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Model for scattering with proliferating resonances: Many coupled square wells
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We present a multichannel model for elastic interactions, composed of an arbitrary number of coupled
finite square-well potentials, and derive semianalytic solutions for its scattering behavior. Despite the model’s
simplicity, it is flexible enough to include many coupled short-ranged resonances in the vicinity of the collision
threshold, as is necessary to describe ongoing experiments in ultracold molecules and lanthanide atoms. We
also introduce a simple but physically realistic statistical ensemble for parameters in this model. We compute
the resulting probability distributions of nearest-neighbor resonance spacings and analyze them by fitting to
the Brody distribution. We quantify the ability of alternative distribution functions, for resonance spacing and
resonance number variance, to describe the crossover regime. The analysis demonstrates that the multichannel
square-well model with the chosen ensemble of parameters naturally captures the crossover from integrable to
chaotic scattering as a function of closed-channel coupling strength.
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I. INTRODUCTION

Recent experiments on ultracold ground state molecules
and lanthanide atoms are expanding the purview of ultra-
cold matter. Diverse species are now studied experimentally,
including homonuclear [1–4] and dipolar [5–12] molecules
that are formed by cooling atoms and then coherently asso-
ciating them, molecules that are laser cooled [13–17], and a
variety of lanthanide atoms [18–24]. These ultracold species
furnish several capabilities for quantum computing [25–30],
exploring many-body phenomena [31–37], measuring fun-
damental phenomena [38–42], and studying and controlling
chemistry [43–49]. Many of these applications rely on the
variety of internal states offered by these systems. Lanthanide
atoms possess numerous hyperfine states and electronic states
resulting from their open f shell. Molecules display even
more internal states, arising from rotational and vibrational
degrees of freedom. Although the numerous internal states
lend capabilities to ultracold matter, they also have dramatic
effects on the interactions.

Consequently, unlocking the potential of ultracold
molecules and lanthanide atoms requires us to dispense
with a fundamental assumption about ultracold interactions.
Specifically, it is no longer sufficient to approximate
interactions by commonly used effective potentials, such
as a delta function pseudopotential V (�r ) = gδ(�r ) or a
two-channel resonance model [50].

To understand why such simple effective interactions fail
to describe collisionally complex systems, let us recall how
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these interactions arise in more typical ultracold matter, for
example, alkali or alkaline-earth atoms. The key idea in the
latter cases is that the collisions at ultracold temperatures are
near in energy to at most one closed-channel bound state.
Together with the short-ranged nature of the interactions,
this implies that the scattering is energy-independent over
the range of energies of interest in experiment and well
described by a simple effective interaction, such as the delta
function pseudopotential. In addition to justifying simple
effective interaction potentials, these conditions allow one to
quantitatively predict how magnetic and electric fields affect
the parameters of the pseudopotential with straightforward
techniques, such as quantum defect theory [50].

In contrast, for molecules and lanthanide atoms, the rich
internal structure leads to a proliferation of closed-channel
bound states and associated scattering resonances [51–55].
For example, when diatomic molecules collide, there are an
enormous number of rovibrational excitations of the four-
atom tetramer complex that forms. Extending previous re-
sults [56–65], mostly on lighter molecules, Refs. [52,66]
highlighted this collisional complexity in the context of bial-
kali molecules, elucidated many of its properties, and pre-
dicted the density of states for molecule-molecule closed-
channel bound states to be as high as 1/nK. In lanthanide
atoms the closed-channel bound-state density is observed
to be ∼ 1/(100 μK). In addition to lanthanide atoms and
molecules, many-resonance collisional complexity has been
predicted to manifest in excited-state alkaline-earth atom
collisions [67]. Although in ultracold lanthanide atoms the
temperature is much less than the resonance spacing, a mul-
tichannel treatment of the interactions is still necessary to
describe the dependence on external fields, as well as the
cases where resonances overlap. In molecules, a multichannel
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model is even more essential, since even at the lowest
temperatures—or even at zero temperature in an optical lattice
or tight trap [68–70]—hundreds of channels can be relevant.
The two-particle physics remains under active investigation
[71–81]. Beyond two-particle physics, multichannel interac-
tions can have dramatic consequences, for example on many-
body phase diagrams [82]. Thus an effective interaction capa-
ble of treating the multichannel scattering is essential.

In this paper we present a collisional model that is si-
multaneously flexible enough to account for the collisional
complexity of systems like ultracold molecules and lanthanide
atoms, yet simple enough that one can semianalytically cal-
culate scattering properties and incorporate them into many-
body theories. The model is a multichannel potential, where
each channel is a square well with radius r0 and where each
pair of channels is coupled by a constant for interparticle
separations r < r0, generalizing the two-channel square-well
model [50,83–85]. This model is one of the simplest finite-
ranged alternatives to the effective zero-range multichannel
model [68–70], which is more indirectly connected to the
physical states and requires a cumbersome regularization. It
is also an alternative to more accurate scattering calculations
with multichannel potential energy curves, which are difficult
both to accurately calculate and calibrate to experimental data.

We also present a method to choose parameters for the
multichannel square-well interaction, which mimic the fea-
tures of complex ultracold collisions. The spectral statistics
of many complex systems may be understood within the
framework of random matrix theory (RMT) [86], which grew
out of the study of nuclear spectra [87–89]. The basic premise
of RMT is that the spectral statistics of complex systems
are reproduced by an ensemble of random matrices. The
statistics are universal, depending only on the symmetries of
the underlying Hamiltonian. Most relevant to the present work
is the Gaussian orthogonal ensemble (GOE), which describes
systems with time-reversal symmetry and draws Hamilto-
nian matrices from a distribution with probability P (H) ∝
exp (−TrH2/2σ 2). The model presented here is inspired by
RMT, drawing channel couplings from a Gaussian distribu-
tion, but adds a layer of flexibility by incorporating RMT ideas
into a more traditional scattering calculation. This flexibility
allows—among other things—for independent modeling of
the collision thresholds, spatial structure of resonance wave
functions, and resonance widths.

The paper is laid out as follows. Section II first defines
the N -channel square-well model. Then it calculates the two-
particle scattering eigenstates. Specifically, it reduces finding
these eigenstates to a solving a set of 2N + 1 linear equations
for 2N + 1 variables whose coefficients are simple analytic
functions (Bessel functions). Section III relates the scattering
properties of interest—the closed-channel fraction Zc, scatter-
ing phase shifts δl , cross section σ , Wigner-Smith time delay
τ , and the resonance positions E

(i)
R and widths �(i)—to the

multichannel wave functions. Section IV will give a simple
pedagogical example of scattering data for a three-channel
model, illustrating the connection between the model parame-
ters and the resulting scattering properties. Section V contains
a statistical analysis of the spectral data for an ensemble of
systems. Section V A introduces the statistical ensemble of
specific parameter choices for the multichannel square-well

model, and Secs. V B and V C present the resulting scattering
data. While these parameter choices are in the spirit of a toy
model, they are nevertheless physically realistic, possessing
an overall structure similar to that expected for collisionally
complex systems. The analysis shows that the multichannel
square-well model together with the statistical ensemble of
parameters captures the crossover between integrable and
chaotic scattering as a function of closed-channel coupling
strength in a natural way. Section VI describes how to de-
termine the multichannel model parameters from physical
properties such as scattering data, essential for using the
model as a pseudopotential. Section VII concludes.

II. MULTICHANNEL SQUARE-WELL MODEL

In this section, we present the multichannel square-well
interaction model, and we solve it for the two-particle eigen-
states. We first reduce the N -channel problem with one chan-
nel open to a system of 2N + 1 linear equations for 2N + 1
variables. These equations all have analytic coefficients, and
they can then readily be solved numerically.

We consider a multichannel two-body Schrödinger equa-
tion with a central potential in the relative coordinate r of the
form

[1H0 + V(r )] �ψ (r ) = E �ψ (r ), (1)

where 1 is the identity matrix, and

H0 = h̄2

2μ

(
− ∂2

∂r2
+ l(l + 1)

r2

)
(2)

is the kinetic energy operator in radial coordinates, with μ the
reduced mass colliding for the two particles and l the relative
angular momentum. The wave function is a vector, and its
components ψi represent the wave function in channel i.

We take the potential matrix to be piecewise constant,
given by

Vij (r ) =

⎧⎪⎨
⎪⎩

−Di (i = j, r < r0),

Cij (i �= j, r < r0),

�iδij (r > r0),

(3)

illustrated in Fig. 1. We shall restrict our analysis here to the
case of only one open channel (for which E > �i) and N − 1
closed channels (for which E < �i). In all calculations that

FIG. 1. Illustration of the multichannel square-well model, de-
fined in Eq. (3). Small offsets in the square-well radius are included
only for visual clarity.
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follow, we choose the open channel to be i = N and set this
threshold energy to zero, i.e., �N = 0.

In the region r > r0, the Hamiltonian decouples into N

independent equations,(
− ∂2

∂r2
+ l(l + 1)

r2
+ 2μ�i

h̄2 − k2

)
ψi (r ) = 0 (4)

with k = √
2μE/h̄, and the solutions in each channel are

Riccati-Bessel functions. For each channel, two linearly in-
dependent solutions are given by

{fi (x), gi (x)} =
⎧⎨
⎩

√
πx
2

{
Jl+ 1

2
(x), Nl+ 1

2
(x)

}
, i ∈ o,√

2x
π

{
Il+ 1

2
(x),Kl+ 1

2
(x)

}
, i ∈ c.

(5)

For the open channel, Jν (x) [Nν (x)] is the Bessel function
of the first [second] kind of order ν [90], � = 0, and
x → kr . The normalization of the open-channel functions
is

∫ ∞
0 f(kr )f(k′r )dr = π

2 δ(k − k′) for a given l. The
closed-channel solutions (E < �i) involve modified Bessel
functions, and x → κir with κi = √

2μ(�i − E)/h̄. In
the exterior region r > r0, we retain only the exponentially
decaying solution, gi (κir ), that vanishes as r → ∞. Therefore
the solution vector �ψ+ in the exterior region has components

ψ+
i (r ) =

{
aigi (κir ), i ∈ c,

cfi (kir ) − sgi (kir ), i ∈ o,
for r > r0. (6)

The unknown coefficients ai, c, s are to be determined. If we
were to choose the open-channel amplitude to be normalized
so that c2 + s2 = 1, we would find that s → sin(δl ) and c →
cos(δl ) with δl the angular momentum l scattering phase shift.

In the interior region (r < r0), the solution to Eq. (1)
follows from the fact that the potential matrix V is constant,
and therefore can be diagonalized by a constant orthogonal
transformation, U, which commutes with H01. We refer to
the eigenvalues of V as εα . They form the diagonal elements
of � = UT VU. Inverting the orthogonal transformation, V =
U�UT , we rewrite Eq. (1) in the interior region as

(1H0 + �)UT �ψ (r ) = EUT �ψ (r ). (7)

Thus Eq. (1) is reduced in the interior region to a set of
uncoupled equations for the components of �φ = UT �ψ . Each
solution vector has only one nonzero component: [ �φα (r )]β =
δαβφα (r ). The component solutions—which are required to
vanish at the origin—are again Riccati-Bessel functions.

Defining k2
α = −κ2

α = 2μ(E − εα )/h̄2, the solutions are

φα (r ) =
{
fα (kαr ), E > εα,

fα (καr ), E < εα,
for r < r0. (8)

One can easily rotate the solution back to the original channel
basis; however the result �ψα = U �φα does not in general match
smoothly the exterior solutions given in Eq. (6). The phys-
ical interior solutions must be constructed by taking linear
combinations of �ψα with coefficients bα to be determined
by the matching condition. This means the interior wave
function will be written as �ψ− = ∑

α bα
�ψα . Writing out the

i component of �ψ− we have

ψ−
i (r ) =

∑
α

bαUiαφα (r ), for r < r0. (9)

It is convenient to define the i component of �ψα as

�iα (r ) = Uiαφα (r ). (10)

We now express the requirement that the wave function and
its derivative be continuous at r0 for every physical channel:
i = {o, c} as ∑

α

bα�iα (r0) = ψ+
i (r0),

∑
α

bα

∂�iα (r0)

∂r
= ∂ψ+

i (r0)

∂r
. (11)

There are now N unknown coefficients bα that characterize
the appropriate linear combination in the interior region, along
with N + 1 unknowns {ai, c, s} with i = 1, 2, . . ., N − 1,
where c and s specify the overall normalization and phase
shift of the open-channel wave function. With only one en-
trance channel, the solution is unique up to the normalization
of the open channel. We first exploit this remaining freedom
in the overall normalization by setting any one of the {ai, c, s}
to unity, and then normalize the wave function according to
�ψ → �ψ/

√
c2 + s2. Collecting the 2N + 1 unknowns into a

single vector �x with elements {xj } = {bα, ai, c, s}, we can
now set up a linear system of equations of the form A�x = �y.
The matrix A will be composed of the wave functions in
Eq. (11) collected in a (2N + 1) × (2N + 1) matrix. Then �y
and the last row of A will be a vector with one nonzero entry
corresponding to our arbitrary choice of overall wave function
amplitude, such as c = 1. This leaves a total of 2N unknowns
that can be determined by the remaining 2N equations that
express continuity of the wave functions and their derivatives
at r = r0. Finally, the problem is expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 · · · �1N −g1 · · · 0 0 0
∂�11
∂r

· · · ∂�1N

∂r
− ∂g1

∂r
0 0 0

...
...

. . .
...

�N−1,1 · · · �N−1,N 0 −gN−1 0 0
∂�N−1,1

∂r
· · · ∂�N−1,N

∂r
0 − ∂gN−1

∂r
0 0

�N1 · · · �NN 0 0 −fN gN

∂�N1
∂r

· · · ∂�NN
∂r

0 0 − ∂fN

∂r

∂gN

∂r

0 0 0 0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

...
bN

a1

...
aN−1

c

s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)
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This equation can be solved with a standard linear algebra
package and its solution—a vector containing bi , ai , c, and
s—can be used to construct the complete scattering solution.

III. SCATTERING PROPERTIES AND OBSERVABLES

All physical quantities of interest may be extracted from
the energy-dependent solution vector {bi, ai, c, s}. Here, we
describe the observables calculated in this work, briefly dis-
cuss their utility, and outline how they are determined from
the solutions to Eq. (12).

A. Observables

One quantity calculated directly from the wave functions is
the closed-channel population,

ZC =
∑
i∈c

∫ ∞

0
|ψi (r )|2dr. (13)

This quantity is a measure of how much probability density
resides in a closed-channel quasibound state. This can be eas-
ily calculated with a numerical quadrature grid. It is sharply
peaked at resonance energies and can therefore be used to
identify resonance positions. This quantity can be probed with
photoassociation, and has been used in experiments probing
the many-body BEC-BCS crossover [91].

Another important scattering observable, from which we
can calculate the rest of the other scattering properties of
interest here, is the scattering phase shift δl . This is defined
by

tan(δl ) = s

c
. (14)

From this, one can calculate the scattering cross section
(assuming s wave only with δ = δl=0),

σ = 4π

k2
sin2(δ), (15)

and the Wigner-Smith time delay [92,93],

τ = 2h̄
∂δ

∂E
. (16)

Resonance positions are identified by searching for maxima
in the time delay. This procedure identifies the real part E

(i)
R

of the corresponding pole in the scattering matrix. It does
not typically coincide with the maximum value of the cross
section, which is more directly related to the magnitude of
the pole [94,95]. The value of the time delay at the resonance
position is in turn related to the width of the resonance [96]:

�(i) = 4h̄

τ
(
E

(i)
R

) . (17)

The square of the scattering amplitude, sin2 (δ), in the vicinity
of an isolated resonance is well described by the Fano line
shape [97,98]:

sin2 (δ) = sin2 (δbg )

(
E − E

(i)
R + q �(i)

2

)2(
E − E

(i)
R

)2 + (
�(i)

2

)2 . (18)

Here, δbg is the background scattering phase shift due to the
open channel only:

tan δbg = γfo(kr0) − kf ′
o(kr0)

γgo(kr0) − kg′
o(kr0)

, (19)

where k = √
2μE/h̄ and γ = kinf

′
o(kinr0)/fo(kinr0) with

kin = √
2μ(E + DN )/h̄. The Fano q parameter is determined

by δbg:

q = − cot (δbg ). (20)

No “fitting procedure” is needed to correctly reproduce the
Fano line shape for each resonance; all parameters needed to
evaluate Eq. (18) are determined at the resonance energy E

(i)
R .

B. Time delay

The time delay Eq. (16) is of paramount interest in the
determination of resonance positions and widths. One strategy
to calculate τ (E) would be to calculate δ(E) and apply a
numerical derivative with respect to energy. This procedure,
however, is limited by the accuracy of the numerical deriva-
tive, and moreover makes searching for the maxima of the
time delay an inelegant procedure. It is possible, however, to
avoid the numerical derivative and calculate the time delay
and its energy derivative (necessary to determine τ ) directly at
a given energy. We proceed by adapting a strategy employed
for R-matrix methods [99]. Begin with Eq. (12), which is of
the form

A�x = �y, (21)

and apply an energy derivative to both sides. Since the vector
�y is a constant, we immediately obtain a linear equation for
d �x
dE

:

A
d �x
dE

= −dA
dE

�x. (22)

Let us consider the energy derivative of the matrix A. Because
the matrix U is independent of the energy, d�iα

dE
= Uiα

dφα

dE
,

and hence all energy derivatives are applied to Riccati-Bessel
functions of the form given in Eqs. (5). The second derivative
d

dE
( dφα

dr
) may be efficiently evaluated without calculating any

additional functions by invoking the Riccati-Bessel differen-
tial equation:

d2f
c,o
l (z)

dz2
=

(
l(l + 1)

z2
± 1

)
f

c,o
l (z), (23)

where we take the + sign for the exponential functions (c)
and the − sign for the oscillatory (o) functions. The vector
�x appearing in Eq. (22) is the result of solving Eq. (21). The
solution to Eq. (22), namely d �x

dE
, gives ds

dE
= dx2N+1

dE
and dc

dE
=

dx2N

dE
. These, in turn, are related to the time delay through

Eq. (14) and Eq. (16):

τ (E) = 2h̄ cos2(δ)

c2

(
c

ds

dE
− s

dc

dE

)
. (24)

If, as in Eq. (12), one chooses c(E) = 1, then the Eq. (24)
simplifies to τ (E) = 2h̄ cos2(δ) ds

dE
. Because τ (E) exhibits a

peak at resonance, the search for resonances is equivalent to a
search for the zeros of dτ

dE
. To calculate dτ

dE
we apply another
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energy derivative to Eq. (22) and solve the resulting linear
equation:

A
d2 �x
dE2

= −2
dA
dE

d �x
dE

− d2A
dE2

�x. (25)

It is again possible to efficiently evaluate the elements of d2A
dE2

without calculating any additional Riccati functions beyond
those needed for A. If we again choose c(E) = 1, the deriva-
tive of the time delay is

dτ

dE
= 2h̄ cos2(δ)

d2s

dE2
− sτ 2

h̄
. (26)

In this way, each additional energy derivative of the solution
vector may calculated at the cost of solving only one addi-
tional linear matrix equation at the same energy.

C. Bound-state sector

When the coupling between the open and closed channels
is weak, the open channel serves as an “analyzer” for the
spectrum of the closed-channel sector. A clear understanding
of the elastic scattering spectrum emerges if one first calcu-
lates the position of the closed-channel bound states. Let us
therefore restrict our attention for the moment to the sector
of closed channels only, considering the Nc = N − 1 closed
channels to be isolated from the open channel. One must
now return to the potential matrix and diagonalize only the
closed-channel sector of V. Let �c = UT

c VcUc, where Vc is
composed of the first Nc rows and columns of V. We may then
construct a matrix of the functions �c

iα = Uc
iαφc

α . Then, we
match the log-derivatives of the interior and exterior solutions
by demanding

∑
α bc

α

∂�c
iα (r0 )
∂r∑

α bc
α�c

iα (r0)
= 1

gi (κir0)

∂gi (κir0)

∂r
for i ∈ c. (27)

We can write this as a matrix equation if we let G be an Nc ×
Nc matrix whose diagonal elements are the log-derivatives of
the exterior functions:

Gij = δij

[
1

gi (κir )

dgi (κir )

dr

]
r0

. (28)

Now let �c each be Nc × Nc matrices evaluated at r0 with
elements �iα (r0). Matching the log-derivatives of the interior
solution to the exterior solution leads to a matrix equation(

∂�

∂r
− G�

)
�z = 0, (29)

where �z is a vector of containing the Nc coefficients bc
α .

Equation (29) is satisfied when

C(E) = det

∣∣∣∣∂�

∂r
− G�

∣∣∣∣ = 0. (30)

The positions of the closed-channel bound states coincide
with zeros of C(E). If the couplings between the open channel
and closed channels are weak, then the zeros of C(E) will
coincide with the resonance positions.

IV. SIMPLE EXAMPLE

In this section we present a simple pedagogical example
with only three channels which is straightforward to interpret
and reproduce. Before we specify the parameters of the po-
tential matrix, we recall that an isolated (s-wave) square-well
potential of depth V0 with respect to its threshold supports
bound states with binding energy B that satisfy the transcen-
dental equation,√

B

ε0
+

√
V0 − B

ε0
cot

(√
V0 − B

ε0

)
= 0. (31)

We write energy quantities in terms of the natural energy unit

ε0 = h̄2

2μr2
0

. (32)

This notation is used throughout. In the absence of any off-
diagonal couplings Cij → 0, the positive energy (B < �)
solutions to Eq. (31) signify bound states embedded into the
continuum of the open channel.

To better illustrate how these bound states become reso-
nances, we consider a tridiagonal potential matrix with one
open channel and two closed channels. The potential is de-
fined by specifying the constants in Eq. (3); we choose D1 =
D2 = D3 = 50ε0, C12 = C21 = 5ε0, C23 = C32 = 5ε0, C13 =
C31 = 0, �1 = �2 = 200ε0, and �3 = 0. Each of the two
closed channels supports five bound states below its threshold,
but only three of these sit above the open-channel threshold.
Because both closed channels have the same threshold energy
and the same depth, each of the three levels is twofold degen-
erate in the limit that all Cij → 0. The nonzero Cij split these
states into six observable resonances with finite width. The
splitting is of order 10ε0, as one might expect from inspection
of the 2×2 closed-channel sector of the potential matrix V.

These six resonances are seen in the scattering observables
plotted in Fig. 2. In (a) we compare the resonance positions
(red) and the eigenenergies of the bound sector (black). In
(b) we show both the time delay (black) and closed-channel
amplitude (ZC , red). Here we see strong correlations between
the two curves. In (c) we plot sin2(δ) (black) for the full
system. Resonances appear clearly upon comparing to the
background scattering from only the open channel (red dashed
line). The dashed blue curves in (c) are the Fano resonance
profiles with parameters determined from Eq. (18). Each
Fano resonance profile is plotted over the energy range of
E

(i)
R − 2�(i) to E

(i)
R + 2�(i).

In Fig. 3 we show two wave functions for this example
system. In (a) we show a resonant example for incident energy
of 33.2ε0, and in (b) we shown a nonresonant scattering
solution with an energy of 60.0ε0. The closed-channel wave
functions are shown as dashed red and dotted blue curves,
while the open-channel wave function is shown as a solid
black line. For these wave functions, we use the normalization
of s2 + c2 = 1. The contrast between (a) and (b) is stark. The
amplitudes of the closed channels are orders of magnitude
apart.

In Fig. 3 the inset shows the 2-channel closed-sector bound
state with an energy of about 32.9ε0. It is this bound state that
leads to the resonance shown in (a). This state corresponds to
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FIG. 2. Results shown here are for an s-wave, N = 3 channel
scattering systems. Panel (a) has black vertical lines indicating the
bound states of only the closed channel system, solutions to Eq. (30).
The red vertical lines in (a), which lie nearly on top of the black lines,
are the locations of resonances in this system identified as maxima of
the time delay. Panel (b) shows the natural logarithm of both the time
delay (black curve) and the closed channel population (red dashed
curve). Sharp peaks occur at the resonance positions. Panel (c) shows
sin2(δ) (black). The dashed red curve in panel (c) corresponds to
the background scattering for which the open channel is decoupled
from the closed channel sector. The blue dashed curves are Fano line
shapes plotted using Eq. (18).

the symmetric linear combination of channel states obtained
by diagonalizing the closed-channel sector of V.

V. STATISTICAL ANALYSIS

Stemming from the well-verified but yet unproven conjec-
ture of Bohigas, Giannoni, and Schmit [100], the transition
from a regime of integrability to one of nonintegrability
and chaos is marked by a distinct change in the distribution
of energy level spacings. An integrable system with many
degrees of freedom produces a uniform distribution of energy
levels, as if the levels were the result of a Poisson process
giving a Poisson distribution of energy level spacings. Be-
cause the Hamiltonian for an integrable system decouples
into independent degrees of freedom, the energy levels may
be close together and may even cross as some parameter in
the Hamiltonian is changed. A chaotic system is typically
characterized by strong coupling between the many degrees
of freedom, leading to a characteristic level repulsion. The
nature of the level repulsion is universal, depending only on
the symmetry. At small level spacings s, the level spacing
probability behaves as sβ for β = 1, 2, or 4. We consider
only systems with time-reversal symmetry, which belong to

channel 1 (closed)
channel 2 (closed)
channel 3 (open)

−4
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0
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4

i(r
)

E/ 0 = 33.2(a)

0.0 0.5 1.0 1.5 2.0 2.5
−4
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0
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4

r/r0
i(r

)

E/ 0 = 60.0(b) 0.0 0.5 1.0 1.5 2.0
−1.0

−0.5

0.0

0.5

1.0

r/r0

ibo
un
d (
r)

E/ 0 = 32.9

FIG. 3. The wave function is shown for the simple s-wave,
N = 3 channel scattering systems when the system is both (a)
resonant and (b) nonresonant. The closed channels are shown as
dashed red and dotted blue curves, and the open channel is shown
as a solid black line. For the scattering wave functions, we use the
normalization of s2 + c2 = 1. Panel (a) shows the scattering wave
function with an energy of 33.2ε0. Panel (b) shows the scattering
wave function with an energy of 60.0ε0. Inset: Bound state for the
closed sector is shown with energy of 32.9ε0.

the β = 1 universality class. The corresponding probability
distribution of nearest-neighbor level spacings is to a very
good approximation described by the Wigner surmise P (s) =
πs
2 exp (−πs2

4 ), also called the Wigner-Dyson (WD) distribu-
tion. Here, s is the energy level spacing measured here in units
of the average level spacing: s = S/〈S〉. For experimental
data, 〈S〉 typically denotes the level spacing averaged over
a long spectral run. For the present calculations, it shall
denote both a spectral average and an ensemble average. The
Wigner surmise emerges from the level spacing statistics of
an ensemble of 2×2 orthogonal Hamiltonian matrices with
elements drawn from a Gaussian distribution. The Gaussian
orthogonal ensemble (GOE) constitutes a generalization of
this idea to an ensemble of N×N matrices [86].

Our goal in this section is to introduce a model with
physically realistic choices of parameters, and demonstrate
not only that it captures the crossover from the Poisson to
the Wigner-Dyson regime, but that it does so in a smooth
and physically transparent way. We shall study an ensemble
of systems for which the matrix elements of the potential
V between different channels are drawn from probability
distributions inspired by random matrix theory [87,88], but for
which each channel has a randomly chosen threshold drawn
from a uniform distribution, similar in spirit to the matrix
ensembles studied by Wigner [101,102]. We shall focus on
two physical observables that emerge from this model: the
nearest-neighbor level spacing distribution and the resonance
number variance in an energy window.
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A convenient probability distribution to describe the
nearest-neighbor level spacing distribution across the
integrable-chaotic crossover is the Brody distribution
[89,103],

P (w, s) = (1 + w)A(w)sw exp {−[A(w)s]1+w}, (33)

where A(w) = �( 2+w
1+w

) and �(x) is the Gamma function. This
smoothly interpolates from the Poisson distribution to the
WD distribution as a single parameter, w, varies from zero to
one. The GOE in the limit N → ∞ gives a Brody parameter
w = 0.953 [89], which is close to but not exactly equal to one.

Other statistical measures are often used to characterize
fluctuations in the spectral density. In particular, the number
variance �2 contains all information regarding two-point
fluctuations in the spectrum, and is used to characterize the
spectral rigidity. It is defined as

�2(ε) = 〈N (E, ε)2〉 − 〈N (E, ε)〉2, (34)

where ε = �E/〈S〉 and N (E, ε) is the number of resonances
in range [E,E + �E]. The bracket 〈·〉 in Eq. (34) may
indicate an average over nonoverlapping energy windows with
starting value E, an ensemble average, or—as in our case—
both. The expected number of levels in energy window ε

is 〈N (E, ε)〉 ±
√

�2(ε). The spectral rigidity itself, typically
denoted �3, and its ensemble average 〈�3〉, can be expressed
in terms of the number variance (see, for example, Ref. [89]).

A. Model for potential matrix parameters

Let us first describe our RMT-inspired choice for the
potential matrix V, and then construct an ensemble of systems
of this form whose statistical properties we characterize in
detail. The model is required to support a large density of
states within a prescribed energy window near the collision
threshold. Energy levels away from threshold are not acces-
sible in ultracold collisions, so our goal is to construct an
optimized model that places levels only where needed. We
engineer the desired bound-state structure by working with the
simplest case of each closed channel supporting exactly one
bound state within a fixed energy window near the collision
threshold. A closed channel with threshold � will support a
state at the open-channel threshold (i.e., zero energy) if the
binding of the state is equal to the threshold energy of that
channel: B → �. Let V

(n)
0 be the solution to Eq. (31) such

that a state with n − 1 nodes and binding energy Bn sits at the
zero-energy threshold. One can then use Nc closed channels to
model Nc resonances by choosing parameters in Eq. (3) such
that

Di = Bn − V
(n)

0 + E
(i)
0 ,

�i = Bn + E
(i)
0 ,

Cij =
{
gocuij (i = o, j ∈ c, or i ∈ c, j = o),

gccuij (i, j ∈ c),
(35)

where goc represents the scale of the coupling between the
open channel and each closed channel, and gcc represents the
scale of the couplings among closed channels.

To use this model, we need to choose the parameters
appearing in Eq. (35), for which we use the following

physically motivated ensemble. The basic scheme is to imag-
ine each closed channel as belonging to a set of Nc identical
clones, each offset so that its bound state sits at position E

(i)
0 .

One samples the E
(i)
0 from a uniform distribution with the

desired resonance density, while the random variables uij are
drawn from a Gaussian distribution P (u) = exp(−u2)/

√
π .

The potential matrix is required to be symmetric, so we first
fill the upper-right triangle (j > i) of the matrix and then set
Cij = Cji for all j < i. This model captures the key idea that
the diagonal and off-diagonal matrix elements have distinct
origins in colliding ultracold matter.

In the limit gcc, goc  〈S〉, the solutions to Eq. (30) co-
incide with the energies E

(i)
0 . As one increases gcc, the res-

onance positions move away from the initial values E
(i)
0 , but

remain close to the solutions to Eq. (30) provided that goc 
〈S〉. It is thus possible to construct an arbitrary density of
resonances within a finite energy window Wc by distributing
the Nc resonances E

(i)
0 as desired within the window Wc. We

assume here that the window WC is smaller than the spacing
between the eigenenergies of an individual channel potential,
i.e., WC < δE, where δE is the spacing between neighboring
solutions to Eq. (31). This assumption is not fundamental
to the utility of the model presented here, but it makes the
engineering of resonance states conceptually straightforward.

All of the data presented in the following subsections are
extracted from an ensemble of 100 systems, each with N = 41
channels, Nc = 40 of which are closed. For each system, we
place Nc = 40 resonances within a narrow energy window
near the zero-energy collision threshold. We will initialize
the ensemble with weak couplings, and consequently the
solutions to Eq. (30) will initially coincide with E

(i)
0 , and the

resulting Brody parameter for the ensemble will begin very
close to zero. To study the transition to chaos, we monitor the
coupled resonance positions E

(i)
R as we linearly increase the

scale of the closed-channel coupling gcc while keeping goc

fixed.
Clearly, one need not choose the parameters according

to Eq. (35) to model an integrable, chaotic, or intermediate
system. One could obtain an ensemble of systems for any
desired Brody parameter by simply drawing the initial reso-
nance spacings E

(i+1)
0 − E

(i)
0 from the corresponding Brody

distribution, and setting gcc → 0 (with goc  〈S〉). Our goal
here is to demonstrate that even when the E

(i)
0 are uniformly

distributed (so the level spacings are Poisson-distributed), the
coupled resonance positions E

(i)
R smoothly transition to the

Wigner-Dyson regime.

B. Sample spectrum

We will show example scattering properties using the sta-
tistical ensembles introduced in the prior section. We choose
the E

(i)
0 from a uniform distribution in energy range [0, 0.1ε0].

The minimum wavelength within this window of collision
energies is much longer than the range of the potential: λmin ≈
20r0. Therefore, open-channel collision physics is expected to
be insensitive to the short-ranged structure of the potential.
The minimum value for the first closed-channel threshold is
set to �1 = 10ε0.
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FIG. 4. Results shown here are for two s-wave N = 41 channel scattering systems. Panels (a)–(c) show scattering data for a system
belonging to an ensemble with a Brody parameter w = 0.05 ± 0.01, indicating an uncorrelated distribution of resonances. Panels (d)–(f) show
data for the same system after the closed-channel coupling has been increased to produce an ensemble Brody parameter of w = 0.96 ± 0.03,
indicating strong level repulsion and chaos. Panels (a) and (d) have vertical lines indicating positions of closed-channel bound states found as
solutions to Eq. (30). Panels (b) and (e) show the natural logarithm of the time delay (black curves) where sharp peaks occur at the resonance
positions. Also shown is the closed-channel fraction (red dashed curve). Panels (c) and (f) show sin2(δ) (black). The dashed red curve in panels
(c) and (f) corresponds to the background scattering for which the open channel is decoupled from the closed-channel sector.

We show results for various gcc and goc, summarized in
Table I. Because couplings are defined in terms of model units
ε0, but statistical data are more naturally scaled by 〈S〉, both
scalings are shown in the table. We choose goc to be small
compared to both ε0 and 〈S〉, and study the dependence on gcc

while goc is held fixed.
Elastic scattering spectra for one particular member of

the statistical ensemble described above are shown in Fig. 4.
Panels (a)–(c) show data in the regime of Poisson statistics,
where the ensemble gives a Brody parameter of w = 0.05 ±
0.01. For this case, the couplings are specified by the first
row of Table I. Panels (d)–(f) show data in the regime of
Wigner-Dyson (or GOE) statistics with w = 0.96 ± 0.03. For
this case, the couplings are specified by the last row in Table I.
The finite Brody parameter in the Poisson regime is likely
due to the residual value of goc. It is possible to reduce the
Brody parameter further by reducing goc. But the resulting
spectra exhibit narrower resonance features, and resolving
these requires calculating scattering data on a finer energy

TABLE I. Model parameters for the three (out of 50) couplings
gcc shown in Fig. 5. The first two columns show the couplings in
model units of ε0, while the final two columns are scaled by 〈S〉.

Model Units Ensemble Units

Fig. 5 gcc/ε0 goc/ε0 〈S〉 gcc/ 〈S〉 goc/ 〈S〉
(a) 10−5 10−3 2.445×10−3 4.091×10−3 0.4091
(b) 1.641×10−3 10−3 2.557×10−3 0.6418 0.3911
(c) 10−2 10−3 4.029×10−3 2.482 0.2482

grid. Because we work in the limit of weak goc, the resonance
positions—defined as the maxima of the time delay—are very
close to the positions of the closed-channel bound states given
by solutions to Eq. (30).

The red dashed curve in panels (c) and (f) of Fig. 4
shows the square of the background scattering amplitude,
sin2 (δbg), due to the open channel only. The background
phase shift δbg is responsible for the Fano asymmetry param-
eter q via Eq. (20). Both δbg and q can be tuned by varying
the open-channel well depth DN . Open-channel bound states
near the threshold collision energy have a dramatic effect
on the threshold value of δbg . From Eq. (31), when DN →

h̄2

2μr2
0
[ (2n−1)π

2 ]2 (for n = 1, 2, . . .), threshold collisions give
δbg → π/2 and q → 0. By varying the depth DN so that an
open-channel bound state crosses the collision threshold, it is
possible to model effects similar to the broad resonance fea-
tures observed in atom loss measurements of dysprosium [55].

Figures 4(b) and 4(e) show the time delay (solid black) and
the closed-channel population (dashed red) as a function of
collision energy. Each of these quantities is maximized at res-
onance, and may be used to identify resonance positions. We
locate each maximum in the time delay, and extract the reso-
nance width through Eq. (16). Note that both τ (E) and ZC (E)
have maxima that closely coincide with solutions to Eq. (30)
which are marked as vertical lines in panels (a) and (d).

The black curve in panels (c) and (d) of Fig. 4 shows the
square of the total (s-wave) scattering amplitude sin2 (δ). It
closely follows the background except at resonance positions.
The dashed blue curves are plots of the Fano resonance profile
Eq. (18) from E

(i)
R − 2�(i) to E

(i)
R + 2�(i).
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C. Statistical measures

For each member of the ensemble and for each value of
the coupling scale gcc, we tabulate E

(i)
R in the range E ∈

[0, 0.1ε0]. From these tabulated values, we calculate ensemble
averages reported in this section. For each coupling, we first
compute the average nearest-neighbor level spacing for each
system, then average those together to obtain the ensemble-
averaged 〈S〉. In Table I we list the ensemble-averaged 〈S〉 for
a few coupling values. The level repulsion that occurs as we
ramp up the couplings results in an increase in 〈S〉. Even when
goc/ε0 is held fixed, goc/ 〈S〉 decreases with increasing gcc, as
also shown in the inset of Fig. 6.

In order to calculate the Brody parameter that best de-
scribes the level spacing distribution for each coupling, we
maximize the following log-likelihood function with respect
to w:

M =
∑

i

ln P (w, si ). (36)

Here P (w, si ) is the single-event probability of level spacing
si . It is given by Eq. (33) up to a multiplicative constant,
so ln P (w, si ) = lnP (w, si ) up to an irrelevant additive con-
stant. The sum is over all level spacings in the ensemble. The
error in the estimate for w is [104]

σw =
√[

− ∂2M
∂w2

]−1

w=w0

, (37)

where w0 is the value of w that maximizes Eq. (36). In Fig. 5,
we show probability distributions of the nearest-neighbor
level spacing for three values of the Brody parameter. The red
curves show the fitted Brody distribution with the correspond-
ing Brody parameter labeled. The dashed blue curve in panel
(a) shows the Poisson distribution,

P (s) = exp (−s), (38)

while the dashed blue curve in panel (b) shows the “semi-
Poisson” distribution [105],

P (s) = 4s exp (−2s). (39)

The three panels in Fig. 5 correspond to three points on the
crossover curve shown in Fig. 6.

Let us briefly discuss some of the features observed in the
crossover curve shown in Fig. 6. We find a rapid rise in w from
zero to about w = 0.7 as the coupling increases from gcc ≈ 0
to gcc ≈ 〈S〉, then a more gradual increase with slow variation
towards w = 0.96 at gcc ≈ 2.5〈D〉. It is unclear at this time
to what degree the curve calculated here for the square-well
model Eq. (3) is universal. As we have already mentioned, the
Brody distribution itself only approximately characterizes the
statistics for intermediate values of w. Nevertheless, we can
say that our crossover curve shares some general features in
common with the curve calculated in [72] using a QDT ap-
proach. This is despite some important differences in the two
calculations. The most important of these is that Reference
[72] assumes that the closed-channel sector has already been
diagonalized and tracks the transition to chaos by increasing
the resonance width (controlled in our model by goc), while
our model holds goc fixed and varies gcc. Reference [76]
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P
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/S
)

w = 0.05 ± 0.01
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FIG. 5. Three examples of probability distributions of energy
level spacings calculated from an ensemble of 100 systems, each
of which exhibits spectra like those shown in Fig. 4. The coupling
values shown for each panel are summarized in Table I. For each
panel, the solid red curve shows the fitted Brody distribution. Panel
(a) shows the distribution in the regime of Poisson statistics (weak
gcc). The dashed blue curve indicates the Poisson distribution. Panel
(b) shows an intermediate case. The dashed blue curve is a plot of
the semi-Poisson distribution. Panel (c) shows the chaotic limit. The
dashed blue curve shows the Wigner-Dyson distribution.

shows a similar crossover curve with increasing magnetic field
in lanthanide dimers using ab initio methods.

Reference [72] proposed that the spectral statistics ob-
served in experiments with erbium and dysprosium may be
more likely to obey the semi-Poisson distribution Eq. (39). We
see from a visual inspection of panel (b) of Fig. 5 that indeed
the semi-Poisson curve more closely matches the histogram
for this intermediate Brody parameter. A more quantitative
measure of the “goodness of fit” is the reduced χ2. For a
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/

(
)

/

/

FIG. 6. The Brody parameter w (black) is shown as a function
of the closed channel coupling strength, which is increased from
gcc = 10−5ε0 to gcc = 10−2ε0. It is rescaled here by the ensemble
average energy level spacing gcc/〈S〉. The open-closed coupling is
held fixed in model units at goc = 10−3ε0. However, due to the
repulsion of levels, it decreases when scaled by 〈S〉, as shown in the
inset. The shaded region indicates the error calculated using Eq. (37).

histogram with bin counts h(i) for i = 1, . . . , n, the reduced
χ2 is given by

χ2
r = 1

n − p

n∑
i

[h(i) − e(i)]2

e(i)
, (40)

where e(i) is the number of bin counts predicted by the pro-
posed distribution and p is the number of fitting parameters.
If the data are well described by the fit, one obtains χ2

r ≈ 1
for a large enough sample; χ2

r � 1 indicate that the data are
unlikely to be distributed according to proposed distribution.
In Fig. 7, we show χ2

r for both the Brody (black circles) and
semi-Poisson (red squares) distributions. The value of w that
maximizes the log-likelihood function was used for the Brody

( )
FIG. 7. The reduced chi-squared, χ 2

r , values for the Brody and
semi-Poisson distributions are plotted here. We use histograms with
25 bins of size 0.2〈S〉, like those shown in Fig. 5. Black circles
show χ 2

r for level-spacing fits to the Brody distribution. The red
squares show the χ 2

r value for level-spacing fits to the semi-Poisson
distribution Eq. (39).

/

(
/

)

−
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FIG. 8. The variance in the number of resonances within an en-
ergy window �E/〈S〉 is plotted for various closed-channel couplings
that correspond to w = 0.05, 0.51, 0.96 for the red, green, and blue
curves, respectively. The dashed curves show the analytical results in
the uncorrelated limit of Poisson statistics, and the GOE. The dotted
curve indicates the level number variance for semi-Poisson statistics
given by Eq. (43).

distribution. The semi-Poisson distribution indeed performs
better for intermediate values of the couplings, despite having
no fitting parameter, giving a minimum χ2

r near w ≈ 0.5, in
rough agreement with Ref. [72]. Note however that the semi-
Poisson distribution at best gives a χ2

r ≈ 4 which remains
large compared to the χ2

r � 1 values achieved by the Brody
distribution in the Poisson and GOE limits.

The conjecture of [72] that perhaps the semi-Poisson dis-
tribution is the physical distribution for lanthanide atoms is in-
formed by calculations of the level number variance Eq. (34),
which we discuss in the context of our work now. In Fig. 8,
we show the number variance as a function of the size of the
energy window for the same three Brody parameters indicated
in the distributions of Fig. 5. The top black dashed line in
Fig. 8 represents the expected number variance for Poisson
statistics,

�2(ε) = ε, (41)

while the lower dashed black curve is for the GOE. Exact
relations for the number variance for various ensembles have
been given in [89]. For the GOE, one finds, defining ε =
�E/〈S〉,

�2
GOE(ε) = 2

π2
[ln (2πε) + γ + 1 − cos (2πε) − Ci(2πε)]

+ 2ε

[
1 − 2

π
Si(2πε)

]
+

(
Si(πε)

π

)2

− Si(πε)

π
,

(42)

where Si(z) = ∫ z

0
sin t

t
dt and Ci(z) = ∫ ∞

−z
cos t

t
dt are the sine

and cosine integral functions, respectively, and γ ≈ 0.5772
is Euler’s gamma constant. Finally, the black dotted curve
in Fig. 8 shows the expected variance from semi-Poisson
statistics, namely [105],

�2
SP(ε) = ε

2
+ 1 − exp (−4ε)

8
. (43)
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Our results show that the number variance crosses over
from Poisson-like to GOE-like as gcc increases. Reference
[72] found that as the typical width of the resonances in-
creases to be of order the average level spacing, the number
variance curve saturates to Eq. (43). In our scheme, we hold
the width fixed in model units (but see the inset in Fig. 6)
while increasing the coupling among closed channels only.
Unlike Ref. [72], our variance curve does not saturate, but
smoothly varies from the Poisson limit to the GOE limit.
However, our results support Ref. [72] to the extent that an
intermediate Brody parameter of w ≈ 0.5 gives a number
variance most closely matched to Eq. (43). As a point of ref-
erence, when 104 points are drawn from the semi-Poisson dis-
tribution, the method of maximum likelihood yields a Brody
parameter of w = 0.50 ± 0.01. Binning those 104 points into
a histogram gives a χ2

r ≈ 6 for the Brody distribution, and (not
surprisingly) χ2

r ≈ 1 for the semi-Poisson distribution.

VI. DETERMINING THE MODEL PARAMETERS
FROM PHYSICAL PROPERTIES

Here we discuss how to directly determine our model
parameters from properties of a physical system, such as ul-
tracold lanthanide atoms or molecules. Determining the model
parameters requires some experimental (or more microscopic
theoretical) input, and the greater the detail of the experi-
mental data, the more precisely the model may be specified.
This is analogous to the situation with all pseudopotentials
used throughout ultracold matter. One common example is the
delta function pseudopotential gδ(�r ), where one determines
g by matching an experimentally measured scattering length.
Another common example is the two-channel square-well
model, in which one can match the scattering near a resonance
by matching the experimentally measured resonance position
and width [50]. Regardless of the experimental data and
pseudopotential used, the key requirement for such models
to be useful is that they can predict properties that are not
used as input, such as how scattering is affected by external
fields, effective lattice model parameters [68–70], or few- and
many-body properties.

We will show that the coupled square-well model suffices
to reproduce the low-energy (kr0  1) scattering in collision-
ally complex systems, and give explicit formulas for deter-
mining the model parameters, at least in the nonoverlapping
(closed-channel) resonance limit. This is expected to be a
relevant limit for both lanthanides [54,55] and molecules
[52,66]. The model could also be useful in the overlapping
resonance limit, but here simple formulas are not available.
Instead, the best approach may be to do a numerical least-
squares fit that chooses model parameters to minimize the
error between the predicted and observed scattering cross
section for all measured energies.

A complete set of low-energy scattering data for the
nonoverlapping resonance region would be the resonance
positions, widths, and background scattering length. We will
refer to the values of these that we wish to match as ε(i),
γ (i), and abg, respectively. We will first sketch the idea of
how to reproduce these with the square-well model, then give
the details. The procedure is to take the closed channels as
decoupled from each other (Cij → 0 where both i, j ∈ c) and

then (i) for each resonance, choose an appropriate closed-
channel depth Di so that the E

(i)
0 match the desired resonance

positions; (ii) adjust the open-channel depth DN to match the
background scattering length abg; and (iii) for each resonance,
adjust the open-closed couplings CNi so that the �(i) match
the desired resonance width.

The detailed equations to determine these coefficients fol-
low. We focus on s-wave scattering for simplicity, but all of
the results generalize straightforwardly to other angular mo-
menta. For nonoverlapping resonances, we may determine the
parameters for each resonance separately. To further simplify,
we take the closed channel thresholds to infinity, �i → ∞
for i ∈ c; the model remains flexible enough to reproduce the
desired scattering data. The only remaining parameters are
the Di,DN and the couplings CNi between the open and the
closed channels. Now we carry out the three steps above.

(i) Determining the closed-channel depths Di . For each
resonance, we match a bound state of a unique closed channel
to the desired resonance position ε(i). For finite �i the bound
states must be solved numerically; since we are taking �i =
∞, the channel i potential is a particle in a box, and therefore
the bound eigenenergies for channel i ∈ c are −Di + n2π2ε0

where n is an integer. We match the lowest bound state in
each closed channel (associated with n = 1) to the desired
resonance energy ε(i), giving

Di = π2ε0 − ε(i), (44)

where ε0 is defined in Eq. (32). This introduces infinitely
many resonances associated with n > 1, but these are at high
energy (the next resonance is 3π2ε0 higher in energy) and
hence are negligible for the low-energy scattering.

(ii) Determining the open-channel depth DN . For each
resonance, we match the background scattering length to
the desired value abg. The background scattering length is
observed by measuring the scattering length at energies far
from the resonances, and in this regime the open channel
decouples from the closed channels. Therefore abg is the
scattering length obtained from the single-particle problem
involving the open channel only. This is a finite attractive
square well, for which the scattering length is given by

abg = r0

(
1 − tan(KNr0)

KNr0

)
(45)

with KNr0 = √
DN/ε0. Given abg this is a simple transcen-

dental equation with one variable and is easily numerically
solved for abg.

(iii) Determining the open-closed couplings CNi . For each
resonance, we match the resonance width to the desired one
γ (i) by choosing CNi appropriately. Since the resonances
do not overlap, one can use the single closed-channel for-
mulas from Ref. [106]. Specifically, we focus on matching
the Feshbach resonance width, the magnetic field scale on
which the scattering length changes relative to the background
scattering length, but this can be converted to whatever width
is conveniently measurable. In this case, the Feshbach width
is given by (for i ∈ c)

γ (i) = 2
(abg − r0)2

δμ abgr0

(
CNi

DN − Di

)2

Di, (46)
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with δμ the difference in magnetic moments of the open chan-
nel N and closed channel i. This can be solved to determine
CNi :

CNi = DN − Di

abg − r0

√
γ (i)δμ abgr0

2Di

. (47)

Together, Eqs. (44), (45), and (47) determine the multichannel
square-well parameters from physically measurable scattering
data.

Although the above procedure assumes a complete knowl-
edge of the mentioned scattering data, partial data can still
be usefully employed to more qualitatively determine the
square-well model parameters. Presently, this is especially
important as even the most advanced experiments and the-
oretical calculations on diatomic polar molecule collisions
cannot yet provide the detailed scattering data. If statistical
properties of the spectra are known—either from experiment
or from ab initio calculations, such as [79]—then one may
use the prescription outlined in Sec. V A to reproduce the
desired target density of states and Brody parameter. One
may subsequently obtain as a prediction of the model other
statistical properties such as the number variance or spectral
rigidity, and use the resulting effective pseudopotential.

VII. CONCLUSIONS

We have introduced a multichannel square-well model
that is simultaneously simple to use and capable of incor-
porating the proliferation of resonances necessary to model
collisionally complex ultracold matter, such as molecules and
lanthanide atoms. It is the simplest finite-ranged effective
model for collisions with many resonances. We have reduced
the two-particle scattering solutions of this model to 2N +
1 linear equations with analytic coefficients [Eq. (12)] and
presented a sample of typical results.

This model builds a framework for researchers to study a
variety of physical properties related to scattering physics of
systems involving a large density of states for the collision
complex. The model is semianalytic and comparatively easy
to use. It presents advantages over more accurate but compu-
tationally intensive ab initio methods for applications where
the detailed structure of the spectrum may not be important
but particular statistical properties must be treated correctly. It
also provides a useful alternative to zero-range multichannel
models [68–70], which neglect finite-range effects and require
a tedious regularization associated with working in the zero-
range limit.

We also have also introduced a choice of model parameters
Di , Cij , and �i , given by Eq. (35). The couplings Cij are
drawn from a Gaussian distribution, while the �i are cho-
sen from a different, uniform distribution. Although crude,
this choice is intended to realistically capture the statistical
properties of systems with complex collisions: Many pairs
of channels are coupled with comparable magnitudes Cij ,
while the channel thresholds �i are drawn from a uniform

distribution with a different energy scale set by the number of
channels and the desired density of states.

By solving the scattering properties of the multichannel
square-well model with parameters chosen from the statistical
ensemble, we naturally capture the crossover from integrable
to chaotic behavior as a function of the closed-channel cou-
pling relative to the average channel spacing gcc/ 〈S〉. This is
evidenced by fitting the calculated resonance position spacing
distribution to the Brody distribution. We find good fits to
these distributions, and show that the Brody parameter evolves
from integrable to chaotic as a function of gcc/ 〈S〉. A natural
next step is to calculate the statistical properties of the reso-
nance widths.

Thus we expect this combination of scattering model and
ensemble of model parameters to provide a foundation for re-
search on the integrable-chaotic scattering crossover. Specif-
ically, it will allow researchers to explore the consequences
of complex collisional interactions without the much more
onerous—and often intractable—use of a more complex mul-
tichannel collision model. For example, this model could be
used to explore the effect of this integrable-chaotic scattering
crossover on Efimov physics or on the many-body phase
diagram of molecules.

With some modest extensions, this model can capture other
important physical phenomena. For example, (i) it can be
straightforwardly generalized to include the influence of ex-
ternal fields. By adding magnetic or electric dipole moments
on both thresholds and depths of the potential, Eq. (3) is only
slightly modified. This would, for example, provide an analog
for the magnetic field-tuned resonances in lanthanide colli-
sions where chaotic scattering has been observed [53–55]. (ii)
It can be generalized to include many open channels. This re-
quires a slight change to Eq. (6), where the asymptotic form of
the wave function becomes ψi → cifi (kir ) − ∑

sij gj (kj r )
where i, j ∈ o. Now there is a separate scattering solution
for each possible entrance channel. The coefficients sij then
capture both elastic and inelastic scattering processes. (iii)
Finally, it can be used to study the statistical distribution of
resonance widths under various conditions, which appears to
be a timely topic of interest in the nuclear physics community
[107–110].
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