
PHYSICAL REVIEW A 98, 062715 (2018)

Electron-electron-photon polarization correlations in high-energy bremsstrahlung
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A formal derivation of the polarization correlations between the incident electron, the scattered electron, and
the emitted bremsstrahlung photon is given. For the sake of demonstration, spin asymmetries pertaining to
polarized scattered electrons are determined within the relativistic partial-wave theory. In addition to the sum
rule for the polarization correlations relating to an unobserved spin of the scattered electron, three further sum
rules are established in coplanar geometry.
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I. INTRODUCTION

Polarization phenomena during the interplay of fast elec-
trons and photons in strong external fields are of widespread
interest. Polarization transfer from polarized electrons to pho-
tons can be applied for the diagnostics and stability check
of spin-polarized electron beams [1,2]. Polarized electron
bremsstrahlung serves also as a source of radiation to induce
nuclear transitions of specific multipolarities and parities [3].
Moreover, bremsstrahlung from polarized electrons in the
mega-electron-volt region or beyond, emitted in a conversion
target, may be used as a source for polarized positrons via pair
creation [4]. Furthermore, observed polarized photons from
electrons of extraterrestric origin may carry information on
their sources, for example, on the direction of the magnetic
field vector in strongly magnetized media [5].

The most detailed information is provided from a complete
experiment on bremsstrahlung, where the polarization state
of each of the involved particles has to be specified, in
addition to measuring their momentum distribution. Thereby
it is assumed that the target has spin zero and remains inert
during the collision. Up to now, at most the spin polarization
of the incoming electron combined with the polarization of
the emitted photon was recorded, while the spin polarization
of the scattered electron has remained unobserved [1,2,6–10].

There exist a few theoretical investigations which con-
sider the polarization of both outgoing particles. Using
Sommerfeld-Maue scattering states where the spin part of
the electronic wave function involves simply a plane-wave
spinor, such triple polarization correlations were already stud-
ied by Olsen and Maximon [11]. However, calculations were
restricted to angle-integrated cross sections at ultrahigh beam
energies. Haug [12] formulated the Sommerfeld-Maue theory
for arbitrary collision energies and polarizations, but he did
not provide numerical results for spin-polarized scattered
electrons. For heavy atoms and moderate impact energies, the
relativistic partial-wave theory (see, e.g., Refs. [13–15]) has
to be applied, where the spin dependence of the electronic
scattering states is much more involved. Polarization corre-
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lations between beam electrons and bremsstrahlung photons
for the triply differential cross section were considered in
Refs. [16,17] within this theory, again disregarding the spin
polarization of the scattered electrons.

In the present work we provide a general representation
of all polarization correlations by making use of the linearity
of the scattering states in the respective polarization spinors.
The advantage of such a formulation in terms of abstract
transition matrix elements is the discovery of sum rules
which are obeyed by the polarization correlations. This was
demonstrated by Pratt and coworkers in the simpler case of
photoionization [18,19], where it was possible to establish a
general sum rule [20]. This sum rule could be translated to
the doubly differential bremsstrahlung cross section, provided
the scattered electron was described by a single pair of partial
waves [20]. For the triply differential cross section, but still for
unpolarized scattered electrons, it was later proven that this
sum rule holds in coplanar geometry without any restriction
of the final electronic state [21]. When the spin polarization
of the scattered electron is additionally taken into account,
we prove the existence of three further sum rules for the
polarization correlations. Moreover, we provide numerical
results for the polarization transfer from the incoming electron
to the scattered electron, which had not been investigated
previously.

The paper is organized as follows. Section II provides the
formal derivation of the polarization correlations, which are
given explicitly in the case of coplanar geometry. Numerical
examples within the partial-wave theory, also for noncoplanar
geometry, are discussed in Sec. III. The sum rules are estab-
lished in Sec. IV. A short conclusion follows (Sec. V). Atomic
units (h̄ = m = e = 1) are used unless indicated otherwise.

II. THEORY

We characterize the incoming electron by the momentum
ki , the total energy Ei , and the spin polarization vector ζ i .
Correspondingly, for the scattered electron we use kf , Ef ,
and ζ f . The emitted photon is described by its momentum
k, the frequency ω = ck, and the polarization vector ελ. Our
analysis is based on the fact that the electronic scattering states
ψi (ζ i , r ) and ψf (ζ f , r ) are linear in the polarization spinors
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wi = ∑
mi

ami
χmi

and wf = ∑
ms

bms
χms

, respectively, where

χ 1
2

= (1
0) and χ− 1

2
= (0

1) are the spinor basis vectors [22].
The relations between the coordinates of ζ i = (ζix, ζiy, ζiz) =
(sin αs cos ϕs, sin αs sin ϕs, cos αs ) and the coefficients ami

are
given by [14,22,23]

a 1
2

= cos
αs

2
e−iϕs/2, a− 1

2
= sin

αs

2
eiϕs/2. (2.1)

Similar relations hold for the final spin polarization.
Also the photon operator is linear in the polarization vector.

It is convenient to expand ελ in the basis of the circular polar-
ization vectors ε±, where (+) and (−) denote, respectively,
right-handed and left-handed photons,

ε∗
λ =

∑
σ=±

fσ ε∗
σ . (2.2)

Using a coordinate system where the z-axis ez is taken along
ki , ey is taken along ki × k, and ex = ey × k̂i , the photon
momentum k = k(sin θk, 0, cos θk ) lies in the (x, z) plane
(the reaction plane). Accordingly, the circularly polarized
photons are characterized by ε± = (− cos θk,∓i, sin θk )/

√
2,

fulfilling the orthogonality requirement with respect to k.
The linearity in all polarization degrees of freedom allows

the triply differential cross section for scattering the electron
into the solid angle d�f while simultaneously emitting a
photon into the solid angle d�k [14,16,17] to be expressed
in terms of a triple sum [21]:

d3σ

dωd�kd�f

(ζ i , ζ f , ε∗
λ) = N0 |Wrad(ζ f , ζ i )|2,

Wrad(ζ f , ζ i ) = 〈ψf (ζ f , r )| αε∗
λe

−ikr |ψi (ζ i , r )〉
=

∑
mi=± 1

2

ami

∑
ms=± 1

2

b∗
ms

∑
σ=±

fσMf i (ε
∗
σ ,mi,ms ). (2.3)

The normalization constant is given by N0 = 4π2ω kf EiEf

c5ki fre
,

where fre is a recoil factor which is approximately unity, since
recoil effects are negligibly small in our region of interest
[24]. α is a vector of Dirac matrices. By means of a partial-
wave expansion of the Dirac scattering states ψi and ψf and
of the photon operator e−ikr , the matrix elements Mf i are
readily reduced to a multiple sum over the angular momentum
quantum numbers [13]. The one-dimensional radial integrals
occurring in these sums can be calculated with the help of
the complex-plane rotation method [15,25]. For the formal
derivation of the polarization correlations the explicit form of
Mf i is, however, not needed.

The eight different matrix elements entering into Eq. (2.3)
are abbreviated in the following way:

Mf i

(
ε∗

±, 1
2 , 1

2

) = J±, Mf i

(
ε∗

±,− 1
2 , 1

2

) = S±,

Mf i

(
ε∗

±, 1
2 ,− 1

2

) = K±, Mf i

(
ε∗

±,− 1
2 ,− 1

2

) = T±. (2.4)

In coplanar geometry, where kf lies in the reaction plane,
there is a symmetry relation for the Mf i , based on time-
reversal invariance [21],

Mf i (ε
∗
−,−mi,−ms ) = (−1)mi−ms Mf i (ε

∗
+,mi,ms ), (2.5)

which reduces the eight matrix elements to four, since in that
case K± = −S∓ and T± = J∓. A similar reduction has been
established in the theory of photoionization [19].

It follows from the representation (2.3) that the cross
section is bilinear in any of the coefficients ami

, b∗
ms

, and fσ .
In turn, this leads to a linear dependence on the coordinates
of the electron spin vectors, since eliminating the spherical
angles αs and ϕs from Eq. (2.1) one obtains

|a± 1
2
|2 = 1

2 (1 ± ζiz), a∗
1
2

a− 1
2

= 1
2 (ζix + i ζiy ),

|b± 1
2
|2 = 1

2 (1 ± ζf z), b∗
1
2
b− 1

2
= 1

2 (ζf x + i ζfy ). (2.6)

Also the photon polarization can be represented by a vector
ξ = (ξ1, ξ2, ξ3) which enters linearly into the cross section.
Following Tseng and Pratt [14], the photon polarization vec-
tor ελ is expanded in the basis ελ1 = (0, 1, 0) and ελ2 =
(− cos θk, 0, sin θk ) of linearly polarized photons:

ελ =
2∑

k=1

βk ελk
,

β1 = sin ϕλ, β2 = cos ϕλ (ελ linear), (2.7)

β1 = ∓ i/
√

2, β2 = 1/
√

2 (ελ = ε± circular),

where 0 � ϕλ � π , and the upper sign in the last line is for
a right-handed photon and the lower sign is for a left-handed
photon. Then ξ is introduced by means of

ξ = (2Reβ1β
∗
2 , 2Imβ1β

∗
2 , |β2|2 − |β1|2 ). (2.8)

It is easily seen that for the circular polarization ε± one has
ξ1 = ξ3 = 0 and ξ2 = ∓1, while a linearly polarized photon
is represented by ξ2 = 0, ξ1 = sin(2ϕλ), and ξ3 = cos(2ϕλ).

Expanding a linearly polarized photon according to
Eq. (2.2), i.e., ελ(ϕλ) = (e−iϕλε∗

+ + eiϕλε∗
−)/

√
2, the expan-

sion coefficients fσ obey

|f+|2 = |f−|2 = 1
2 , f ∗

+ f− = 1
2 (ξ3 + i ξ1). (2.9)

For circularly polarized photons ε∗
±, the respective rela-

tions are

|f+|2 = 1 = 1
2 (1 + ξ2), |f−|2 = f ∗

+ f− = 0 for ε∗
+,

|f−|2 = 1 = 1
2 (1 − ξ2), |f+|2 = f ∗

+ f− = 0 for ε∗
−.

(2.10)

Therefore the cross section has the following structure,

d3σ

dωd�kd�f

(ζ i , ζ f , ε∗
λ) = 1

4

(
d3σ

dωd�kd�f

)
0

×
⎛
⎝1 +

∑
jkl

C̃jkl ζij ζf lξk

⎞
⎠, (2.11)

where ( d3σ
dωd�kd�f

)0 = 1
2

∑
ζi ,ζf ,λ

d3σ
dωd�kd�f

is the cross section
for unpolarized particles, where it is averaged over the initial
polarization states and summed over the final polarization
states. The coefficients C̃jkl are called polarization correla-
tions. The subscripts j and l refer, respectively, to the j th and
lth coordinates of ζ i and ζ f (with 1, 2, 3 = x, y, z), while the
subscript k denotes the respective coordinate of ξ . Each index
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runs from 0 to 3 (excluding the case j = k = l = 0), where
the absence of a particular coordinate is marked by a zero. We
have introduced a tilde in C̃jkl , because the parameters defined
in Eq. (2.11) differ from the Cjkl introduced by Tseng [16]
by a possible sign, due to the different choice of coordinate
system (in the original papers, the z axis is taken along k as in
the photoionization studies). In coplanar geometry, the seven
nonvanishing parameters for unobserved spin of the scattered
electron [16] are interrelated by C̃jk0 = −Cjk0 for (jk) =
(12), (31), (20), and (23), while C̃jk0 = Cjk0 for (jk) = (03),
(32), and (11) [21].

A peculiarity of the coplanar geometry is the fact that
out of the total 43 − 1 = 63 coefficients C̃jkl only 31 are
nonzero, and only 16 differ from each other. A straightforward
evaluation of Eq. (2.3) provides the representation of the
nonvanishing C̃jkl in terms of the matrix elements J± and S±.
For the unpolarized cross section one obtains

(
d3σ

dωd�kd�f

)
0

= N0 D0,

D0 = |J+|2 + |J−|2 + |S+|2 + |S−|2. (2.12)

The polarization correlations of the form C̃0kl , pertaining to
an unobserved initial electron spin, are given by

C̃021 = 2Re(−J+S∗
− + J−S∗

+)/D0 = C̃213,

C̃002 = 2Im(J+S∗
− + J−S∗

+)/D0 = C̃230,

C̃030 = 2Re(J+J ∗
− + S+S∗

−)/D0 = C̃202,

C̃013 = 2Im(J+J ∗
− + S+S∗

−)/D0 = C̃221,

C̃011 = 2Im(J ∗
+S+ + J−S∗

−)/D0 = −C̃223,

C̃032 = 2Im(−J ∗
+S+ + J−S∗

−)/D0 = C̃200,

C̃023 = (|J+|2 − |J−|2 + |S+|2 − |S−|2)/D0 = − C̃211,

(2.13)

where we have included those parameters which are pairwise
identical to C̃0kl . We also define C̃000 = 1, which provides us
with the further identity C̃232 = C̃000.

Furthermore, there are the polarization correlations for un-
observed photon polarization (i.e., the C̃j0l not yet accounted
for):

C̃301 = −2Re(J+S∗
− + J−S∗

+)/D0 = −C̃133,

C̃101 = 2Re(J+J ∗
− − S+S∗

−)/D0 = C̃333,

C̃103 = 2Re(J+S∗
+ + J−S∗

−)/D0 = C̃331,

C̃303 = (|J+|2 + |J−|2 − |S+|2 − |S−|2)/D0 = C̃131. (2.14)

Finally, we list the remaining C̃jk0 for unobserved polarization
of the scattered electron:

C̃120 = 2Re(J+S∗
+ − J−S∗

−)/D0 = −C̃312,

C̃310 = −2Im(−J+J ∗
− + S+S∗

−)/D0 = −C̃122,

C̃110 = 2Im(J+S∗
− − J−S∗

+)/D0 = C̃322,

C̃320 = (|J+|2 − |J−|2 − |S+|2 + |S−|2)/D0 = C̃112. (2.15)

A remarkable consequence of the pairwise identities of the
polarization correlations is the physical interpretation of the
parameter C̃230, which is not directly accessible to experiment
for unobserved polarization of the scattered electron [14,23].
By means of C̃230 = C̃002, it can now be identified with the
asymmetry resulting from flipping the spin of the electronic
final state (for unpolarized beam electrons and photons).

III. THE NONCOPLANAR GEOMETRY
AND NUMERICAL RESULTS

In noncoplanar geometry, none of the 63 polarization
correlations vanishes identically, and each of them has a
different dependence on the eight matrix elements of Eq. (2.4).
The parameter D0, which determines the cross section for
unpolarized particles, has the general form

D0 = 1
2 (|J+|2 + |J−|2 + |S+|2 + |S−|2

+ |K+|2 + |K−|2 + |T+|2 + |T−|2). (3.1)

Concerning the polarization correlations, we start with C̃003

and C̃002. They describe, respectively, the creation of longitu-
dinally and perpendicularly spin-polarized scattered electrons
from unpolarized electrons (after emitting unpolarized pho-
tons):

C̃003 = 1
2 (|J+|2 + |J−|2 + |S+|2 + |S−|2

− |K+|2 − |K−|2 − |T+|2 − |T−|2)/D0,

C̃002 = Im(J ∗
+K+ + J ∗

−K− + S∗
+T+ + S∗

−T−)/D0. (3.2)

It is seen that C̃003 vanishes in coplanar geometry, in contrast
to C̃002. For the numerical calculations, as well as for the mea-
surements, it is more convenient to represent these parameters
in terms of relative cross-section differences,

C̃003 = dσ (ζf z) − dσ (−ζf z)

dσ0
,

C̃002 = dσ (ζfy ) − dσ (−ζfy )

dσ0
, (3.3)

where we have abbreviated

dσ (ζf l ) = 1

2

∑
ζi ,λ

d3σ

dωd�kd�f

(ζ i , ζf lel , ε
∗
λ),

dσ0 = dσ (ζf l ) + dσ (−ζf l ), (3.4)

with l = z or l = y. dσ0 is the unpolarized cross section
defined below Eq. (2.11), and ζ f = ζf lel is characterized by
the spherical angles (αs, ϕs ) = (0, 0) for l = z and ( π

2 , π
2 ) for

l = y.
The numerical calculations were performed for a 208Pb

target within the relativistic partial-wave theory as described
in detail in Ref. [24]. The Fortran code RADIAL by Salvat
et al. [26] was used to obtain the scattering states upon
solving the radial Dirac equation. For the high collision en-
ergies and photon frequencies in the MeV region considered
here, the presence of any bound target electrons can be
disregarded, except possibly for small electron and photon
angles. Focusing on a large scattering angle, we only took
the electron-nucleus potential into account, which is derived
from the nuclear charge distribution (available in terms of a
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FIG. 1. Triply differential unpolarized bremsstrahlung cross sec-
tion ( d3σ

dωd�kd�f
)0 for 3 MeV electrons colliding with 208Pb at the

scattering angle ϑf = 150◦ as a function of photon angle θk . The
photon frequency is ω = 2 MeV. Shown are results for the azimuthal
angles ϕf = 0◦ (− · − · −), 45◦ (————), and 90◦ (− − − − −).

Fourier-Bessel expansion [27]). Satisfactory convergence was
obtained by truncating the partial-wave expansions at wave
numbers |κi | ∼ 100-120 and |κf | � 25 for the initial and final
states, respectively. The inclusion of too many partial waves
(particularly for ψf ) may lead to numerical instabilities in the
backward hemisphere (which show up as wiggles in the θk

dependence).
The angular dependence of the triply differential cross sec-

tion for the emission of 2-MeV photons by 3-MeV electrons
colliding with lead is shown in Fig. 1. The scattering angle,
denoted by ϑf , is set to 150◦ and the azimuthal angle ϕf

(between scattered electrons and photons) is fixed at 0◦, 45◦,
and 90◦. Angles beyond 180◦ are covered by the fact that
the interval 180◦ � θk � 360◦ at a given ϕf is identical to
the interval 180◦ � θk � 0◦ at ϕf + π . In the coplanar case
(ϕf = 0) there is a sharp double-peak structure close to the
beam axis and a weaker one in the vicinity of the scattering
angle (near 150◦). At ϕf = 45◦, this backward double peak
has merged into one peak, which at ϕf = 90◦ has completely
disappeared, whereas the forward structure persists at all
azimuthal angles. Moreover, the photon intensity decreases
with ϕf for θk � 180◦, but increases at the larger angles. At
θk = 0◦ and 180◦ the cross section is independent of ϕf , since
without the consideration of electron or photon polarizations
there is axial symmetry for kf with respect to the beam axis.

Corresponding to the peak structures in the cross section,
there appear extrema in the spin asymmetries near 0◦ and
150◦, the shape of which depends on the electron spin po-
larization, on the photon frequency, and on the angle ϕf . The
spin asymmetries C̃003 and C̃002 are displayed in Fig. 2. It is
seen from Fig. 2(a) that, for all azimuthal angles, C̃003 = 0
at θk = 0◦ = 360◦ and at 180◦. The reason is, for k aligned
with ki , and also for the (only) observed spin asymmetry ζ f

aligned with ki , there is axial symmetry for kf and hence
independence of ϕf . This has to be combined with the fact that
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FIG. 2. Polarization correlations (a) C̃003 and (b) C̃002 for
3-MeV electrons colliding with 208Pb and emerging at ϑf = 150◦

as a function of photon angle θk . The photon frequency is 2 MeV.
Shown are the results for azimuthal angles ϕf = 0◦ (− · − · −), 45◦

(————), and 90◦ (− − − − −). The wiggles in panel (b) near
180◦ are due to numerics.

C̃003 = 0 in ϕf = 0 irrespective of θk . There is an increase of
the modulus with ϕf in the whole θk region, and for ϕf = 90◦,
C̃003 is point symmetric with respect to its zero at θk = 180◦.

The polarization correlation C̃002, shown in Fig. 2(b),
remains finite at θk = 0◦ and 180◦, except when ϕf = 90◦. In
that particular case (for ϕf = 90◦) the vectors ki , k, kf , and
ζ f are all in the (y, z) plane. This situation corresponds to
the one for the parameter C̃001 at ϕf = 0 [where all these vec-
tors lie in the (x, z) plane], but C̃001 = Re(J ∗

+K+ + J ∗
−K− +

S∗
+T+ + S∗

−T−)/D0 = 0 for ϕf = 0. The spin asymmetry
C̃002 is also point symmetric with respect to its zero at 180◦ in
that case. We note that C̃002 can be quite large, up to 80%, for a
heavy nucleus like 208Pb. Moreover, C̃002 has a broad shoulder
for 30◦ � θk � 150◦ where it increases with ϕf in concord
with the decrease of the cross section in that region. Likewise,
the maximum in C̃002 near θk = 150◦ at ϕf = 0 corresponds
to the dip in the respective cross section.

As a second example we have chosen the pair C̃302 and
C̃303, which describe, respectively, the spin change and con-
servation of a longitudinally polarized beam electron (for
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unobserved photon polarization). They are given by

C̃302 = Im(J ∗
+K+ + J ∗

−K− − S∗
+T+ − S∗

−T−)/D0,

C̃303 = 1
2 ( |J+|2 + |J−|2 − |S+|2 − |S−|2

− |K+|2 − |K−|2 + |T+|2 + |T−|2 )/D0. (3.5)

It follows that C̃302 is vanishing in coplanar geometry, in
contrast to C̃303. In order to represent C̃302 in terms of cross-
section differences, we first collect all contributions to the
cross section which relate to ζ i = ζizez and ζ f = ζfyey , and
to unpolarized photons:

dσ (ζiz, ζfy ) ≡
∑

λ

d3σ

dωd�kd�f

(ζizez, ζfyey, e∗
λ)

= dσ0
1
2 (1 + C̃302ζizζfy + C̃300ζiz + C̃002ζfy ).

(3.6)

Fixing ζiz = 1, we obtain

dσ (1, ζfy ) − dσ (1,−ζfy )

dσ0
= C̃302 + C̃002. (3.7)

In a similar way, we obtain C̃303 by replacing the y component
of ζ f in Eq. (3.7) with the z component:

dσ (1, ζf z) − dσ (1,−ζf z)

dσ0
= C̃303 + C̃003. (3.8)

Since it is not possible to isolate C̃302 and C̃303, they are not
directly accessible to experiment. Instead, the knowledge of
C̃002 and C̃003 from Eq. (3.3) is mandatory in order to provide
C̃302 and C̃303. Their angular dependence is depicted in Fig. 3.
For longitudinal ζ f there is again axial symmetry if θk = 0◦

or 180◦, such that at these two angles, C̃303 is independent of
ϕf . C̃302 remains close to 60% in a large regime of photon
angles at ϕf = 90◦, decreasing gradually as ϕf tends to zero.
In C̃303 the peak near 150◦ is very sharp for ϕf = 0, and this
spin asymmetry is near 0◦ close to unity for all three values
of ϕf . Note that at ϕf = 45◦, both C̃303 and C̃302 still have
a prominent peak near 150◦. For ϕf = 90◦, C̃302 and C̃303

are mirror symmetric with respect to the vertical line drawn
through 180◦. This symmetry property of the polarization
correlations investigated here is related to the fact that, in the
90◦ geometry, all four electron vectors lie in the (y, z) plane.
In turn, this plane is perpendicular to the reaction plane where
k resides. Therefore (up to a sign in the case of unobserved
ζ i) the spin asymmetry does not change upon reflection of k
by the (y, z) plane (i.e., when θk is replaced by 2π − θk).

We have also investigated the change of the four selected
spin asymmetries with beam energy, photon frequency, and
target species. When lowering the nuclear charge, we have
found a decrease of the modulus of all the studied polarization
correlations except C̃302. Large modifications are predicted
when ω is moved to the short-wavelength limit (SWL). This
is displayed in Fig. 4(a) for a kinetic energy Ei,kin of 3 MeV
and ω = 2.9 MeV at ϕ = 45◦ where all spin asymmetries are
nonvanishing. There is a drastic reduction of C̃302 except at the
foremost angles. The peak of C̃303 near 150◦ has changed into
a double-peak structure. Consequently there are now three
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FIG. 3. Same as Fig. 2, but for the polarization correlations (a)
C̃303 and (b) C̃302.

angular regions (near 60◦, 180◦, and 300◦) where |C̃303| is
large, up to 80%. Concerning the other two spin asymmetries,
the minimum of C̃003 near 150◦ has turned into a pronounced
maximum, such that C̃003 has a negative slope at 180◦ when ω

is close to the SWL. Also C̃002 increases by a factor of 2 in the
plateau region 30◦ � θk � 150◦. It should be remarked that
the corresponding SWL cross section is an order of magnitude
higher close to the beam axis and drops by about a factor of
10−4 between θk ≈ 0◦ and 180◦.

When the collision energy is increased to 5 MeV (at fixed
ratio ω/Ei,kin = 2/3), there are moderate changes in both the
magnitude and the shape of all angular distributions. The
situation is completely different when the collision energy
is lowered to the atomic physics regime, where the screen-
ing by the target electrons has to be taken into account.
Actually, as shown in Fig. 4(b), at the backward scattering
angle of 150◦, screening changes the cross section and the
polarization correlations mostly by 5% (or less, except in the
extrema), even at a rather low collision energy of 0.3 MeV.
(For this energy, the expansion was truncated at |κi | = 25
and |κf | = 9.) However, while the intensity increases globally
with decreasing Ei,kin, there are drastic changes in the angular
distribution of the polarization correlations. In particular, for
C̃303, the maximum near 160◦ is turned into a minimum
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FIG. 4. Polarization correlations for electrons scattering from
208Pb into the angles ϑf = 150◦ and ϕf = 45◦ as a function of the
photon angle. (a) C̃302 and C̃303 for Ei,kin = 3 MeV and a photon
frequency of ω = 2 MeV (− · − · −, C̃302; ———, C̃303) and ω =
2.9 MeV (· · · · · · , C̃302; − − − − −, C̃303). (b) C̃003 and C̃303 for
the fixed ratio ω/Ei,kin = 2/3. Atomic potential (provided by Haque
et al. within an optical model prescription [28]): C̃303 (———)
and C̃003 (− · − · −) at 0.3 MeV; C̃303 (− − − − −) at 0.9 MeV.
Point-nucleus potential: Results are marked by (· · · · · · ) and follow
closely the respective curves for the atomic potential.

when the energy is lowered by one order of magnitude
(see Fig. 4).

Nuclear size effects are important for heavy nuclei and
collision energies beyond the MeV region, if the momentum
transfer is high. Already for Ei,kin = 3 MeV and ϑf = 150◦,
the cross section is reduced by up to 10% in the backward
region (150◦ � θk � 210◦). The polarization correlations, be-
ing cross section ratios, are affected less (well below 5%).
At forward angles, the electron–point-nucleus potential is
sufficient for accurate results.

IV. SUM RULES IN COPLANAR GEOMETRY

Let us first study the case of unpolarized beam electrons.
In this case, the average over ζ i eliminates all contributions
to the cross section which depend on its coefficients ζij , such

that the triply differential cross section reduces to

1

2

∑
ζi

d3σ

dωd�kd�f

(ζ i , ζ f , ε∗
λ) = 1

4

(
d3σ

dωd�kd�f

)
0

× [1 + C̃002ζfy + C̃030ξ3 + C̃011ζf xξ1 + C̃013ζf zξ1

+ C̃021ζf xξ2 + C̃032ζfyξ3 + C̃023ζf zξ2]. (4.1)

The seven polarization correlations entering into Eq. (4.1)
obey the following sum rule:

C2
023 + (

C2
021 + C2

002

) + (
C2

030 + C2
013

)
+ (

C2
011 − C2

032

) = 1. (4.2)

Here we have omitted the tilde since C̃2
jkl = C2

jkl through-
out. The proof of this sum rule is straightforward. It is
achieved by multiplying Eq. (4.2) with D0 from Eq. (2.12)
and then considering each term in brackets separately. This
is done with the help of the representation (2.13), using
the identities [Re(z)]2 + [Im(z)]2 = |z|2, Re(z) = Re(z∗) =
1
2 (z + z∗), and Im(z) = −Im(z∗) = 1

2i
(z − z∗).

If, instead, the polarization of the scattered electron is not
observed, only the parameters C̃jk0 are present in the cross
section:

∑
ζf

d3σ

dωd�kd�f

(ζ i , ζ f , ε∗
λ) = 1

2

(
d3σ

dωd�kd�f

)
0

×[1 + C̃200ζiy + C̃030ξ3 + C̃110ζixξ1 + C̃310ζizξ1

+ C̃120ζixξ2 + C̃320ζizξ2 + C̃230ζiyξ3]. (4.3)

The termwise correspondence between C̃jk0 of Eq. (4.3) and
C̃0kj in Eq. (4.1) upon the formal substitution S+ �→ S− and
S− �→ S+ leads to a similar sum rule (see also Ref. [21]):

C2
320 + (

C2
120 + C2

200

)+(
C2

030 + C2
310

)+(
C2

110 − C2
230

) = 1.

(4.4)

The last case to be studied concerns polarized electrons,
but unpolarized photons. The corresponding cross section is
given by

∑
λ

d3σ

dωd�kd�f

(ζ i , ζ f , ε∗
λ) = 1

2

(
d3σ

dωd�kd�f

)
0

× [1 + C̃303ζizζf z + C̃103ζixζf z + C̃200ζiy + C̃002ζfy

+ C̃301ζizζf x + C̃101ζixζf x + C̃202ζiyζfy]. (4.5)

The formal substitution S− �→ iJ− and J− �→ −iS− in the pa-
rameters appearing in Eq. (4.3) provides the correspondence
to the parameters C̃j0l in Eq. (4.5). This leads to the third sum
rule:

C2
303 + (

C2
103 + C2

200

) + (
C2

002 + C2
301

)
+ (

C2
101 − C2

202

) = 1. (4.6)

From Figs. 2(b) and 3(a) it follows that, at θk close to zero,
this sum rule is already exhausted to about 90% by C002 and
C303 alone.

There exists also a fourth sum rule, involving the squares
of all polarization correlations pertaining to unpolarized or
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circularly polarized photons. Arranged in increasing order of
the indices jkl, one has

C2
002 + C2

021 + C2
023 + C2

101 + C2
103 + C2

120 + C2
122 + C2

200

+ C2
202 + C2

221 + C2
223 + C2

301 + C2
303 + C2

320 + C2
322 = 3.

(4.7)

From the representation (2.13)–(2.15) of the C̃jkl appearing
in Eq. (4.7), it follows that all of them are different functions
of J± and S±. Moreover, they represent the maximum set of
linearly independent polarization correlations. Equation (4.7)
can be proven by expressing those parameters in Eqs. (4.2)
and (4.4), which pertain to linearly polarized photons (k = 1
or k = 3), in terms of parameters of the form Cj0l or Cj2l with
the help of the pairwise identities provided in Eqs. (2.13)–
(2.15). Subsequently, all three sum rules have to be added.

V. CONCLUSION

By using an abstract representation of the bremsstrahlung
transition matrix element where only the spin degrees of free-
dom are treated explicitly, we were able to give a parametriza-
tion of the cross section for coincident photon and electron
detection in terms of the coordinates of the polarization vec-
tors. This enabled us to establish sum rules for subsets of the
polarization correlations if the electron is scattered into the
reaction plane. These sum rules are valid irrespective of the
theory applied to describe the bremsstrahlung process, pro-

vided a first-order treatment of the photon field is sufficient.
They can be used to test model-independently the accuracy
of the numerical calculations, and they can help to determine
spin asymmetries for which an experimental observation is not
possible.

We have used the relativistic partial-wave theory to provide
estimates for some spin asymmetries pertaining to a fixed
polarization of the electronic scattering states, while disre-
garding any photon polarization. In our examples of a 208Pb
target and a ratio of 2/3 (or higher) between photon frequency
and beam energy, we predict spin asymmetries amounting up
to 40-80% at collision energies of a few MeV.

With the advance of polarized beam techniques and effi-
cient detectors [29,30], coincidence experiments on polariza-
tion transfer will be feasible in the near future to challenge
the theoretical predictions. The geometry of such (e, e′γ )
experiments can be chosen in a particular way to maximize the
relativistic and magnetic interaction effects. The comparison
of accurate measurements with results from state-of-the-art
bremsstrahlung calculations may shed light on the possible
existence of two-photon processes, like virtual excitation of
the target nucleus.
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