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Electron-positron pair production in slow collisions of heavy nuclei
beyond the monopole approximation
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Electron-positron pair production in low-energy collisions of heavy nuclei is considered beyond the monopole
approximation. The calculation method is based on the numerical solving of the time-dependent Dirac equation
with the full two-center potential. Bound-free and free-free pair-production probabilities as well as the energy
spectra of the emitted positrons are calculated for the collisions of bare uranium nuclei. The calculations are
performed for collision energy near the Coulomb barrier for different values of the impact parameter. The
obtained results are compared with the corresponding values calculated in the monopole approximation.
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I. INTRODUCTION

Heavy quasimolecules formed in low-energy ion collisions
provide a unique opportunity to study quantum electrody-
namics (QED) in extremely strong fields. The ground state
of the quasimolecule with the total nuclear charge exceeding
the critical value Zcr ≈ 173 can dive into the negative-energy
Dirac continuum [1–7]. As was predicted in Refs. [2,3],
after diving the ground state appears as a resonance which
can decay spontaneously with emission of a positron. The
detection of the emitted particles would confirm QED theory
in the unexplored supercritical regime. However, the dynam-
ics of the nuclei can also induce pair production. Therefore
the detection of the supercritical resonance decay requires
distinction of spontaneous and dynamical contributions.

The early experimental investigations of supercritical
heavy-ion collisions were performed at GSI (Darmstadt,
Germany), but no evidence of the diving phenomenon was
found [6]. The next generation of accelerator facilities is ex-
pected to drive these investigations to a new level [8–10]. The
experimental study requires the proper theoretical analysis.

The first calculations of pair production in supercritical
collisions were based on the quasistationary approach in
which only the spontaneous contribution was taken into ac-
count [11–13]. The dynamical pair production in low-energy
ion collisions was investigated in Ref. [14] using perturbation
theory. However, this approach is restricted to the relatively
small values of the nuclear charge and cannot be applied
to the supercritical case. A rough analytical estimation of
pair-production cross section for heavy nuclei was done in
Refs. [15–17]. The dynamical methods employ the solving of
the time-dependent Dirac equation (TDDE), which can be per-
formed numerically using various techniques [18–25]. These
methods take into account the dynamical pair-production

mechanism as well as the spontaneous one. However, there
is no direct way to distinguish their contributions to the
obtained results. The influence of each mechanism can be
investigated only via comparison of the values calculated
for the subcritical and supercritical collisions. Since in the
subcritical case there is no diving, the pair production should
be of pure dynamical origin. In the calculations, the existence
of the spontaneous mechanism was demonstrated either via
introducing the sticking of the nuclei at the closest approach
[18,19,22] or via slowing them artificially down [22]. In
both scenarios, one could see the enhancement of the pair
production in the supercritical case that can be explained
only with the spontaneous mechanism. But the experimental
realization of these scenarios is very questionable.

One can try to find the signal from the supercritical reso-
nance decay in the differential characteristics of the created
particles such as positron energy distribution. But, as was
shown by Frankfurt group (see Refs. [5,18,19] and references
therein) and recently confirmed in Ref. [22], this signal cannot
be found in the positron spectra of the elastic collisions due to
the dominant role of the dynamical pair creation. However,
these calculations were performed within the monopole ap-
proximation where only the spherically symmetric part of the
two-center potential is considered.

It is known that the binding energies of the lowest quasi-
molecular states calculated in the monopole approximation
are in rather good agreement with the exact two-center ones at
short internuclear distances [5,6,26]. Since this region seems
to be the most important for the pair production, one can
assume that it can be quite well described with the monopole
part of the two-center potential. However, the influence of
effects beyond the monopole approximation on electron dy-
namics, which determines the pair production, cannot be
estimated without two-center time-dependent calculations.
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Therefore, in order to verify the obtained monopole results, it
is necessary to perform the related calculations which require
the corresponding theoretical methods.

Such methods were developed in Refs. [24,25], where
they were applied to calculations of the total bound-free
pair-production probabilities. But, in order to investigate the
possibility of the observation of the diving phenomenon in
the same manner as in the monopole case, one needs to
calculate the energy spectra of the emitted positrons. It is also
necessary to take into account the free-free pair production
which also contributes to the spectra. In the present work,
we have performed the required calculations using a method
similar to Ref. [24].

The approach is based on the time evolution of the finite
number of initial one-electron states via numerical solving
of the TDDE with the full two-center potential. The TDDE
is considered in the coordinate frame rotating with the in-
ternuclear axis. The time-dependent electron wave functions
are expanded in a finite basis set constructed from B-splines
using the dual-kinetic-balance approach for axially symmetric
systems [27]. The pair-creation probabilities are obtained uti-
lizing the expressions known from QED theory with unstable
vacuum [5,28]. Throughout the paper we assume h̄ = 1.

II. THEORY

A. Pair production

In the present work, we consider the interaction of elec-
trons with the strong external electromagnetic field nonpertur-
batively but neglect the interelectronic interaction as well as
the interaction with the quantized radiation field. The electron
dynamics in the presence of the external field is governed by
the time-dependent Dirac equation:

i
∂

∂t
ψ (r, t ) = HD (t ) ψ (r, t ), (1)

HD (t ) = cα[ p − eA(r, t )] + V (r, t ) + βmec
2. (2)

Here ( A, V ) describe the interaction with the external field,
(α, β ) are the Dirac matrices, me is the electron mass,
e < 0 is the electron charge, and c is the speed of light. Let
us introduce two sets of solutions of Eq. (1) with the different
asymptotics:

ψ
(+)
i (r, tin ) = ϕin

i (r ), ψ
(−)
i (r, tout ) = ϕout

i (r ), (3)

where tin is the initial and tout is the final time moment, and
ϕin

i (r ) and ϕout
i (r ) are the eigenfunctions of corresponding

instantaneous Hamiltonians:

HD (tin ) ϕin
i (r ) = εin

i ϕin
i (r ), HD (tout ) ϕout

i (r ) = εout
i ϕout

i (r ).
(4)

In the final expressions, we will assume that tin → −∞ and
tout → ∞. The expected number of electrons nk in the state
k and the number of positrons np in the state p are given by
[5,28]

nk =
∑
i<F

|aki |2, (5)

np =
∑
i>F

|api |2. (6)

Here F is the Fermi level (εF = −mec
2) and

aij =
∫

d3r ψ
(−)†
i (r, t ) ψ

(+)
j (r, t ) (7)

are the one-electron transition amplitudes, which are time
independent due to unitarity of the time evolution. The total
number of created pairs Pt and the number of bound-free pairs
Pb can be found as

Pt =
∑
k>F

nk =
∑
p<F

np (8)

and

Pb =
∑

|εk |<mec2

nk. (9)

Since for the considered processes Pt and Pb are much smaller
than unity, in what follows we will refer to them as “probabili-
ties.” In order to obtain the amplitudes aij , the right-hand side
of Eq. (7) can be evaluated at any time moment t . For t = tout

one needs to propagate the final eigenstates ϕout
i (r ) backward

in time from tout to tin and then project them on the initial
eigenstates ϕin

i (r ):

aij =
∫

d3r ψ
(−)†
i (r, tin ) ϕ

(in)
j (r ). (10)

The advantage of the backward time evolution is that the
calculation of the bound-free probability Pb requires prop-
agation of the bound states only. According to Eq. (8), to
obtain the total pair-production probability Pt one has to
propagate all the positive-energy or all the negative-energy
states. In general, in order to find all the nk and np values [see
Eqs. (5) and (6)], one needs to evolve the full set of the in- or
out-eigenstates. However, in our calculations the Hamiltonian
has the time-reversal symmetry [HD(t ) = HD(−t )], and the
in- and out-eigenfunctions are identical (since tin = −tout).
This allows us to obtain the all positron-creation probabilities
np as well as the electron ones nk via propagation of the
positive-energy (or negative-energy) eigenstates only.

B. Two-center Dirac equation in rotating frame

We consider a slow symmetric collision of two nuclei. It is
assumed that the nuclei move along the classical Rutherford
trajectories and they are treated as sources of an external field.
The electron dynamics is determined by the time-dependent
Dirac equation (1). Let us consider this equation in the
reference frame rotating with the internuclear axis. In this
reference frame, the Dirac Hamiltonian has the following
form:

HD(t ) = H0(t ) − J · ω(t ), (11)

where J is the operator of electron total angular momentum,
ω(t ) is the angular velocity of the internuclear axis, and

H0(t ) = c(α · p) + VTC(r, t ) + βmec
2. (12)

Here VTC(r, t ) is the two-center potential of the nuclei:

VTC(r, t ) = V A
nucl[r − RA(t )] + V B

nucl[r − RB (t )], (13)

where the vectors RA(t ) and RB (t ) denote the nuclear po-
sitions. In the present work, we use the uniformly charged
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sphere model for the nuclear charge distribution ρnucl and the
nuclear potential is given by

Vnucl(r ) = e

4π

∫
d3r ′ ρnucl(r ′)

|r − r ′| . (14)

Let us introduce the spherical coordinate system (r, θ, ϕ)
with the origin at the center of mass of the nuclei and the
internuclear axis as the z axis. Since the potential VTC does not
depend on the azimuthal angle ϕ, the operator H0 is axially
symmetric. But the rotational term J · ω violates this sym-
metry. However, in head-on collisions, ω ≡ 0 and HD(t ) =
H0(t ). Moreover, even for collisions with the nonzero impact
parameter one can assume that the influence of the rotational
term is not significant and approximate HD(t ) by H0(t ). The
advantage of this approximation is that there is no coupling
between the one-electron states ψm of different z projection
m of the total angular momentum. The wave function ψm can
then be represented as

ψm(r, θ, ϕ, t ) = 1

r

⎛
⎜⎜⎜⎝

G1(r, θ, t ) exp
[
i
(
m − 1

2

)
ϕ
]

G2(r, θ, t ) exp
[
i
(
m + 1

2

)
ϕ
]

iF1(r, θ, t ) exp
[
i
(
m − 1

2

)
ϕ
]

iF2(r, θ, t ) exp
[
i
(
m + 1

2

)
ϕ
]

⎞
⎟⎟⎟⎠. (15)

After substitution of Eq. (15) in the Dirac equation (1) using
the approximation HD(t ) ≈ H0(t ), one can obtain

i
∂

∂t
�(r, θ, t ) = Hm(t ) �(r, θ, t ) (16)

for the function

�(r, θ, t ) =

⎛
⎜⎜⎝

G1(r, θ, t )
G2(r, θ, t )
F1(r, θ, t )
F2(r, θ, t )

⎞
⎟⎟⎠. (17)

Here the operator Hm(t ) is given by

Hm(t ) =
(

mec
2 + VTC(t ) c Dm

−c Dm −mec
2 + VTC(t )

)
, (18)

where

Dm = (σz cos θ + σx sin θ )

(
∂

∂r
− 1

r

)

+ 1

r
(σx cos θ − σz sin θ )

∂

∂θ
+ 1

r sin θ

(
imσy + 1

2
σx

)
(19)

and σx , σy , σz are the Pauli matrices. In the case of an axially
symmetric Hamiltonian, one can propagate the one-electron
eigenstates via solving Eq. (16) for each m independently.

C. Basis set

In order to solve Eq. (16), we expand the wave function in
a finite basis set,

�(r, θ, t ) =
N∑

n=1

Cn(t )Wn(r, θ ), (20)

where Cn are the expansion coefficients and the set of N

basis functions Wn is generated using the dual-kinetic-balance

(DKB) technique for axially symmetric systems proposed in
Ref. [27]:

Wn(r, θ ) = �Bi (r )B̃j (θ )eu,

i = 1, ..., Nr , j = 1, ..., Nθ , u = 1, ..., 4. (21)

Here

� =
(

1 − 1
2mec

Dm

− 1
2mec

Dm 1

)
, (22)

{Bi (r )} and {B̃j (θ )} are two sets of Nr and Nθ linear-
independent one-component functions, respectively; eu are
the unity bispinors; the single index n ≡ n(i, j, u) is com-
posed from the indices i, j , u; and N = 4NrNθ . In our
calculation method, for Bi (r ) and B̃j (θ ) we choose the B-
splines defined in a spherical box of a finite radius L with the
boundary conditions at r = L set to be zero. The advantage
of such a choice is that the overlap and Hamiltonian matrices
are sparse, which is due to the fact that only a few neighbor
splines overlap. This allows us to significantly facilitate the
numerical calculations.

Substituting the expansion (20) into Eq. (16), we get

i

N∑
k=1

Sjk

dCk (t )

dt
=

N∑
k=1

Hjk (t )Ck (t ), (23)

where Sjk and Hjk are elements of the overlap and Hamilto-
nian matrices, respectively:

Sjk =
∫ π

0
dθ sin θ

∫ ∞

0
dr Wj (r, θ )Wk (r, θ ) (24)

and

Hjk (t ) =
∫ π

0
dθ sin θ

∫ ∞

0
dr Wj (r, θ )Hm(t )Wk (r, θ ). (25)

Here the integration is performed numerically over the overlap
area of the basis functions. The system (23) is solved using the
Crank-Nicolson scheme [29]:

N∑
k=1

[
Sjk + i�t

2
Hjk (t + �t/2)

]
Ck (t + �t )

=
N∑

k=1

[
Sjk − i�t

2
Hjk (t + �t/2)

]
Ck (t ), (26)

where �t is a sufficiently short time step. This system of linear
equations is solved for each propagated state at each time step
employing the iterative BiCGS (biconjugate gradient squared)
algorithm [30] with the preconditioner based on an incomplete
LU factorization [31].

The eigenstates of the instantaneous Hamiltonian
Hm(tin ) = Hm(tout ) are found as the solutions of the
generalized eigenvalue problem:

N∑
k=1

HjkCk =
N∑

k=1

εSjkCk. (27)

The usage of the DKB technique prevents the appearance of
the spurious states in the spectrum of Eq. (27). The solutions
represent the bound states and both continua. The obtained
eigenvectors are propagated in time according to Eq. (26).
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D. Spectrum calculation

Using a finite basis set, one can calculate the probabilities
of positron production np according to Eq. (6). In order
to obtain the energy-differential spectrum dP/dε from the
discrete set of np, in Refs. [22,23], the Stieltjes method was
used:

dP

dε

(
εp + εp+1

2

)
= 1

2

np+1 + np

εp+1 − εp

, (28)

where εp are the eigenvalues of the Hamiltonian matrix [see
Eq. (27)]. These calculations were performed in the monopole
approximation. However, in the two-center case, the resulting
Hamiltonian matrix exhibits a very nonuniform spectrum
with groups of quasidegenerate eigenvalues. Therefore, some
neighboring eigenvalues, εp+1 and εp, are very close to
each other and the corresponding denominator in Eq. (28)
is small enough to cause the nonphysical resonances in the
calculated spectrum, which makes it impossible to use the
Stieltjes method. Therefore, in the present work, we modify
this procedure in the following way:

dP

dε

(
εp + εp+NS−1

2

)

= 1

εp+NS−1 − εp

(
np+NS−1 + np

2
+

NS−2∑
i=1

ni+p

)
. (29)

Here NS is the number of the eigenvalues in the averag-
ing range. If NS = 2, then Eq. (29) is reduced to the sim-
ple Stieltjes method (28). Since the averaging is performed
over a larger number of points, the spurious resonances are
smoothed. One should choose NS as small as possible in order
to prevent oversmoothing of the resulting spectrum. However,
the results obtained according to Eq. (29) still have artificial
oscillations for any value of NS . In order to remove these
oscillations, we use the Fourier filtering technique and cut off
the highest harmonics:

Fk =
n−1∑
p=0

Jp exp (−2πipk/n), (30)

J cut
p =

ncut−1∑
k=0

Fk exp (2πipk/n). (31)

Here

Jp = dP

dε

(
εp + εp+NS−1

2

)
(32)

are the n = N/2 − NS + 1 (N is the size of the basis set)
initial values of the energy-differential spectrum calculated
according to Eq. (29), and J cut

p are the filtered values. The
expression (30) defines the discrete Fourier transformation,
Eq. (31) defines the inverse transformation, but summation
runs only over the ncut < n terms and, therefore, the highest
n − ncut harmonics are cut from the resulting spectrum.

III. RESULTS

In this section, we present our results for pair-production
probabilities calculated beyond the monopole approximation.
The calculations were performed for collisions of two bare
uranium nuclei moving along the classical Rutherford trajec-
tories at energy E = 740 MeV, which is near the Coulomb
barrier. A part of the trajectory with equal initial and final in-
ternuclear distances [R(tin ) = R(tout ) = 2R0] was considered.
The present results were obtained with R0 = 250 fm. The
rotation of the internuclear axis was not taken into account,
i.e., the rotational term in Eq. (11) was neglected.

The basis set was constructed according to Eq. (21) from
the B-splines of the fourth order in a spherical box of size
L = 105 fm. The θ -splines were uniformly distributed in the
range [0, π ]. The number of r-splines Nr was divided into two
parts, N (1)

r and N (2)
r . The first part was uniformly distributed

in the range [0, R0]. The last N (2)
r r-splines were placed with

exponentially increasing steps from r = R0 to the border of
the box. It was found that this distribution provides better
convergence than the pure exponential grid. We used the basis
set with the following parameters: Nθ = 15, Nr = N (1)

r +
N (2)

r = 200, N (1)
r = 125, N (2)

r = 75. The generated positive-
energy eigenstates with the energy up to 80 mec

2, which for
this basis set included 250 bound and 2158 continuum ones,
were propagated in order to obtain the one-electron transition
amplitudes.

In Table I, we present the obtained results for probabilities
of pair production for the different values of the impact pa-
rameter b. The results for the total Pt and bound-free Pb pair-
production probabilities are compared with the corresponding

TABLE I. Pair-production probability in the U−U collision at energy E = 740 MeV as a function of the impact parameter b. Pt is the total
probability, Pb is the probability of bound-free pair production, and Pg is the probability of pair production with an electron captured into the
ground state of the quasimolecule.

Two-center potential Monopole approximation

b (fm) Pg Pb Pt Pb Pt

0 1.09 × 10−2 1.32 × 10−2 1.38 × 10−2 1.25 × 10−2 1.29 × 10−2

5 9.3 × 10−2 1.12 × 10−2 1.16 × 10−2 1.05 × 10−2 1.08 × 10−2

10 6.47 × 10−3 7.64 × 10−3 8.01 × 10−3 7.03 × 10−3 7.26 × 10−3

15 4.21 × 10−3 4.87 × 10−3 5.15 × 10−3 4.39 × 10−3 4.51 × 10−3

20 2.73 × 10−3 3.07 × 10−3 3.46 × 10−3 2.70 × 10−3 2.75 × 10−3

25 1.72 × 10−3 1.93 × 10−3 2.14 × 10−3 1.66 × 10−3 1.69 × 10−3

30 1.11 × 10−3 1.23 × 10−3 1.42 × 10−3 1.03 × 10−3 1.04 × 10−3

40 4.72 × 10−4 5.21 × 10−4 7.04 × 10−4 4.09 × 10−4 4.12 × 10−4
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values from Ref. [22] calculated in the monopole approxi-
mation. In the two-center case, in contrast to the monopole
case, it is also possible to separate the contribution of the
quasimolecular ground state, Pg. As one can see from the
table, the difference between the results for Pt is about 7%
for b = 0 and steadily increases with increasing value of the
impact parameter, reaching 70% for b = 40 fm. This can be
explained by the fact that the monopole potential better ap-
proximates the two-center one at short internuclear distances.
The difference between Pb values is less than between Pt ones
and grows slower with increasing b. This means that, in the
two-center case, the relative contribution of the free-free pairs
(Pf = Pt − Pb) is larger than the corresponding monopole-
approximation contribution, and it increases with increasing
the impact parameter. For b = 40 fm the two-center free-free
probability is of the same order of magnitude as the bound-
free one, in contrast with the monopole approximation. This
leads to the conclusion that effects beyond the monopole
approximation have significant influence on the free-free pair
production, especially for the larger values of the impact
parameter. However, the bound states are still the dominant
channel. Moreover, as it follows from Table I, the major
contribution comes from the pairs with an electron in the
ground state.

It should be noted there exists a little difference in Pb

values with our previous work [24]. This is due to the better
accuracy achieved in the present calculations. We also would
like to note that the value of Pb = 1.32 obtained for b = 0
is close to the corresponding one, Pb = 1.29, from Ref. [25]
calculated using the multipole expansion of the two-center
potential.

The results presented in Table I were calculated for the
fixed projection m = 1/2 of the electron total angular mo-
mentum on the z axis and then were doubled to take into
account the channel with m = −1/2. The contribution due
to the rotation of the internuclear axis was neglected. In
order to investigate the contributions of the higher projections
m, we calculated the probabilities of pair production in the
head-on collision for |m| = 3/2 and |m| = 5/2. Since there
is no rotational coupling in the head-on collision, the states
with different values of m were propagated independently.
The results are presented in Table II. As one can see from
the table, all the probabilities rapidly decrease with increasing
|m|.

The energy spectra of emitted positrons were calculated
employing the method described in Sec. II D. The filtering
technique is illustrated in Fig. 1 where we present the results
obtained using Eq. (29), (NS = 40) with the Fourier filter and

TABLE II. Pair-production probability in the head-on U−U col-
lision at energy E = 740 MeV as a function of the absolute value of
the angular momentum projection |m|. Pt is the total probability and
Pb is the probability of bound-free pair production.

|m| Pb Pt

1/2 1.32 × 10−2 1.38 × 10−2

3/2 3.50 × 10−7 3.66 × 10−5

5/2 6.07 × 10−9 5.53 × 10−6

 0
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 0.014
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dP
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E

E (units of mec2)

not filtered
filtered

FIG. 1. Positron energy spectra for the U−U head-on collision
at energy E = 740 MeV. The dashed (blue) line corresponds to the
results obtained with the filtering procedure and the solid (red) one
denotes the values obtained without a filter.

without. The filtering was performed according to Eqs. (30)
and (31) with ncut = 70. The unfiltered spectrum exhibits
many spurious oscillations which occur due to the very
nonuniform distribution of eigenvalues of the Hamiltonian
matrix. The filtering cuts them off.

In Figs. 2 and 3, we present the obtained positron en-
ergy spectra for b = 0 and b = 30 fm. The corresponding
monopole results from Ref. [22] are also shown. It can be seen
that the monopole and two-center spectra are very close to
each other. It should be noted that the collision with b = 0 is
supercritical while the collision with b = 30 fm is subcritical.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  1  2  3  4  5  6  7  8

dP
/d

E

E (units of mec2)

Two-center
Monopole

FIG. 2. Positron energy spectrum for the U−U head-on collision
at energy E = 740 MeV. The solid (red) line corresponds to the re-
sults obtained with the full two-center potential and the dotted (blue)
one denotes the values obtained in Ref. [22] using the monopole
approximation.
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FIG. 3. Positron energy spectrum for the U−U collision with
the impact parameter b = 30 fm at energy E = 740 MeV. The solid
(red) line corresponds to the results obtained with the full two-center
potential and the dotted (blue) one denotes the values obtained in
Ref. [22] using the monopole approximation.

However, all two-center spectra, as well as the monopole ones,
have the same shape and do not exhibit any feature which can
be associated with the spontaneous pair creation or the diving
phenomenon.

IV. CONCLUSION

In the present work, we further evolved our method for
calculation of pair production in low-energy ion collisions
beyond the monopole approximation proposed in Ref. [24].
Now this technique allows us to calculate the total pair-
production probabilities, including the free-free ones, and the
positron energy spectra in low-energy heavy-ion collisions.

Using the developed method we calculated pair produc-
tion in collisions of bare uranium nuclei at energy near the

Coulomb barrier. The obtained results were compared with
the corresponding values from Ref. [22] calculated in the
monopole approximation. It was found that the effects beyond
the monopole approximation are significant for free-free pair
production. However, the bound-free pairs dominate in the
two-center case as well as in the monopole one. For small
values of the impact parameter, the monopole results for the
total pair-production probability are quite close to the two-
center ones, but the difference increases with increasing the
impact parameter.

The positron energy spectra calculated with the full two-
center potential are very similar to the monopole ones. They
do not exhibit any features that can be associated to the spon-
taneous pair production. This observation supports the conclu-
sion of Refs. [18,19,22] that no direct evidence of the diving
phenomenon can be found in the positron energy spectra.
However, the methods beyond the monopole approximation
make it possible to study the more detailed characteristics of
the process under consideration. For instance, only the two-
center methods allow one to calculate the angular-resolved
energy distribution. Therefore these investigations may open
new opportunities for searching the scenarios for indirect
detection of the diving phenomenon.
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