) + f S

k (θ ), (A8)

where

f C
k (θ ) = − γ√

2 sin2(θ/2)

�(1/2 + iγ )

�(1 − iγ )
e−iγ ln[sin2(θ/2)] (A9)

is the Coulomb scattering amplitude in two dimensions [70]
and

f S
k (θ ) = 1

2i

√
2

π

∞∑
m=−∞

e2iσm
[
e2iδm − 1

]
eimθ (A10)

is the additional scattering amplitude due to the short-range
part VS in the presence of the Coulomb potential VC .

In order to check the derived separation in Eq. (A8), we
truncated smoothly the long-range potential at a large distance
r ≈ 100 a.u. and calculated the DCS with the theory for short-
range potentials. Both results are in perfect agreement for the
relevant energies above ≈0.125 a.u.
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