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Gauge invariance beyond the electric dipole approximation
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We study the gauge invariance of the laser-matter interaction. The velocity gauge, where the vector potential
is expanded to the nth order with respect to the spatial coordinate, and the length gauge, where the electric
and magnetic fields are expanded to the nth and (n − 1)th orders, respectively, are mutually gauge transformed,
describing the physically equivalent situation. The latter includes up to the electric 2n+1-pole and magnetic 2n-
pole interactions as well as two extra terms. The finding serves to develop consistent nonperturbative simulation
methods beyond the electric dipole approximation.
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I. INTRODUCTION

The electron dynamics in atoms and molecules subject to
ultrashort intense (visible-to-near-infrared) laser pulses and
extreme-ultraviolet pulses are widely simulated on the ba-
sis of the time-dependent Schrödinger equation. Besides the
single-active-electron (SAE) approximation, various ab initio
multielectron methods [1] have been developed, such as time-
dependent close-coupling [2], time-dependent configuration-
interaction singles [3–5], time-dependent R-matrix [6],
time-dependent multiconfiguration self-consistent-field (with
time-varying orbitals) [7–18], time-dependent coupled-cluster
[19,20], time-dependent algebraic diagrammatic construction
[21], time-dependent density-functional theory [22], time-
dependent two-particle reduced-density-matrix [23,24], and
state-specific expansion [25] methods. The vast majority use
the electric dipole approximation (EDA), within which it is
known that the laser-electron interaction is expressed either
in the length gauge (LG) or velocity gauge (VG) [26]. In the
SAE case, for example, the LG and VG Hamiltonians read
(we use Hartree atomic units unless otherwise stated)

H
(E1)
LG = p̂2

2
+ r · E(0, t ) + Veff (r), (1)

H
(E1)
VG = [p̂ + A(0, t )]2

2
+ Veff (r), (2)

respectively, where E(r, t ) = −Ȧ(r, t ) denotes the electric
field, A(r, t ) the vector potential, and Veff the effective poten-
tial. A unitary operator W0 = e−ir·A(0,t ) bridges between the
LG and VG Hamiltonians:

H
(E1)
LG = W−1

0 H
(E1)
VG W0 − iW−1

0 Ẇ0, (3)

H
(E1)
VG = W0H

(E1)
LG W−1

0 − iW0Ẇ
−1
0 . (4)
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Similarly, the LG and VG wave functions ψ
(E1)
LG (r, t )

and ψ
(E1)
VG (r, t ), respectively, are related via ψ

(E1)
VG (r, t ) =

W0ψ
(E1)
LG (r, t ). The gauge principle, one of the fundamental

principles in modern physics, states that all physical observ-
ables are gauge invariant, i.e., they take the same values
whether the length or velocity gauge may be used [26].

Recent development in circularly and elliptically polarized
high-harmonic generation (HHG) [27] has triggered growing
interest in the optical response of chiral molecules, e.g., photo-
electric circular dichroism [28] and detection of enantiomers
[29–34]. To simulate chiral molecules, we have to include
the magnetic dipole interaction [35]. For the LG case, the
extension of H

(E1)
LG is straightforward:

H
(E1+M1)
LG = p̂2

2
+ r · E(0, t ) + r × p̂

2
· B(0, t ) + Veff (r),

(5)

which has been used, e.g., in Ref. [29]. On the other hand, if
one has been using VG for simulations within EDA, its natural
extension may be expansion of A(r, t ) to the first order in r:

H
(1)
VG = [p̂ + A(0, t ) + (r · ∂x)A(x, t )|x=0]2

2
+ Veff (r), (6)

or that of [p̂ + A(r, t )]2 to the first order in r:

H
(1)
VG′ = [p̂ + A(0, t )]2

2
+ (r · ∂x)A(x, t )

∣∣∣∣
x=0

·[p̂ + A(0, t )] + Veff (r). (7)

More generally, one can further extend Eq. (5) to include
up to the electric 2n+1-pole and the magnetic 2m-pole in-
teractions, referred to as LG(n,m) hereafter [more rigorous
expressions of LG(n,m) are given below in Eqs. (14) and
(27). A nonlinear term is to be added to Eq. (5)]. Similarly,
we can further extend Eq. (6) to expand A(r, t ) to the �th
order in r [VG(�)] and Eq. (7) to expand [p̂ + A(r, t )]2 to
the �th order in r [VG′(�)]. Alternative gauges have also been
proposed recently [36,37].
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Aside from numerical efficiency [36–39], a fundamental
question is, Are Eqs. (5) and (6) [or (7)] mutually related
through gauge transformation, so that we can obtain gauge-
independent values of observable quantities? More generally,
which LG(n,m) and VG(�) [or VG′(�)] are gauge trans-
formed to each other, and by what form of unitary operator?
Such information will be useful, e.g., when we compare the
simulation results from different numerical implementations.
We naively thought that the problems had already been inves-
tigated and we searched for them in the literature. Although
there are many works on gauge invariance and transformation
(see Refs. [40–43] as well as a tutorial by Bandrauk et al.
[26] and references therein), we could find very few papers
possibly relevant to our questions. Fiutak [40] transformed
the exact VG Hamiltonian HVG [see Eq. (8) below] by a
truncated unitary operator [W1 in our notation Eq. (B4)] and
obtained an LG-like Hamiltonian with the electric dipole,
magnetic dipole, and electric quadrupole interactions. It also
contained, however, terms involving higher derivatives of A
whose precise forms were not specified. While Selstø and
Førre [43] have proposed transformation via e−ir·A(r,t ), the
resulting Hamiltonian does not explicitly contain the magnetic
dipole, electric quadrupole, . . . terms.

In this paper, we study the gauge correspondence between
VG(�) and LG(n,m). First, in Sec. II, we revisit the derivation
of multipole expansion from the minimal coupling Hamilto-
nian and present a generic tensor-algebraic expression for the
Hamiltonian corresponding to LG(n,m) for an arbitrary pair
of non-negative integers n and m. It contains not only electric
and magnetic multipoles but also two additional terms. Then,
in Sec. III, we show that there exists gauge invariance between
VG(�) and LG(n,m) if � = n = m, and give the form of the
bridging unitary operator. The additional terms are indispens-
able for the equivalence. On the other hand, we could not find
transformation between VG′(�) and LG(n,m).

II. MULTIPOLE EXPANSION

Let us consider a single particle with mass M and charge
q. The external field is assumed to be purely classical and
not affected by the particle. In our notation, the operator ∇
acts on the particle coordinate, denoted by r. We apply the
Coulomb gauge condition ∂x · A(x, t ) = 0 [44,45], where the
external electromagnetic wave is transverse and described by
the vector potential A(x, t ). The laser electric field is given by
E(x, t ) = −Ȧ(x, t ), and the magnetic field by B(x, t ) = ∂x ×
A(x, t ). Also, for simplicity, we drop the scalar potential that
typically describes the Coulomb force from other classically
treated charges. It is straightforward to extend our discussion
to a system with many particles and a scalar potential, since
the interparticle Coulomb interaction and the scalar potential
do not change their forms under gauge transformation.

We start from the minimal coupling Hamiltonian,

HVG = [−i∇ − qA(r, t )]2

2M
, (8)

considered to be the exact velocity-gauge Hamiltonian
of infinite order. The exact length-gauge (E-B) Hamil-
tonian is obtained through the Power-Zienau-Woolley

transformation [40,46]

HLG = W−1HVGW − iW−1Ẇ , (9)

where the unitary operator W is defined as

W = eiqχ (r,t ), χ (r, t ) =
∫ 1

0
r · A(λr, t )dλ. (10)

The resultant Hamiltonian is given by [44,45]

HLG = 1

2M

[
−i∇ + q

∫ 1

0
λr × B(λr, t )dλ

]2

− q

∫ 1

0
r · E(λr, t )dλ. (11)

The VG wave function ψVG(r, t ) is transformed to the LG one
ψLG(r, t ) as ψLG(r, t ) = W−1ψVG(r, t ).

In what follows, we omit t whenever clearly understood.
By truncating the expansion of A(x) in Eq. (8) at the �th order
of x, we obtain

H
(�)
VG = [−i∇ − qA(�)(r)]2

2M
, (12)

referred to as VG(�), with

A(�)(r) =
�∑

k=0

(r · ∂x)kA(x)|x=0

k!
. (13)

VG(0) corresponds to the EDA in Eq. (2). We call a term
involving q2, such as q2|A(�)(r)|2/(2M ), a nonlinear term.

Similarly, let us truncate E(x) and B(x) in Eq. (11) at
the nth and (m − 1)th order, respectively, of x, and call the
resulting gauge LG(n,m):

H
(n,m)
LG = 1

2M

[
−i∇ + q

∫ 1

0
λr × B(m−1)(λr)dλ

]2

− q

∫ 1

0
r · E(n)(λr)dλ, (14)

where E(�) and B(�) are defined in a way similar to A(�). B(−1)

is taken to be zero. It follows from the definition of each gauge
that the relation between the canonical momentum p̂ = −i∇
and the kinetic momentum π̂ is given by

π̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̂ − qA(r), VG,

p̂ − qA(�)(r), VG(�),

p̂ + q
∫ 1

0 λr × B(λr)dλ, LG,

p̂ + q
∫ 1

0 λr × B(m−1)(λr)dλ, LG(n,m).

(15)

Thus, p̂ �= π̂ except in the case of LG(n, 0). This is related
to the fact that − ∫ 1

0 λr × B(λr)dλ and − ∫ 1
0 r · E(λr)dλ are

the vector and scalar potentials, respectively, in the Poincaré
gauge [45].

We obtain multipole expansion by carrying out the inte-
gration with respect to λ in Eq. (14). With the electric dipole
d = qr and the magnetic dipole m = −iqr × ∇/M , the first
few examples are given by

H
(0,0)
LG = − ∇2

2M
− d · E(0), (16)

063410-2



GAUGE INVARIANCE BEYOND THE ELECTRIC DIPOLE … PHYSICAL REVIEW A 98, 063410 (2018)

H
(0,1)
LG = − ∇2

2M
− d · E(0) − 1

2
m · B(0) + q2[r × B(0)]2

8M
,

(17)

H
(1,0)
LG = − ∇2

2M
− d · E(0) − 1

2

∑
ij

qrirj ∂Ej (x)

∂xi

∣∣∣∣
x=0

,

(18)

H
(1,1)
LG = − ∇2

2M
− d · E(0) − 1

2
m · B(0)

−1

2

∑
ij

qrirj ∂Ej (x)

∂xi

∣∣∣∣
x=0

+ q2[r × B(0)]2

8M
. (19)

H
(0,0)
LG corresponds to the EDA in Eq. (1). While the third term

of Eq. (17) is equivalent to that of Eq. (5), it should be noticed
that Eq. (17) contains the fourth, nonlinear term, which is
absent in Eq. (5).

H
(1,0)
LG and H

(1,1)
LG contains the electric quadrupole term

− 1
2

∑
ij qrirj ∂Ej (x)

∂xi |x=0. Let us now rewrite the term using
the tensor algebra (see Appendix A for details). The ad hoc
rule to performing the algebra with the tensor product ⊗ and
vectors vi ∈ R3, dual vectors ut

i ∈ (R3)∗ (i = 1, . . . , n) is to
interpret the contraction “:” of two tensors consisting of the
same number of vectors and dual vectors as[

n⊗
i=1

vi

]
:

⎡
⎣ n⊗

j=1

ut
j

⎤
⎦ =

n∏
k=1

(ut
kvk ), (20)

where
⊗

denotes the n-fold tensor product defined as

n⊗
i=1

vi =
n︷ ︸︸ ︷

v1 ⊗ v2 ⊗ · · · ⊗ vn−1 ⊗ vn . (21)

If we define the electric 2n-pole moment Q(n) and the nth
electric gradient field E (n)(x) by

Q(n) = q

n︷ ︸︸ ︷
r ⊗ r ⊗ · · · ⊗ r ⊗ r ≡ q ⊗n r, (22)

E (n)(x) = ⊗n−1∂x ⊗ E(x), (23)

and note that ∂x and E are dual vectors, then the electric
quadrupole term can be rewritten as

−1

2

∑
ij

qrirj ∂Ej (x)

∂xi

∣∣∣∣
x=0

= −1

2
Q(2) : E (2)(0). (24)

This tensor notation is fairly useful for the concise descrip-
tion of complicated higher terms. Let us also introduce the
magnetic 2n-pole M(n) and the nth magnetic gradient field
B(n)(x) defined as

M(n) = ⊗n−1r ⊗ m, (25)

B(n)(x) = ⊗n−1∂x ⊗ B(x). (26)

Then, the general multipole-expansion form of the LG(n,m)
Hamiltonian H

(n,m)
LG [Eq. (14)] for arbitrary n and m is

expressed as

H
(n,m)
LG = − ∇2

2M
−

n+1∑
k=1

1

k!
Q(k) : E (k)(0)

−
m∑

k=1

k

(k + 1)!
M(k) : B(k)(0)

+ i

2Mc2

m−1∑
k=1

k(k + 1)

(k + 2)!
Q(k) : Ė (k)(0)

+ q2

2M

[
r ×

m∑
k=1

k

(k + 1)!
(r · ∂x)k−1B(x)

∣∣∣∣
x=0

]2

,

(27)

where Ė (k) in the fourth term is introduced by using the
Maxwell equation ∂x × B(x) = Ė(x)/c2 with c being the
vacuum velocity of light. We see that LG(n,m) for n � 0 and
m � 1 contains all the multipoles up to the electric 2n+1-pole
[E(n + 1)] (second term) and the magnetic 2m-pole (Mm)
(third term) interactions, as expected. It should, however, be
noticed that Eq. (27) contains, in addition, the fourth term for
m � 2 and the fifth, nonlinear term for m � 1. The limiting
form of Eq. (27) for n,m → ∞ was given in Ref. [40].

The leading subterm of the fourth term is − iq

6Mc2 r · Ė(0) ≈
− qω

6Mc2 r · E(0) with ω being the laser angular frequency.
For the electron (q = −1, M = 1), its ratio to the electric
dipole is 3.26×10−7 h̄ω/eV. Similarly, the ratio of the leading
subterm of the fifth term to the electric dipole is roughly
7×10−6|r||E|. Thus, these terms are in general much smaller
than the electric dipole term and have usually been neglected.
It is, however, not a priori clear if they are negligible com-
pared with higher multipoles in a strong laser field.

III. GAUGE TRANSFORMATION

Let us now proceed to the discussion on the gauge trans-
formation. We introduce a unitary operator,

W�(r) = eiqχ (�) (r), (28)

where

χ (�)(r) =
∫ 1

0
r · A(�)(λr)dλ (29)

= r ·
�∑

k=0

(r · ∂x)kA(x)|x=0

(k + 1)!
. (30)

Note that χ (0)(r) = r · A(0) and that χ (�)(r) is the expansion
of χ (r) to the (� + 1)th order with respect to r. Then, we
transform the VG(�) Hamiltonian via Wk to

H
(�|k)
VG→ = W−1

k H
(�)
VGWk − iW−1

k Ẇk, (31)

and the LG(n,m) Hamiltonian via W−1
k to

H
(n,m|k)
LG→ = WkH

(n,m)
LG W−1

k − iWkẆ
−1
k . (32)

In Fig. 1 we summarize the relation and transformation be-
tween different gauges considered in this study. It may be
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Velocity Gauge
HVG : Eq.(8)

VG( )

H
( )
VG : Eq.(12)

W−1 W−1
k WkW

Length Gauge
HLG : Eq.(11)

truncate A at

truncate B at (m − 1)
truncate E at n LG(n, m)

H
(n,m)
LG : Eq.(27)

Eq.(28)Eq.(10)

FIG. 1. Relation of the different gauges and Hamiltonians con-
sidered in this study.

worth mentioning at this point that Fiutak [40] considered
H

(∞|1)
VG→ and that Bandrauk et al. [26] proposed H

(1|0)
VG→.

We list low-order examples:

H
(0,0|0)
LG→ = H

(0)
VG, H

(0|0)
VG→ = H

(0,0)
LG , (33)

H
(0,1|0)
LG→ = [−i∇ − qA(0)]2

2M
− 1

2
m · B(0)

+ q2A(0) · [r × B(0)]

2M
+ q2[r × B(0)]2

8M
, (34)

H
(1,1|1)
LG→ = H

(1)
VG, H

(1|1)
VG→ = H

(1,1)
LG , (35)

H
(1|0)
VG→ = H

(0,0)
LG + iq(r · ∂x)A(x)

∣∣
x=0

M
· ∇. (36)

The comparison between Eqs. (17) and (34) shows that while
the electric dipole term is transformed, the magnetic dipole
term − 1

2 m · B(0) remains unchanged, and Eq. (34) contains
an additional nonlinear term (third term). Thus, W0 does not
map Eq. (5) to a Hamiltonian of a velocity-gauge form.

Equations (33) and (35) suggest that Wn transforms H
(n)
VG

to H
(n,n)
LG , and vice versa, i.e.,

H
(n|n)
VG→ = H

(n,n)
LG , H

(n,n|n)
LG→ = H

(n)
VG. (37)

We can demonstrate that this indeed holds true for any
n(� 0) as follows. E(n) and B(n−1) are related with A(n) by
E(n)(x, t ) = −Ȧ(n)(x, t ) and B(n−1)(x, t ) = ∂x × A(n)(x, t ),
respectively. These are analogous to the relations of E, B,
and A. Then, in the same way as the derivation of Eq. (11)
from Eq. (8), one can show that H

(n)
VG is transformed to H

(n,n)
LG

[see Eq. (14)] via Wn. We also present an explicit derivation
in Appendix B. The VG(n) and LG(n, n) wave functions
ψ

(n)
VG(r, t ) and ψ

(n,n)
LG (r, t ), respectively, are related to each

other via ψ
(n)
VG = Wnψ

(n,n)
LG .

Thus, VG(n) and LG(n, n) are physically equivalent, i.e.,
numerically exact simulations with H

(n)
VG and H

(n,n)
LG would

yield the same value for any observable. This is reasonable,
since E(n) and B(n−1) are the electric and magnetic fields,
respectively, described by the vector potential A(n); in the
classical electrodynamics, Hamilton’s equations of motion
with H

(n)
VG lead to Newton’s for a charged particle under E(n)

and B(n−1) (see Appendixes C and D). It should, however, be
stressed that we should retain the fourth and fifth terms of

Eq. (27) and the nonlinear term q2|A(n)(r)|2/(2M ) in Eq. (12),
from the conceptual viewpoint of the gauge invariance [43].
On the other hand, if n′ �= n and/or m′ �= n, H

(n′,m′ )
LG and

H
(n,n)
LG , with different multipoles, obviously correspond to

distinct physical situations and, thus, would lead to differ-
ent observable values. Therefore, H

(n,m)
LG and H

(�)
VG can be

transformed to each other if and only if n = m = � (see
Appendix E for another proof).

IV. CONCLUSIONS

We have investigated the correspondence between the ve-
locity and length gauges of laser interactions with charged
particles, beyond the electric dipole approximation. After
presenting the length-gauge Hamiltonian for arbitrary orders
of multipole expansion, we have shown that H

(�)
VG [Eq. (12)]

and H
(n,m)
LG [Eq. (27)] can be mutually gauge transformed if

n = m = �, via Wn [Eq. (B4)]. The fourth and nonlinear fifth
terms in Eq. (27) and the nonlinear term in Eq. (12) should be
included to ensure exact physical equivalence. It may come as
a surprise that this seemingly fundamental issue has not been
explicitly addressed before. It is probably partially because
light-matter interaction has conventionally been studied by
using truncated perturbation expansion with respect to field
strength, where gauge invariance is anyway lost. In strong-
field and attosecond physics, in contrast, we often encounter
extremely nonlinear processes, which has driven activity to
develop nonperturbative time-dependent methods [47] (see
also Ref. [1] and references therein). Then, the gauge invari-
ance (or dependence) of numerical approaches has become an
important issue. Hence, the present finding will be beneficial
to the numerical study of phenomena that require treatments
beyond EDA, such as the response of chiral molecules and
nanostructured materials [48].
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APPENDIX A: TENSOR ALGEBRA
ON EUCLIDEAN SPACE

Let us assume that we have an n-dimensional real metric
vector space whose metric tensor is the unit tensor (i.e., n-
dimensional Euclidean space), denoted by Rn. We also denote
its natural orthonormal basis by {e1, . . . , en} and its dual basis
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by {et
1, . . . , et

n}, such that

ei =

⎡
⎢⎢⎣

δ1i

δ2i

...
δni

⎤
⎥⎥⎦, et

j = [
δ1j , δ2j , . . . , δnj

]
, (A1)

with the unit tensor δii = 1 and δij = 0 for any i �= j . Let
us denote an arbitrary element of Rn by v, and its dual
(transposed) vector by vt ∈ (Rn)∗. Note that the inner product
is (v, u) = (u, v) = utv, where in the last term the usual
matrix multiplication is used. Then, a tensor T of type (a, b)
is defined as a multilinear function

T :

a︷ ︸︸ ︷
(Rn)∗ ⊗ · · · ⊗ (Rn)∗ ⊗

b︷ ︸︸ ︷
Rn ⊗ · · · ⊗ Rn → R. (A2)

Here ⊗ is the direct product of vector spaces. The vector space
consisting of type (a, b) tensors is called the tensor space
of kind (a, b), denoted by T a

b (Rn). Note that T 0
0 (Rn) = R,

T 1
0 (Rn) = Rn, and T 0

1 (Rn) = (Rn)∗. For any T ∈ T a
b (Rn),

there is a unique representation T
i1...ia
j1...jb

such that

T =
∑
i1...ia

∑
j1...jb

T
i1...ia
j1...jb

a⊗
k=1

eik

b⊗
�=1

et
j�
. (A3)

For two tensors T ∈ T a
0 (Rn) and S ∈ T 0

a (Rn), we define the
contraction “:” as

T : S =
∑
i1···ia

T i1...ia Si1...ia , (A4)

which means, in a special case relevant in our context,[
n⊗

i=1

vi

]
:

⎡
⎣ n⊗

j=1

ut
j

⎤
⎦ =

n∏
k=1

(ut
kvk ). (A5)

This is equivalent to Eq. (20).

APPENDIX B: EXPLICIT DERIVATION OF EQUIVALENCE
BETWEEN H (n,n)

LG AND H (n)
VG

For the sake of simple notation, we introduce

A[�](x) = (x · ∂x′ )�A(x′)|x′=0, (B1)

A[�](x) = ∂x′ (x · ∂x′ )�−1[x · A(x′)]|x′=0, (B2)

Ã(�)(x) =
�∑

k=0

A[k](x)

(k + 1)!
, (B3)

and a unitary operator

W�(r) = eiqχ (�) (r), χ (�)(r) = r · Ã(�)(r). (B4)

Then the differential operator ∇ transforms according to Wn

as

W−1
n ∇Wn = ∇ + iq∇χ (n)

= ∇ + iq

[
Ã(n) +

n∑
k=0

kA[k]

(k + 1)!

]
, (B5)

that the transformed covariant derivative reads

W−1
n [−i∇ − qA(n)]Wn

= −i∇ + q

[
−A(n) + Ã(n) +

n∑
k=0

kA[k]

(k + 1)!

]

= −i∇ + q

n∑
k=0

k(A[k] − A[k] )

(k + 1)!
. (B6)

Noting that

A[k](x) − A[k](x) = x × (x · ∂x′ )k−1B(x′)|x′=0, (B7)

we obtain

W−1
n H

(n)
VGWn = 1

2M

[
−i∇ + q

∫ 1

0
λr × B(n−1)(λr)dλ

]2

.

(B8)

Hence, the transformed Hamiltonian is given by

H
(n|n)
VG→ = 1

2M

[
−i∇ + q

∫ 1

0
λr × B(n−1)(λr)dλ

]2

+q

∫ 1

0
r · Ȧ(n)(λr)dλ (B9)

= H
(n,n)
LG . (B10)

This also means that H
(n,n|n)
LG→ = H

(n)
VG.

APPENDIX C: NEWTONIAN EQUATION
OF MOTION DERIVED FROM VG(�)

Using the VG(�) Hamiltonian [Eq. (12)],

H
(�)
VG = [P − qA(�)]2

2M
, (C1)

we start from the classical canonical equations [we put
P = (px, py, pz)T],

dri

dt
= H

(�)
VG

∂pi

,
dpi

dt
= −H

(�)
VG

∂ri

. (C2)

The first equation leads to

dri

dt
= pi − qA

(�)
i

M
. (C3)

Therefore, the velocity v = dr
dt

is given by

v = P − qA(�)

M
. (C4)

The second equation in Eq. (C2) becomes, for the x compo-
nent,

dpx

dt
= −∂H

(�)
VG

∂x

= −P − qA(�)

M
· −q∂A(�)

∂x

= q
P − qA(�)

M
· ∂A(�)

∂x
. (C5)
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Then, the x component of the Newtonian equation of motion
is given by using the derivative ∇ with respect to x,

M
dvx

dt
= dpx

dt
− q

dA(�)
x

dt

= qv · ∂A(�)

∂x
− q(v · ∇)A(�)

x − q
∂A(�)

x

∂t
. (C6)

Thus, using the vector formula A × (B × C) = (A · C)B −
(A · B)C and noting B(�−1) = ∇ × A(�), we obtain

M
dv
dt

= qE(�) + qv × B(�−1). (C7)

The right-hand side is the physically consistent and correct
expression for the Lorentz force within the considered trunca-
tion E(�) and B(�−1).

APPENDIX D: NEWTONIAN EQUATION
OF MOTION DERIVED FROM VG′(1)

Using the VG′(1) Hamiltonian [Eq. (7)],

H
(1)
VG′ = [P − qA(0)]2

2M

− q

M
(r · ∇)A(x, t )|x=0 · [P − qA(0)], (D1)

we start from the classical canonical equations,

dri

dt
= H

(1)
VG′

∂pi

;
dpi

dt
= −H

(1)
VG′

∂ri

. (D2)

The first equation leads to

dri

dt
= pi − qAi (0) − q(r · ∇)Ai (x, t )|x=0

M
. (D3)

Therefore, the velocity v = dr
dt

is given by

v = P − qA(0) − q(r · ∇)A(x, t )|x=0

M

= P − qA(1)

M
(D4)

The second equation in Eq. (D2) becomes, for the x compo-
nent,

dpx

dt
= −∂H

(1)
VG′

∂x

= −P − qA(0)

M
· −q∂A(x)

∂x

∣∣∣∣
x=0

= q
P − qA(0)

M
· ∂A(1)(x)

∂x

∣∣∣∣
x=0

. (D5)

Then, the x component of the Newtonian equation of motion
is given by

M
d2x

dt2
= M

dvx

dt
= dpx

dt
− q

dA(1)
x

dt

= dpx

dt
− q(v · ∇)A(1)

x |x=0 − q
∂A(1)

x

∂t

= qE(1)
x + q

[(
v + q(r · ∇)A(x, t )|x=0

M

)
· ∂A(1)

∂x

∣∣∣∣
x=0

−(v · ∇)A(1)
x

∣∣∣∣
x=0

]
. (D6)

Using the vector formula A × (B × C) = (A · C)B −
(A · B)C, we obtain,

M
dv
dt

= qE(1) + qv × B(0)

+ q2(r · ∇)A(x, t )|x=0 · ∂A(1)(x′)
M∂x′

∣∣∣∣
x′=0

. (D7)

This equation contains not only the Lorentz force but also an
extra (third) term, which is difficult to interpret physically.

APPENDIX E: ANOTHER PROOF OF NONEQUIVALENCE
BETWEEN VG(�) AND LG(n, m) FOR (n, m) �= (�, �)

We seek a unitary operator V that transforms VG(�) to
LG(n,m), reading

H
(n,m)
LG = V −1H

(�)
VGV − iV −1V̇ . (E1)

We show that if we suppose (n,m) �= (�, �) above, it will lead
to a contradiction (for the sake of reductio ad absurdum). The
unitary operator V can be expressed as the product V = W�U .
The equation for V now reads

H
(n,m)
LG = U−1H

(�,�)
LG U − iU−1U̇ . (E2)

We introduce a real-valued function u = u(r, t ) such that
U = eiu. Then the equation above becomes,

H
(n,m)
LG = 1

2M

[
−i∇ + q

∫ 1

0
dλλr×B(�−1)(λr, t )+∇u(r, t )

]2

− q

∫ 1

0
dλr · E(�)(λr, t ) + u̇(r, t ). (E3)

Since the mass M is independent of this transformation, we
can compare the mass-free terms in both sides, yielding

u̇(r, t ) = −q

∫ 1

0
dλr · [E(n)(λr, t ) − E(�)(λr, t )]. (E4)

Also we obtain

∇u(r, t ) = q

∫ 1

0
dλr × [B(m−1)(λr, t ) − B(�−1)(λr, t )].

(E5)

The function u = u(r, t ) must satisfy these equations simul-
taneously.

First we assume n = �. From Eq. (E4), it is concluded that
u̇ = 0 in this case. However, if this is true, Eq. (E5) cannot
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hold, since the right-hand side is explicitly time dependent
while ∇u has no time dependencies.

Next we assume n > �. In this case, from Eq. (E4) the
function u = u(r, t ) is a polynomial of order n + 1, starting
from order � + 2. Thus the function ∇u(r, t ) is a polynomial
of order � + 1 to n. Hence by Eq. (E5), the solution for
Eqs. (E4) and (E5) exists only if n = m. This is also true for
n < �. Taking the temporal integral for u̇, we have

u(r, t ) = q

∫ 1

0
dλr · [A(n)(λr, t ) − A(�)(λr, t )] + u0(r),

(E6)

with u0 being the integral constant. Taking the gradient of
above, we obtain

∇u(r, t ) = q∇
∫ 1

0
dλr · [A(n)(λr, t ) − A(�)(λr, t )]+∇u0(r).

(E7)

By substituting ∇u in Eq. (E5) by the right-hand side of
Eq. (E7), we obtain

q

∫ 1

0
dλr × [B(n−1)(λr, t ) − B(�−1)(λr, t )]

= q∇
∫ 1

0
dλr · [A(n)(λr, t ) − A(�)(λr, t )] + ∇u0(r).

(E8)

By means of Eq. (B7), the equation above yields

q[A(�)(r, t ) − A(n)(r, t )] = ∇u0(r). (E9)

This equation leads to a contradiction, since the left-hand side
is explicitly time dependent, while the right-hand side is a
constant in time.

Hence we have contradictions in both cases (n = � or
n �= �), provided (n,m) �= (�, �) in Eq. (E1). Therefore there
are no unitary operators that satisfy Eq. (E1) for (n,m) �=
(�, �).
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