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Triply excited autodissociating resonant states in the positron-helium system
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In this paper, we present a complex-coordinate rotation calculation for high-lying S-wave resonances in
positron-helium scattering. Highly correlated Hylleraas wave functions containing all six interparticle coordi-
nates are used. A total of seven resonances, including their positions and widths, are reported, where the lowest
one, denoted as e+He(2s2), is formed by a positron attaching to the doubly excited 2s2 1Se state of helium, and the
other six resonances, denoted as Ps−He2+ (nS) with n from 2 to 7, are located in the Rydberg series converging to
the Ps− + He2+ threshold. Our results are compared with those available in the literature. The calculated energies
for Ps−He2+ (nS) with n from 2 to 7 show a good fit to a quantum defect formula that describes the interaction
between the positively charged He2+ ion and the negatively charged Ps− ion. The 3S state in this Rydberg series
provides an alternative designation for the previously identified e+He(3s2) state in the literature.
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I. INTRODUCTION

It has been shown that a positron can bind the doubly
excited states of a two-electron system such as the hydrogen
negative ion, H− [1], or the helium atom [2,3], to form a
quasibound resonance state. Since these states are located in
the scattering continua between the positron and the target
(H− or He), they would manifest themselves as resonances
in positronium-hydrogen and positron-helium scattering, re-
spectively. Recently, Mitroy and coworkers have reported cal-
culations of resonances in the positron-helium system around
and below the doubly excited states of He, with two S-wave
resonances each below the 2s2 1Se and 3s2 1Se thresholds [2,3].
Subsequently, an attempt to search for such resonances was
carried out in a laboratory [4]. Although these resonances
were not found, an estimate on the upper limit of the cross
sections was made. The objective of the present paper is
to carry out calculations of triply excited resonances in the
positron-helium system, in the energy region around the dou-
bly excited states of atomic helium. Resonance parameters of
both position and width for some S-wave resonances will be
obtained by using the method of complex-coordinate rotation
[5] and by employing elaborated Hylleraas-type wave func-
tions in which all six interparticle coordinates are included
(see Ref. [6], for example). In addition to the two S-wave
resonances calculated earlier in Refs. [2,3], we will calculate
additional resonances approaching the Ps− + He2+ threshold
from below. An interpretation of our results will be given, and
hopefully our findings will shed light for further experimental
activities to observe such resonances.

There have been considerable interests in theoretical inves-
tigations of atomic resonances involving positrons, including
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those in positron-helium scattering around the energy region
of the excited Ps (N = 2) and (N = 3) thresholds [7–11].
Other recent theoretical investigations on positronic reso-
nances are positron scattering with Li [12–19], Na [12,20–23],
K [12,20,24], and Cu [25]. Investigations on shape resonances
in positron–alkaline-earth scattering were also reported in
the literature [26–29]. The experimental investigations on
resonances in positron-atom and positron-molecule scattering
were described in Refs. [30,31]. It should be mentioned
that, given the resolution of the present positron beams, it is
unlikely that the narrow resonances in positron-alkali metals
could be observed. Nevertheless, it remains a challenging
endeavor for experimentalists for years to come. A 1P o shape
resonance in the positronium negative ion was observed in a
photoionization experiment from the ground state of the Ps−
ion [30,32]. Earlier reviews focusing mainly on theoretical
developments of atomic resonances involving positrons are
available in the literature [33,34]. The outline of the present
paper is as follows. After the introduction in Sec. I, we
describe the Hamiltonian and wave functions used in this
paper in Sec. II. Section III shows the calculational details
and discusses the results. Then in Sec. IV, we summarize our
paper and draw a concluding remark.

II. HAMILTONIAN AND WAVE FUNCTION

The Hamiltonian for the positron-helium system is (in
atomic units throughout) given as

H = T + V, (1)

T = −1

2
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where indices 1 and 2 refer to the two electrons, index 3 refers
to the positron, and Z = 2 for the helium nucleus. The wave
function is expanded in Hylleraas coordinates:

�(r1, r2, r3) =
N∑

i=1

aiψi (r1, r2, r3) ± (1 ↔ 2), (4)

where

ψi = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3yLM

(�1�2 )�12,�3
(r1, r2, r3),

(5)

yLM
(�1�2 )�12,�3

=
∑

mi

〈�1m1; �2m2|�1�2; �12m12〉

× 〈�12m12; �3m3|�12�3; LM〉
×Y�1m1 (r1)Y�2m2 (r2)Y�3m3 (r3). (6)

All terms in (5) are included such that

j1 + j2 + j3 + j12 + j23 + j31 � �, (7)

where � is an integer. The total number of terms is N = 6412
in the wave-function expansion. Computational details for
evaluating the matrix elements of the Hamiltonian can be
found in Ref. [6].

III. CALCULATIONS AND RESULTS

For calculations of the S-wave autodissociating resonant
states, we use the method of complex-coordinate rotation [5].
The radial coordinates are transformed according to

r → reiθ (8)

where r is the distance between two charged particles. The
transformed Hamiltonian can be written as

H (θ ) = T e−2iθ + V e−iθ , (9)

where T and V are given by Eqs. (2) and (3), respectively, and
θ is a positive number. Complex eigenvalues are obtained by
diagonalizing the transformed Hamiltonian, and the complex
resonance energy is given by

Eres = Er − i�/2, (10)

where Er is the resonance position and � is the resonance
width. To investigate the resonance associated with the doubly
excited 2s2 1Se state of He, in our wave functions we choose
the nonlinear parameters α = 0.95 and β = 0.95 and let γ

vary ranging from 0.5 to 0.9. The nonlinear parameter γ

can be considered as a variational parameter to determine
the stabilized complex resonance eigenvalues. The physical
picture is that the wave functions are used to simulate the
positron attaching to the doubly excited helium atom.

Figure 1 shows the rotational paths near the pole of the first
resonance state for different wave functions. From the most
stabilized region in the complex energy plane we determine
the resonance parameters (Er , Г/2) in atomic units for this
resonance as (−0.794892, 0.001296), which is compared to
the result of (−0.79484, 0.00124) by Mitroy’s group [2]
using the complex rotation method with explicitly correlated
Gaussians (ECGs) of 1428 terms. Later this group [3] also
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FIG. 1. Stabilized complex eigenvalue Eres = Er + iEi near
the pole of the e+He(2s2 1Se ) resonance state, showing Er =
−0.794892 a.u. and Г/2 = 0.001296 a.u. The set for the nonlinear
parameters (α,β,γ ) used in the wave function Eq. (5) is (0.95, 0.95,
0.65) for curve A and (0.95, 0.95, 0.55) for curve B.

reported the result of (−0.79527, 0.00066) using stochastic
variational method together with the complex rotation method
(SVM-CR). Our results are summarized in Table I. The state
denoted as e+He (2s2 1Se) in the positron-helium system is
most likely the result of the positron attaching to the doubly
excited 2s2 1Se state of He, in a manner similar to the coun-
terpart in the PsH system where the positron is attached to the
doubly excited state 2s2 1Se of the H− ion [1]. Table I also
shows the results for the e+He (2s2 1Se) state obtained from
CI and SVM resonance energy (only) calculations in Ref. [2]
based on projection methods, and the energy-only projection
result for the e+He (3s2 1Se) state with CI basis.

From Table I, it is observed that the e+He(2s2) state
reported in Ref. [3] differs considerably from our present
results. Here, we provide a possible explanation. The results
reported in Ref. [3] as shown in Table I were obtained us-
ing the method of complex scaling. In the complex scaling
method a resonance pole is determined when the variation
of the complex eigenvalue exhibits stabilized behavior with
respect to changes of θ [see Eq. (7) in Ref. [3]]. From
Fig. 3 in Ref. [3], two arrows were shown to indicate the
possible positions of the resonance pole. The authors then
chose θ = 0.275, from which the complex pole was de-
duced at (Er,Ei ) = (−0.79527,−0.00066). However, had
they chosen θ = 0.135, the other optimized θ value (see
Fig. 3 in Ref. [3]), the resonance pole (read by eye) would
become (−0.79494, −0.00115) approximately, and such a
value would be in line with our present result (−0.794892,
−0.001296), and also in line with the result (−0.79484,
−0.00124) in Ref. [2]. In any case, we encourage further
investigations on this resonance state for such an interesting
e+-He system.

Figure 2 shows the rotational paths near the pole of the
second resonance reported in this paper. We obtained Er =
−0.75678 a.u. and Г/2 = 0.00533 a.u. This resonance was
not calculated in Refs. [2,3]. At first, the origin of this reso-
nance state is not clear notwithstanding that there is a nearby
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TABLE I. Summary of resonance energies Eres and half widths in atomic units.

State Method Eres Г/2

e+He(2s2 1Se ) CR(Hy) −0.794892 ± 0.000010a 0.001296 ± 0.000010a

SVM-CR −0.79527b 0.00066b

SVM-CR −0.79494b,d 0.00115b,d

Projection(SVM) −0.795210c

Projection(CI) −0.795058c

CR(ECG) −0.79484c 0.00124c

Ps−He2+(2S) CR(Hy) −0.75678 ± 0.00010a 0.00533 ± 0.00010a

Ps−He2+(3S) CR(Hy) −0.48307 ± 0.00015a 0.00338 ± 0.00015a

e+He(3s2 1Se ) SVM-CR −0.48432b 0.00539b

Projection(CI) −0.481643c

aPresent paper.
bMitroy and Grineviciute [3].
cBromley et al. [2].
dTaking from Fig. 3 in Ref. [3]; see text for explanation and discussion.

threshold of Ps(1S ) + He+(2S) with the threshold energy of
−0.75 a.u. Further discussion about this resonance state will
be given later in the text.

Figure 3 shows the rotational paths near the pole of the
third resonance reported here. Our results of (Er = −0.48307,
Г/2 = 0.00338) a.u. are compared with (−0.48432, 0.00539)
a.u. obtained in Ref. [3] and with Er = −0.481643 a.u.

in Ref. [2]. This state was classified as e+He (3s2 1Se) in
Refs. [2,3]. However, based on the fact that the location of
this state is quite farther away from the helium doubly excited
(3s2 1Se) state, as compared to the other e+He (2s2 1Se) state
relative to the doubly excited He (2s2 1Se) state, as shown
in Fig. 4, the formation of this state can be due to other
mechanisms. In Table I, we compare our present results
with earlier calculations. The energy of the doubly excited
2s2 1Se state in He is Er = −0.777818 a.u. as reported in
Ref. [35]. Our first resonance lies at Er = −0.794892 a.u.,
about 0.017072 a.u. below the two-electron doubly excited
threshold. The energy of the doubly excited 3s2 1Se state in
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FIG. 2. Stabilized complex eigenvalue Eres = Er + iEi near
the pole of the Ps−He2+(2S) resonance state, showing Er =
−0.75678 a.u. and Г/2 = 0.00533 a.u. The set for the nonlinear
parameters (α,β,γ ) used in the wave function Eq. (5) is (0.91, 0.91,
0.27) for curve A, (0.91, 0.91, 0.25) for curve B, and (0.91, 0.91,
0.29) for curve C.

He is −0.35354 a.u. [36]. Our third resonance is located at
Er = −0.48307 a.u., about 0.12953 a.u. lower than that of the
3s2 1Se doubly excited threshold. Thus this resonance state,
also calculated in Refs. [2,3], is not due to the “parent” 3s2 1Se

state as it lies quite far below the two-electron doubly excited
threshold (see Fig. 4).

In order to shed light on the nature of these resonances
in the positron-helium system, we carried out further calcu-
lations for higher-lying states. For the wave functions of the
higher-lying states, we chose the nonlinear parameters α =
0.49 and β = 0.49 and let γ vary from 0.24 to 0.50. The non-
linear parameter γ can be considered as a variational parame-
ter to determine the stabilized complex resonance eigenvalues.
The physical picture is that the wave functions are used to sim-
ulate the positronium negative ion moving away from the field
of the He2+ positive ion when γ is systematically decreased
from γ = 0.50 to about 0.24. In Table II, we show our results
with six resonance states, including the two states displayed
in Table I [excluding the e+He(2s2) state]. These resonances
may be attributed to the Ps−He2+(nS) Rydberg series, a result
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FIG. 3. Stabilized complex eigenvalue Eres = Er + iEi near the
pole of the Ps−He2+(3S) state, showing Er = −0.48307 a.u. and
Г/2 = 0.00338 a.u. The set for the nonlinear parameters (α, β, γ )
used in the wave function Eq. (5) is (0.63, 0.63, 0.40) for curve A
and (0.63, 0.63, 0.45) for curve B.
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FIG. 4. Energy levels for the e+He(2s2) state and Rydberg states
in the Ps−He2+(nS) series with n = 2 to 7. Under the heading e+-He,
the solid line is from the present calculation. The two dashed lines are
from the SVM-CR results in Ref. [2] for the e+He(2s2) state and in
Ref. [3] for the e+He(3s2) state, respectively.

of the positive He2+ ion interacting with the negative Ps−
ion. Since these states are embedded in the positron-helium
scattering continua, they would manifest themselves as reso-
nances in the e+-He scattering. These states in Ps−He2+ are
similar to those resonant Rydberg states in the Ps−H+ [37,38]
and e+Ps− [39] systems. Next, from the resonance energies,
we calculated the binding energies �E, relative to the energy
of the Ps− ion, with Einf = −0.262005 a.u. [40–42]. We then
fit the binding energies of the n = 2−7 states to the Rydberg
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FIG. 5. Fitting of the Rydberg states of the Ps−He2+ system,
in logarithmic scale. The circles are from the present ab initio
calculations, and the squares are from the data fitted to the quantum
defect formula. n∗ is the effective quantum number.

quantum defect formula:

�E = (μ/2)Z1
2(Z2’)2/(n∗)2 (in a.u.) (11)

with �E = Einf−Ens, Z2
′ = −(1−σ ), and n∗ = n−δ. Here,

μ is the reduced mass of the Ps− ion relative to the infinitely
heavy nucleus of the He2+ ion, which is μ = 3me, with
me being the mass of the electron. Z1 = 2 is the charge
of the He2+ ion, and Z2’ is the effective charge of Ps− as
felt by the He2+ ion, in comparison to the net charge −1
of Ps−, due to mutual screening of the two electrons with
the screening factor σ . n∗ is the effective quantum number,
with δ being the quantum defect. Both σ and δ are to be
determined by the fitting process. The Ps− as a whole would
appear as a “particle” with the effective charge Z2’. The fit-
ting with chi square = 5.769 × 10−7 and r square = 0.99998
gives σ = 0.42195 and δ = −0.01279. As r square is very
close to 1.0, it indicates that the fitting is quite good. From
the fitted σ value, we obtain the effective charge for the
Ps− ion as 0.67805. Using the fitted σ and δ values, we
calculate the “fitted” energy levels for the 1S to 7S states,
and show them in Fig. 5 and Table II. Figure 5 shows �E
versus n∗, the effective quantum number, in log-log scale.
Also from Table II, comparing the fitted resonance energy

TABLE II. Present results of resonance energies and half widths of Rydberg states in the Ps−He2+ system, in atomic units. Er (fitted) is
defined as Einf – fitted[�E]. The estimated uncertainties for the 2S and 3S states are given in Table I, and those for the 4S to 7S states are about
five parts in the fourth digit after the decimal for both the real and imaginary parts for each of these states.

State Er (ab initio) Г/2 �E Fitted[�E] Er (fitted)

Ps−He2+(1S) 1.95453 −2.21654
Ps−He2+(2S) −0.75678 0.00533 0.494775 0.49487 −0.75687
Ps−He2+(3S) −0.48307 0.00338 0.221065 0.22087 −0.48288
Ps−He2+(4S) −0.38750 0.00411 0.125495 0.12451 −0.38651
Ps−He2+(5S) −0.34105 0.00295 0.079045 0.07979 −0.34179
Ps−He2+(6S) −0.31667 0.00360 0.054695 0.05545 −0.31746
Ps−He2+(7S) −0.30237 0.00360 0.040365 0.04077 −0.30277
Ps− + He2+ −0.262005 0.0
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levels with those obtained by the actual ab initio calculations,
the difference for any given nS state (n = 2−7) is no more
than 0.001 a.u. Based on the quality of such a fit, and the
stabilized behaviors in the complex eigenvalue calculations,
we estimate the uncertainties for the nS states with n = 4−7
that are about five parts in the fourth digit after the decimal, for
both the real and imaginary parts of these complex resonance
states. As for the fitted 1S state shown in Table II, caution
should be made when one interprets such results. It should
be mentioned that a brief attempt to search for this state
was unsuccessful. No stabilized complex eigenvalue near the
fitted 1S state was obtained using the present wave functions
that were optimized around the configurational space near the
doubly excited threshold of He, and around the region below
the Ps−He2+ threshold. The 1S state, if it existed, would be
around the region near the singly excited states of He. The
optimized wave functions are hence different from those used
in the present paper. An extensive search for the fitted 1S
state is of future interest, but it is outside the scope of the
present investigation. It should be noted that the nonlinear
parameters (α, β, γ ) used for the two lowest states, the 2S and
3S states, in the Ps−He2+ Rydberg series as shown in Table II
are somewhat different from those for higher-lying states. This
is because for the 2S and 3S states there exist some nearby
channels from the helium atom. So, in a sense, the physical
structures for these two states are combinations of elements
coming from configurations of e+He and Ps−He2+, whereas
for the higher-lying states in the Rydberg series they could be
dominated by the Ps−He2+ configurations.

Next, we comment on the results for the widths of the
resonance states, especially for the higher-lying members of
the Rydberg series. For the resonance states that share the
same lower-lying open channels to which they autodissociate,
their widths would show a monotonic decreasing manner
for increasing n. For example, for the Ps−He2+(2S) and
Ps−He2+(3S) states, they have the same lower-lying open
channels such that they can autodissociate, for example, to the
ground-state Ps plus the ground state of the He+ ion, with total
threshold energy −2.25 a.u. Hence, the widths of these two
states exhibit a monotonic decreasing behavior. However, for
other higher-lying states, for example, for the Ps−He2+(4S)
state, there is an additional open channel consisting of the
ground-state Ps and the He+ ion in its N = 3 state, with
the total threshold energy being −0.475 a.u. The extra open

channel for this Ps−He2+(4S) state is attributed to a larger
total width as compared to that for the Ps−He2+(3S) state.
Similarly, for the Ps−He2+(7S) state, there is an extra open
channel consisting of the ground-state Ps and the He+ ion
in its N = 6 state with a threshold energy −0.303 a.u. As a
result, the autodissociation width is not smaller than that of
the Ps−He2+(6S) state.

Finally, we call the excited states in the Rydberg series
triply excited states. First, such states are located in the doubly
excited region (for the two electrons) of the target systems.
Second, the 2S to 7S states reported here are the excited states
of the quasi-two-body system (between the He2+ positive ion
and the Ps− negative ion). So, all together, we label them triply
excited states in the e+He system. As for the e+He(2s2) state,
since it lies near the region where the above-mentioned triply
excited states are located, one may address it as a triply excited
state, or simply call it the e+He(2s2) state.

IV. SUMMARY AND CONCLUSION

In summary, we have carried out a complex-coordinate
rotation calculation of high-lying S-wave resonances in
positron-helium scattering using highly correlated wave func-
tions in Hylleraas coordinates. In addition to the e+He(2s2)
resonance state formed by a positron attaching to the doubly
excited 2s2 1Se state in helium, we have also calculated reso-
nance energies and widths for the 2S–7S states in the Rydberg
series converging to the Ps− + He2+ threshold. The energies
of 2S–7S states of the Rydberg series have been used to fit
the quantum defect formula with high reliability. From the
quantum defect formula, the energy levels for higher members
of the Rydberg series can be estimated. It is hoped that our
present findings would stimulate further investigations on the
intriguing resonance phenomenon in positron physics.
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