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Stopping power of cluster ions in a free-electron gas from partial-wave analysis
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A nonlinear model for the stopping power of cluster ions based on partial-wave analysis is developed through
the generalization of the induced density approach (IDA) model for the interaction of homo- and heteronuclear
molecular ions with a free-electron gas (IDAMol). We apply IDAMol to the energy loss of H2

+ dimers in SiO2

and Al2O3, where we find that the results are consistent with established linear (dielectric) models at higher
speeds, as expected for small perturbations (small values of the projectile charge or high velocities). Specifically
at low projectile energies, however, it is important that IDAMol goes beyond perturbation theory. This feature
appears to be central for a good description of negative and positive vicinage effects, a measure of the deviation
from the independent-atom model. The focus of this work, however, is the investigation of enhanced nonlinear
effects. Here we present experimental results for a heteronuclear cluster ion namely HeH+ on Al2O3, in the
energy range of few tens of keV/u using the medium energy ion scattering technique. The IDAMol results are
corroborated by the experimental data and time-dependent density-functional calculations for this case. Strong
nonlinearities are observed for the energy loss of the fragment H+ due to the higher charge of its He companion.
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I. INTRODUCTION

The energy loss of cluster fragments after breakup in
matter is different from the sum of energy losses of each
fragment as long as they are traveling together [1–8]. This
phenomenon is known as the vicinage effect and has been
investigated for many years since it could be important to
generate intensive x-ray sources, to drive nuclear fusion [9],
and to perform ion-beam analysis for ultrathin films [10]. For
keV light dimers most investigations have been done using
the framework of dielectric function formalism. Notable ex-
ceptions are recent time-dependent density functional theory
(TDDFT) calculations [11–13] and the oscillator model for
hydrogen diclusters [14].

For energies larger than tens of keV and for light cluster
ions, the energy loss is dominated by electronic ionization
and excitation of the medium [15]. The vicinage effect can be
then understood as an interference effect on the ionization and
excitation of the medium after a sequence of atomic collisions
or due to superposition of wake potentials generated by each
fragment [5]. The ratio R between the cluster energy loss and
the sum of energy losses of each fragment in a target is usually

larger than 1 for larger beam energies (positive interference)
and lower than 1 (negative interference) for smaller beam
energies. For instance, as reported for the H2

+ cluster in C
[16] and Al [17], and H2

+ and H3
+ clusters in SiO2 [15], the

transition between negative and positive interference can be
abrupt around the threshold energy for plasmon excitation,
indicating the importance of collective effects of the target
electrons for the stopping power. Calculations based on the
dielectric function of an ensemble of harmonic oscillators
[14], which can produce negative and positive interference,
could not, however, explain this transition.

Recently, an approach has been developed to evaluate the
electronic stopping power and the transport cross section in
electron-ion collisions, namely the induced density approach
(IDA) and applied to H+ ions in a free-electron gas (FEG)
[18,19]. The stopping power is calculated by the retarding
force caused by the asymmetric induced charge density on
the projectile. For this sake a central Yukawa potential V (r )
generates the noncentral induced charge density nind(�r ) from
the partial-wave expansion of the stationary wave function for
the electron-ion collision in the rest frame of the ion. In this
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procedure, nind(�r ) is used to evaluate either the noncentral
induced potential Vind(�r ) or the induced force �Find(�r ) on the
ion position, leading, therefore, to the electronic stopping
power. The IDA results show a better convergence to the
Bethe formula for high energies than the usual transport cross-
section (TCS) procedure [20–22].

In this work, we generalize the IDA for cluster ions and
calculate the vicinage effect on the stopping power for H2

+

ions in different oxides from the literature. We also provide
measurements of the vicinage effects for heteronuclear HeH+

cluster ions. If not indicated otherwise atomic units (h̄ =
me = e = 1) are used throughout this paper.

II. THEORETICAL PROCEDURE

A. Point charged stopping power

For point charged particles the electronic stopping power
can be calculated from the induced force �Find at the projectile
(�r = 0) as

dE

dz
= −1

v
�Find · �v

= −Z

[∫
∂

∂z

(
nind(�r ′)
|�r − �r ′|

)
d3r ′

]
�r=0

, (1)

where Z is the nuclear charge, �v is the particle velocity and
nind(�r ) is the induced electron density, which reads for an free-
electron gas (FEG) system in the reference frame where the
projectile is at rest [23]:

nind(�r ) = 2

(2π )3

∫
DFS

(|ψ�k|2 − 1)d3k, (2)

where the �k integration is performed over the displaced Fermi
sphere (DFS) [23–25]. For a central electron-ion potential
V (r ) the induced density nind(�r ) can be calculated from the
partial-wave expansion of the stationary wave function [26],

ψ�k (�r ) = 4π
∑
�,m

i�eiδ�Rk,�(r )Y�,m(r̂ )Y ∗
�,m(k̂), (3)

with �k being the the incident electron momentum, Rk,�(r )
the radial continuum wave function with angular-momentum
quantum-number �, and Y�,m the spherical harmonics of r̂ and
k̂, directions of �r and �k, respectively, and m the azimuthal
quantum number (|m| � �). The phase shifts δ�, obtained
from the asymptotic limit (r → ∞) of the radial wave func-
tion as

Rk,�(r ) → 1

r
sin

(
kr − �

π

2
+ δ�

)
, (4)

depend on the scattering energy or, more accurately, on the
asymptotic electron momentum k and on the influence of the
potential V (r ) on each partial wave.

The stopping power Eq. (1) can be written in terms of
the phase shifts from the scattering potential V (r ) as demon-
strated recently in Ref. [18] and named the induced-density

z

x

rm

1

2

FIG. 1. Sketch of the induced potential from two charged particles.

approach (IDA),

dE

dz
= Z

8πv2

∫ v
F

+v

|v
F

−v|

dk

k

× (
2k2

(
v2

F
+ v2

) − k4 − (
v2

F
− v2

)2)
×

∞∑
�=0

sin (2(δ�(k) − δ�+1(k))), (5)

which is notably different from the transport cross-section
(TCS) approach, which is based on the momentum transfer
cross section [20–22]. Both formulas are nonperturbative and
able to describe nonlinear effects on the stopping power
of ions in FEG system very well [19]. However, the TCS
approach has a very slow convergence of the results to the
expected Bethe formula, while the IDA approach tends to
overestimate the stopping values at low energies.

B. Cluster stopping power

Let us now consider two point charges Z1 and Z2, located
at �r1 and �r2, and separated by �rm = �r2 − �r1 as shown in Fig. 1.
Therefore, the stopping force on the charge labeled 1 can be
written as

(
dE

dz

)
1

= −1

v

( �F (1)
ind + �F (2)

ind

)
�r=�r1

· �v, (6)

where F
(i)
ind is the induced force generated by the charge i =

1, 2 at the position of charge 1. Here, we assume the two wake
potentials are added linearly. Therefore, the simultaneous
interaction of the scattered electrons with the two centers is
neglected.

The second term from Eq. (6) is the main one responsible
for the vicinage effect and can be calculated from induced
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density (n(2)
ind) generated by charge 2 as

�F (2)
ind (�r = �r1) = Z1

∫
∇�r1

(
n

(2)
ind(�r ′ − �r2)

|�r1 − �r ′|

)
d3r ′

= −Z1

∫
∇�rm

(
n

(2)
ind(�r ′′)

|�rm + �r ′′|

)
d3r ′′. (7)

Since �rm is usually not determined experimentally, an
average over all directions and thermal vibrations has to
be performed. Let P (�rm) the probability density to find the
fragments separated by �rm. Using this probability density to
average Eq. (7), we have

〈 �F (2)
ind

〉 = −Z1

∫ ∫
P (�rm)∇�rm

(
n

(2)
ind(�r ′′)

|�rm + �r ′′|

)
d3r ′′d3rm

= −Z1

∫
(∇�r ′′�(�r ′′))n(2)

ind(�r ′′)d3r ′′, (8)

where

�(�r ) =
∫

P (�rm)

|�r + �rm|d
3rm. (9)

Considering the probability density to find the fragment
given by P (�rm) = δ(rm − r0)/(4πr2

0 ), i.e, the companion can
be found at any angle in a shell of radius r0, if we neglect
the radial distribution due to thermal vibrations. Under this
condition, Eq. (9) yields the solution for the electrostatic
potential produced by a spherical shell, namely �(r ) = 1/r

for r > r0 and 1/r0 otherwise and therefore Eqs. (8) and (6)
can be written as(

dE

dz

)
1

= dE

dz
(Z1) + I (Z1, Z2, r0), (10)

where the first term is the direct stopping force given by
Eq. (5) and the interference term I (Z1, Z2, r0) is the vicinage
stopping force. It can be evaluated by inserting Eq. (2) written
for n

(2)
ind in Eqs. (8) and (9) using �′(r ) = −1/r2 for r > r0

and 0 otherwise as

I (Z1, Z2, r0)

= −Z1

∫
�(r ′′ − r0)

n
(2)
ind(�r ′′)
(r ′′)2

cos θ ′′d3r ′′, (11)

resulting in

I (Z1, Z2, r0) = Z1

2πv2

∫ v
F

+v

|v
F

−v|
dk

× (
2k2(v2

F
+ v2) − k4 − (

v2
F

− v2)2)
×

∞∑
�=0

(� + 1) sin
(
δ

(2)
� (k) − δ

(2)
�+1(k)

)

×
∫ ∞

r0

drR(2)
k,�(r )R(2)

k,�+1(r ), (12)

after straightforward but cumbersome calculations as in [18].
The superscript (2) indicates the phase shifts δ� and radial
wave functions Rk,�(r ) from the electron-ion potential, which
is due to charge 2. Of course the vicinage effect on charge 2

can be calculated just by changing the sub- and superscripts
1 ↔ 2. It is easy to observe that for r0 → ∞ the vicinage
effect vanishes, and for r0 → 0 the term I (Z1, Z2, 0) =
Z1
Z2

dE
dz

(Z2) [see Eq. (A1) from Ref. [18]]. Therefore, it gives
the right united-atom limit for high-projectile energies since
the total cluster stopping power,(

dE

dz

)
united

=
(

dE

dz

)
1

+
(

dE

dz

)
2

= dE

dz
(Z1) + I (Z1, Z2, 0)

+ dE

dz
(Z2) + I (Z2, Z1, 0)

= (Z1 + Z2)2
ω2

p

v2
ln

(
2v2

ωp

)
, (13)

results in the Bethe formula for a FEG system described by
the plasmon frequency ωp.

As demonstrated recently by IDA calculations [19], the
best choice for the electron-ion potential is the Yukawa po-
tential with inverse of screening length α obtained from a
dynamical interpolation between the high-velocity solution
α = ωp/v and the values for the static limit α0 as obtained
by DFT with exchange-correlation terms. Such results have
a rather good agreement with full TDDFT calculations for a
wide range of projectile energies.

We can further improve the description of the electron-ion
potential to allow for the influence of the companion fragment
by using the following electron-ion potential

V
(j )
i (r ) = −Zi + Q

(j )
ind,�

r
exp(−αr ), (14)

where Q
(j )
ind,� is the induced charge generated by the charge

j on the charge i, which provides a further screening for the
electron-ion interaction. It depends on the angular momentum
� and is derived in Appendix A. It is pointed out that this
screening will affect not only the second term of Eq. (10)
but also the first one. This procedure is similar to the one
described in Ref. [27] for the vicinage effect of the ion charge
state. The present model described by Eq. (10) is called
IDAMol in what follows.

C. Linear theory

Within the framework of the dielectric formalism the stop-
ping power of ions in a electron gas system is given by the
following expression [28]:

dE

dz
= 2Z2

1

πv2

∫ ∞

0

dq

q

∫ qv

0
dωω Im

[ −1

ε(q, ω)

]
, (15)

for an ionic point charge Z1. ε(q, ω) is the dielectric function,
which for an electron-gas system was calculated by Lindhard
and reads εL(q, ω, ωp ) (see, for instance, [29] for explicit ex-
pressions). For the cluster ions the stopping power is modified
by the vicinage effect I according to

I = Z1Z2

πv2

∫ ∞

0

dq

q

sin(qr0)

qr0

∫ qv

0
dωωIm

[ −1

ε(q, ω)

]
, (16)
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for two neighboring point charges Z1 and Z2 distant by r0,
after averaging over all orientations. The use of Eq. (16)
to describe different experimental data can be found in
Ref. [5].

It is pointed out that the results from Eq. (5) in the pertur-
bative limit of the IDA approach for a Yukawa potential are
well described making the following replacement in Eq. (15):

Im

[ −1

ε(q, ω)

]
→ Im[εL(q, ω)]

1 + (α/q )2
, (17)

where α is the same used in Eq. (5) and is given by ωp/v

for v � vf . Equation (17) is derived for a central electron-ion
potential as the Yukawa potential. The same holds true for the
vicinage effect I in Eq. (12). It is also very well described in
the perturbative IDA limit by the replacement of Eq. (17). The
use of Eq. (17) yields the correct behavior for v > vf .

III. EXPERIMENTAL PROCEDURE

The energy loss of H+ ions after the breakup of in-
cident HeH+ ions has been measured in Al2O3 using the
medium energy ion scattering (MEIS) technique as reported
in Refs. [15,30–32] for H2

+ ions and other targets. In short,
thin Al2O3 films with 3.5 nm of thickness were deposited
above a carbon substrate via RF magnetron sputtering (AJA
Orion-8) and mounted on a three-axis goniometer of the MEIS
facility at the Ion Implantation Laboratory (LII) at UFRGS.
The chamber containing the samples was connected to a 500-
kV electrostatic accelerator manufactured by HVEE, which
provided a stable H+ and HeH+ beam with energies from 50
to 80 keV/u, with currents between 5 and 20 nA along the
sample normal. The backscattered H+ ions emerging from the
target were analyzed using a toroidal electrostatic analyzer
(TEA) mounted at 120 degrees with respect to the beam
direction. The overall energy resolution of the system is about
400 eV for 50-keV H+ detected ions.

Two-dimensional (2D) maps of ion scattering intensities as
a function of the detected energies and scattering angles (2D
MEIS spectra) were measured and the energy spectra [one-
dimensional (1D) MEIS spectrum] at three scattering angles
(108◦, 120◦ and 132◦) were analyzed. They were simulated
by the POWERMEIS package [33,34], which was extended to
include vicinage and Coulomb explosion effects as described
in Ref. [31]. Application of the MEIS technique at large
backscattering angles means that the fragments are correlated
only during the incoming path and to some extent during
the backscattering collision. The dwell time for the incoming
path inside the thin film is only about 1 fs, too short for any
dynamic alignment of the projectile species. Thus we assume
a random orientation.

IV. DISCUSSION

The IDAMol is first checked for consistency against widely
accepted and successful linear models by turning of its non-
linear effects for the comparison in Fig. 2. For this sake
Eq. (12) was evaluated for a hypothetical small charge Z1 =
Z2 = 0.01 and ωp = 0.5 (corresponding to an electron-radius
density parameter rs = 2.29) as a function of the internu-
clear distance r0. The inverse of screening length was set to

FIG. 2. Comparison of different models of the vicinage effect I

divided by Z2
1 (Z1 → 0) for a homonuclear dicluster as a function of

the internuclear distance r0 and different cluster velocities v. See text
for the details of each model.

α = ωp/v. The results correspond to the solid blue lines
and coincide with results from the linear model given by
the Yukawa approximation as described by Eq. (17) (the
corresponding red dash-dotted lines are nearly identical to the
solid blue curves). However, this linear model differs slightly
from the formalism where the Lindhard dielectric function is
used (called dielectric formalism [4,5]) (black dashed line) for
large internuclear distances. In particular for v = 2 the vici-
nage effect is negative at around r0 = 10 whereas the present
model gives always I > 0 for the present cluster velocities.
The reason for this disagreement is the effect of the induced
charge generated by the companion fragment on the scattering
potential. This effect was taken into account approximately by
using Eq. (14) with Q

(j )
ind,� values from Appendix A. It reduces

the vicinage effect I (see open squares) towards the results
of the linear theory from dielectric formalism (black dashed
lines). The IDAMol vicinage effect, however, stays positive
(for r0 < 20) when considering this correction.

Figure 3 shows the vicinage effect I for different homonu-
clear diclusters separated by r0 = 2. The results are nor-
malized by Z2

1 in order to merge all results at high cluster
velocities. The results for Z1 = 0.01 coincide with the ones
determined from Eqs. (16) and (17) but disagree at small
velocities with those of the dielectric formalism. The reason
for this disagreement is the use of the central approximation
for the electron-ion scattering [35]. Nonlinear effects decrease
the vicinage effect and can even invert its sign as observed
for Z1 � 1 at v ≈ 1. The negative I values arise from a
shift and/or compaction of the electronic screening cloud
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FIG. 3. The vicinage effect I divided by Z2
1 for a homonuclear

dicluster separated by r0 = 2 as a function of the velocity v and
charge Z1. Strong nonlinear effects are observed for Z1 � 0.1 and
low velocities v < 3.

behind the leading ion. The center position and shape of this
cloud have a strong influence on the dynamics of the trailing
companion ion. A high induced electron density in front of
the trailing ion may accelerate this ion, leading to a significant
reduction of the I value even below 0. The Z1 dependence of
the scaled I value in Fig. 3 is a clear proof of nonlinear effects.
The main variation of these curves seems to appear around
Z1 = 0.5 and there is not much difference between the results
for Z1 = 1 and Z1 = 2. This behavior is an indication for the
influence of some higher orders of the interaction.

Furthermore, it is pointed out that negative I values can
also be obtained in linear theory. One example is given by
the dieletric formalism at large internuclear distances (see
Fig. 2). Another example is connected to bound-electron
systems, as demonstrated in Ref. [14] for an oscillator model.
Nevertheless, the latter model could not explain the magnitude
and energy position of negative I values observed in the
experimental data.

The IDAMol results are compared in Fig. 4 to H2
+ experi-

mental data for the stopping ratio RH+ defined as

RH+ =
(

dE

dz
(H+)

)cluster / (
dE

dz
(H+)

)indep.

, (18)

where (dE/dz(H+))cluster is the stopping power of H+
surrounding by its companion (H+ or H0 ions) and
(dE/dz(H+))indep. is the stopping power for independent H+
ions (no vicinage effect). The stopping ratios were measured
for ultrathin SiO2 and Al2O3 films as a function of the incident
H2

+ energy [15,32] and therefore the distance between the
fragments did not change much during the dwell time. In
addition, both films have similar stopping ratio RH+ because
they have similar electronic densities of the valence electrons.

Since the present formalism was developed for a free-
electron gas system, it has to be used with some caution for
the present oxides, although their energy loss functions (ELF)
have just one peak, which can be modeled as a plasmon peak
from a free-electron model. Data [36] and atomic coupled-
channel calculations [37] for H + He deviate by more than
a factor 4 from the simple velocity scaling of a free-electron

FIG. 4. Stopping-power ratio for H+ ions as a function of the
H2

+ incident energy in ultrathin SiO2 and Al2O3 films. The symbols
are the experimental data from [15,32] and the lines correspond to
different models: dielectric formalism (violet dashed line), TDDFT
calculations [32] (green line), and present work IDAMol (orange
solid line).

gas, at v = 0.35. However, according to Ref. [38], a Gd-oxide
surface layer does not give rise to significant deviations from
such a velocity proportionality of proton stopping even down
to v = 0.15. This is in accord with other searches for such
deviations in oxides [39], where only a faint influence of a gap
might be visible at proton energies above 2 or 3 keV. Thus, it
seems that either strong perturbations or also quasimolecular
effects might open many electron-reaction channels that allow
for a quasifree electronic motion during atomic interaction
processes. Furthermore, it is noted that even for H + He, devi-
ations become visible only at energies below about 15 keV/u
(v = 0.8). This means, we expect no significant influence of
target bound-state effects for the current experimental data at
�40 keV/u. Alternatively, we could have used noble metals
to prevent the issue of oxidation. However, such noble metals
may not be described as a simple FEG, since they involve a
complicated ELF at the optical limit. Oxides are consequently
used in the experiments and calculations with the present
model reproduce the experimental data reasonably well. Nev-
ertheless, it is still not clear if the agreement is a general
phenomenon, since the present model neglects possible effects
of strong covalent bonding and corresponding changes in the
electron density.

For the theoretical models displayed in Fig. 4 we have used
then a single value of density parameter rs = 1.56 to describe
both films.

As can be observed in Fig. 4, the stopping ratios measured
for SiO2 and Al2O3 change from values smaller than one,
of about 0.8 at low H2

+ energies to values larger than one,
of about 1.3 at high energies. In fact, all theory curves as
well as the experimental data are flattening towards the lowest
energy. This is the velocity range, where details of the band
structure become more and more important. The crossing of
unity appears at about 83 keV/u in the experimental data
set. In contrast, this switching from negative to positive vic-
inage effects is shifted down to 38 keV/u for the dielectric
formalism. Indeed TDDFT calculations performed recently
for an electron gas system with the same density parameter
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FIG. 5. Experimental 1D MEIS energy spectra (open blue cir-
cles) for HeH+ projectiles on a thin Al2O3 film for different cluster
energies and a scattering angle of 128◦. The H+ ions from the
breakup are detected after backscattering off Al and O. The solid and
dashed lines (red and green, respectively) correspond to POWERMEIS

simulations for HeH+ and H+ projectiles, respectively.

rs = 1.56 show the importance of higher-order terms for the
description of negative vicinage effects at low energies (see
green line) and of the switching point. Nevertheless, these
calculations are still not able to reproduce the experimental
data at the lowest energies and seem to fail to converge
to the dielectric results at asymptotically high energies. On
the other hand, the present IDAMol calculations agree with
experimental data below 63 keV/u much better and converge
to the dielectric results at high projectile energies. At high
energies in the united-atom (UA) limit (at r0 = 0) the vicinity
effect should approach RUA = 2 for homonuclear systems.
At finite r0 values, a gradual variation of interference effects
occurs [4] and average values of R = 1.4...1.5 are obtained.

Finally, the vicinage effect on the stopping power of H+
ions perturbed by He for incident HeH+ cluster ions were
measured by MEIS. For this case higher-order effects should
be much larger. The corresponding 1D MEIS spectra for the
scattering angle of 128◦ are shown in Fig. 5 for 50-, 60-,
70-, and 80-keV/u HeH+ projectiles. Two peaks are visible
and these are due to H+ backscattering at Al and O atoms
of the Al2O3 film. A carbon signal from the substrate was
also measured at lower energies but not shown in Fig. 5.
The energy spectra were fitted by the POWERMEIS software
to get the vicinage and Coulomb explosion effects along the
incoming trajectory before the backscattering collision. The
energy spectra for incident H+ ions at the same HeH+ energy
per nucleon were also measured.

For clarity only the corresponding full simulations are
shown in Fig. 5 (green dashed line). Energy loss broadening
due to Coulomb explosion [10] is clearly visible in both peaks
at 80 keV/u. A negative vicinage effect of the stopping power
can be also identified at 50 keV/u since the widths of the
peaks for H+ projectiles are somewhat wider.

The results for the vicinage effect for incident HeH+

projectiles, namely the ratio of stopping power of H+ ions
traveling with the He ions and the stopping power of uncorre-

FIG. 6. Experimental results for the stopping-power ratio of H+

ions in Al2O3 for incident HeH+ projectiles in comparison with
recent calculations using the present IDAMol model (orange solid
line) and TDDFT (green line).

lated H+ ions is displayed in Fig. 6. The IDAMol (orange solid
line) can describe the present measurements very well, staying
within the error bars of the four experimental data points. In
addition strong nonlinear effects are identified by compar-
ing with linear results from dielectric formalism (see violet
dashed line). Linear predictions calculated using Eqs. (19)
and (20) are in strong disagreement with experimental data
by almost a factor of 2 at low energies for He as a companion
ion. Thus, linear interaction models should overestimate the
stopping-power ratio in Fig. 6 more drastically than in Fig. 4.
Furthermore, in Fig. 6 the nonlinear models agree better
with the experimental data. This shows that a reasonable
description of the nonlinear dynamics is more important than
band-structure details for higher charges. TDDFT calculations
were also performed for rs = 1.56. The same methodology as
of Ref. [32] was applied to the HeH+ dimer. The distance
between He2+ and H+ was set to 1.46 a.u. and was fixed
during time propagation. We considered three different ori-
entations of the dimer, namely two parallel (He2+ follows
H+ (par, 21) or H+ follows He2+ (par, 12) along the pass
through the target) and one perpendicular orientation [the two
ions are perpendicular to the direction of motion with He2+

below H+ (per,21)]. The stopping ratio of the hydrogen ion
was calculated using the following expression:

RHe
H+ = 1 +

[
(Rdim − 1)

2

][
1 +

(
SHe2+

SH+

)]
, (19)

where SHe2+ and SH+ are the stopping powers of independent
He and H ions and Rdim is the total stopping power of the
dimer relative to the sum of independent components:

Rdim = S
av

dim

(SHe2+ + SH+ )
. (20)

The total stopping power of the dimer is averaged as (see
Appendix B) [40]

S
av

dim = 1

3

[
2S

per,21

dim + 1

2

(
S

par,21

dim + S
par,12

dim

)]
. (21)

The TDDFT result (green line) agrees much better with the
experimental data than the linear theory, but it overestimates
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the vicinage effect at low energies, similar to Fig. 4. A
possible reason for this disagreement could be related to the
averaging procedure justified only in the linear regime as de-
rived in the Appendix B. In fact TDDFT are time-consuming
calculations and thus we did not properly average over all
possible orientations of the dimer (as opposed to the IDAMol
results).

V. CONCLUSIONS

A nonperturbative model for the vicinage effect on the
stopping power of cluster ions in matter (IDAMol) was de-
veloped by generalizing the stopping-power formula (IDA
model) derived recently [18,19] for ions slowing down in an
electron-gas system. For this sake it was assumed that the
cluster orientation is not aligned to any particular direction
and a general expression Eq. (12) was derived in terms of
the phase shifts and radial-wave functions of the electron-ion
collision. This expression for the vicinage effects reproduces
the results of the dielectric formalism at high cluster energies
(for H2

+) and gives strong nonlinear effects (for HeH+),
which lead to a good agreement with the experimental data for
the stopping-power ratio of incident HeH+ ions in ultrathin
Al2O3. For the existing experimental data of H2

+ in SiO2

and Al2O3 and HeH+ in Al2O3 we find a good agreement
with the IDAMol calculations over an extended range of
energies (Figs. 4 and 6), explaining the observed transition
from positive to negative vicinage effects at lower energies.
From all these finding we may conclude that IDAMol has an
extremely large range of validity concerning projectile charge
as well as projectile speed.
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APPENDIX A: CORRECTION FOR THE POLARIZATION
CHARGE IN THE SCATTERING POTENTIALS DUE TO

DIMER-ELECTRON INTERACTION

In the ion-target interaction, the incident electron sees a
scattering potential screened by the electrons in the medium.
Let us assume that the interaction process is one in which the
electron scattering occurs with the Z1 ion. Depending on the
value of the orbital angular momentum of the incident elec-
tron, the electron sees a screened potential whose screening
charge is a mixture of polarization charges induced from Z1

and Z2 ions. Then, it is necessary to know what is the polar-
ization charge created by the Z2 ion, since, depending on the
impact parameter at which the electron undergoes scattering,
this polarization charge must be added to the polarization
charge induced by Z1. The induced charges at both scattering
centers can be determined by integration of the induced charge
density. Then, the induced charges in the Zj position can be
written as

Q
(j )
ind,� =

∫ r∗

0
dr r2

∫
d� ρ

(j )
ind,�. (A1)

The upper limit r∗ is written by using the semiclassical
approach as a function of � and k and is given by

r∗ ≈ A (� + 1/2)

k
, (A2)

where the ad hoc factor A assumes the value A = 1.5 for the
H2+

2 dimer. The term (� + 1/2) corresponds to eigenvalues of
the semiclassical angular momentum operator L. Depending
on the value of r∗, the induced charge density around one of
the scattering centers can be modified by the other center. This
effect influences directly the projectile’s energy loss.

According to Eq. (A1), it is noted the integral over the
whole volume is equal to the j th charge (that is, −Zj ), but
here we are interested only in the fraction of that charge
that will influence the scattering of the electrons with the
charge i (with i �= j ). The induced charge density ρ

(j )
ind,� is

calculated by performing an angular averaging on �r0 through
the Poisson’s equation, that is,

ρ
(j )
ind,�(ra ) = − 1

4π
∇2

�r V
(j )

ind,�(ra ). (A3)

where �ra ≡ �r − �rM . The induced potential is taken from the
difference between the potentials of Yukawa and Coulomb:

V
(j )

ind,�(ra ) = −Zj

(
e−α|ra |

|ra| − 1

|ra|
)

, (A4)

V
(j )

ind,�(ra ) can be written in terms of the multipole expansion,
and thus using Eq. (A3) we obtain

ρ
(j )
ind,�(r<, r>) = −Zj

4π
∇2

r

(
sinh(αr<)

αr<

e−αr>

r>

− 1

r>

)
, (A5)

where r< = min(r, r0) and r> = max(r, r0).
Finally from Eqs. (A1) and (A5), the induced charge Q

(j )
ind,�

can be obtained:

Q
(j )
ind,� = − Zjα

4πr0

∫ r∗

0
dr r [e−αr0 sinh(αr )�(rb )

+ e−αr sinh(αr0)�(ra )], (A6)

where �(x) is the Heaviside step function, ra ≡ r − r0, and
rb ≡ r0 − r . As shown in Fig. 2, the use of Qind is a linear
correction for the vicinage effect I (see open squares).

APPENDIX B: DIELECTRIC FORMULATION FOR THE
TERMS OF PERPENDICULAR AND PARALLEL

INTERFERENCE

For two charges Z1e and Z2e in correlated motion with
velocity �v and internuclear separation �r0 (�r0 = �r1 − �r2), the
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energy loss of both charges is given by [4]

dE

dz
= 1

2π2v

∫
d3k

�k · �v
k2

Im

(
− 1

ε(k, ω)

)

× [(
Z2

1 + Z2
2

) + 2Z1Z2 cos(�k · �r0)
]
. (B1)

Doing

∫
d3k → 4π

∫
k2dk

∫ π

0

sin θkdθk

2

∫ 2π

0

dϕk

2π
(B2)

and using the variable ω = �k · �v = kv cos θk , we have
sin θkdθk = −d(cos θk ) = −dω/kv, and thus we obtain

dE

dz
= 2

πv

∫ ∞

0
k2dk

∫ kv

−kv

1

2

dω

kv

ω

k2
Im

(
− 1

ε(k, ω)

)

×
∫ 2π

0

dϕk

2π

[(
Z2

1 + Z2
2

) + 2Z1Z2 cos(�k · �r0)
]
. (B3)

Interference term calculation: average on dimer orientations

Taking v ‖ ẑ, and considering that θk is the angle between
�k and ẑ, θ0 is the angle between �r0 and ẑ, and ϕ′ = ϕk − ϕ0 is
the angle that is made in the xy plane between the projections
of �r0 and �k, we can define the interference term for average on

FIG. 7. Stopping force results of HeH3+ in Al2O3 (rs = 1.56)
calculated from Lindhard formalism. (Upper panel) Blue solid line
for random orientation of the dimer [Eq. (B9)] and green dashed
line [Eq. (B10)] for the ansatz average {2/3, 1/3}; (lower panel)
contributions of the electron-hole and plasmon excitation to the
energy loss of the dimer and the results from the IDAMol approach.

dimer orientation as

〈I 〉ϕ =
∫ 2π

0

dϕk

2π
cos(�k · �r0)

=
∫ 2π

0

dϕk

2π
cos[kr0(cos θk cos θ0

+ sin θk sin θ0 cos ϕ′)]. (B4)

We consider now particular cases.
(1) Parallel orientation (�r0 ‖ �v):

〈I‖〉ϕ =
∫ 2π

0

dϕ′

2π
cos(kr0 cos θk ) = cos

(ωr0

v

)
. (B5)

(2) Perpendicular orientation (�r0 ⊥ �v):

〈I⊥〉ϕ =
∫ 2π

0

dϕ′

2π
cos(kr0 sin θk cos ϕ′)

= J0

(
kr0

√
1 −

( ω

kv

)2
)

. (B6)

(3) Average over r̂0 (random orientation):

〈I 〉r̂0
=

∫ π

0
sin θ0dθ0

∫ 2π

0
dϕ0 cos(�k · �r0) = sin kr0

kr0
. (B7)

FIG. 8. (Upper panel) Stopping number results of HeH3+ in
Al2O3 (rs = 1.56). Here, calculations were performed using the
plasmon-pole approximation to Lindhard dielectric function [41,42].
(Lower panel) The same as in upper panel, but now we have
the energy loss contributions for the parallel and perpendicular
orientations.
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(4) Ansatz average {2/3, 1/3}. From Eqs. (B5) and (B6)
we define

Iav = 2

3
J0

(
kr0

√
1 −

( ω

kv

)2
)

+ 1

3
cos

(ωr0

v

)
. (B8)

Equation (B3) can now be written as〈
dE

dz

〉
rand

= 1

πv2

∫
dk

k

∫ kv

−kv

ωdω Im

(
− 1

ε(k, ω)

)

× [(
Z2

1 + Z2
2

) + 2Z1Z2〈I 〉r̂0

]
. (B9)

And, on the other hand, using the ansatz average we can define〈
dE

dz

〉
ansatz

= 1

πv2

∫
dk

k

∫ kv

−kv

ωdω Im

(
− 1

ε(k, ω)

)

× [(
Z2

1 + Z2
2

) + 2Z1Z2〈I 〉av

]
. (B10)

Using Lindhard’s dielectric function we have performed a full
numerical calculation of Eqs. (B9) and (B10), and the results

are shown in Fig. 7. Notice that in doing this integration we
have included both collective and individual excitation of the
electron gas. As can be seen in Fig. 7, the ansatz average of
the Eqs. (B9) and (B10) provides an excellent approximation
to the exact random average on the whole range of energies.
Therefore, the average {2/3, 1/3} used in Eq. (21) to calculate
the total stopping power of the dimer is very well justified.

In the lower panel of Fig. 7 we show the separate contri-
butions to the total stopping corresponding to electron-hole
excitations and to plasmon excitations [4] and we compare
the total stopping force calculated with the dielectric function
with the nonlinear IDAMol calculation described in Sec. II B.

Finally, in Fig. 8 (upper panel) we show the values of
the so-called stopping number [41,42], comparing the exact
random average with the {2/3, 1/3} ansatz average and with
the stopping number corresponding to separate ions, whereas
in the lower panel we show the separate cases of parallel
and perpendicular orientations and the {2/3, 1/3} average
obtained from them. As it may be observed, there is a rather
weak dependence on the orientations of the internuclear axis.
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