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We consider one-loop light-by-light-scattering contributions to the Lamb shift of the 1s, 2s, 2p states in light
muonic hydrogenlike atoms at Z � 10. The contributions are of the order α5mμ (with diverse dependence on the
nuclear charge Z). Those include the contributions of the so-called Wichmann-Kroll potential [α(Zα)4mμ], the
virtual Delbrück scattering [α2(Zα)3mμ], etc. The results are obtained in a nonrelativistic approximation. For
the calculation of the virtual-Delbrück-scattering contribution, we have constructed an effective potential in the
coordinate space which may be applied to other calculations in muonic atoms.
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I. INTRODUCTION

Muonic atoms give an opportunity to develop and test a
bound-state QED theory and probe a nuclear structure with
a specific range of parameters not available with ordinary
[electronic] atoms. Recently the accuracy of the measurement
of the 2s − 2p Lamb shift in some light hydrogenlike muonic
atoms has been dramatically improved [1,2]. The QED theory
of the energy levels in muonic atoms is somewhat different
from that in ordinary atoms. The Bohr radius in muonic
atoms is comparable with the Compton wavelength of an
electron. Because of that, an important role is played by the
diagrams with the closed electron loops. Those contributions
are specific for muonic atoms. The most important are those
due to vacuum polarization. Their contribution to the energy
is of the order α(Zα)2m.

Effects of the virtual light-by-light scattering contribute to
higher orders. There are three types of such contributions,
characteristic diagrams which are presented in Fig. 1. They
are all of the order α5m, but their dependence on the value of
the nuclear Z charge is different.

The α(Zα)4m contribution (see the graph 1:3 in Fig. 1)
is the so-called Wichmann-Kroll (WK) contribution, which
has been studied for a while (see, e.g., [3,4]). A number of
the results have been achieved for muonic atoms using cer-
tain numerical approximations of the exact WK potential. In
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particular, the approximations, introduced in [3,5] on the basis
of the results of numerical integration in [6], were numerously
applied (e.g., in [3,7,8]). The result for the 2p − 2s Lamb shift
with accuracy sufficient for applications in μH was found in
[8] and confirmed in [9–11]. In [10,11] the result was also
confirmed by direct calculations. The WK contributions to
the n = 2 Lamb shift for some other light muonic atoms are
obtained in, e.g., [12–14].

The α2(Zα)3m term is due to the virtual Delbrück scatter-
ing (see the 2:2 diagram in Fig. 1). It has also been studied
for quite a long period (see, e.g., [3,4]). Still, some questions
have been resolved only recently [10].

The initial calculations were based on a so-called scattering
approximation [15] (where the Coulomb muon propagator is
substituted for a free one). The substitution by itself is incor-
rect (see, e.g., discussion in [4,10]); however, the formulas
which were eventually used in the numerical calculations were
nevertheless correct (see below). Results on the contribution
to the Lamb shift in some light atoms were published, e.g., in
[3,9], but they were not very accurate.

The third type of contributions (see the 3:1 plot in Fig. 1)
have not been calculated until recently. It was studied in
[10,11], where also the virtual-Delbrück-scattering contribu-
tion was found with a sufficient accuracy for several light
muonic atoms.

A kind of theorem on the 2:2 and 3:1 contributions was
announced in [11] and proven in [10]. The papers considered
an approximation of a static muon, where its nonrelativistic
propagator is presented with a δ function over the energy.
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FIG. 1. Characteristic diagrams induced by the light-by-light
scattering. The double horizontal line is for the nonrelativistic
Coulomb Green’s function of a muon.

It was proven that the approximation is a valid one. We
discuss the accuracy of the approximation in this paper (see
Sec. II). Using that approximation [10,11], the results on
the 2:2 and 3:1 contributions to the Lamb shift in muonic
hydrogen, deuterium, and helium ions have been found (see
[14] for μT). It was also demonstrated that the related limit
can be achieved both from the diagrams with the bound-muon
Green’s function (as shown in Fig. 1) and from those with the
free Green’s function (as were used in the scattering approx-
imation in [3,9]). As far as the static-muon approximation is
applicable, one may use both types of diagrams with the same
result, which validates the working formulas used in [3,9].

In this paper we consider the effective potential for the
virtual-Delbrück-scattering contribution to the Lamb shift in
light muonic two-body atoms. We use the representation of
the potential in momentum space in terms of an integral over
Feynman parameters [10] and study the effective potential in
the coordinate space by means of an analytic Fourier trans-
form and subsequent numerical integrations over the Feynman
parameters. For the effective potential in the coordinate space,
we find both asymptotics (at r � 1/me and r � 1/me). (Here
and throughout the paper we apply the relativistic units in
which h̄ = c = 1.) Eventually, we fit the numerical results and
asymptotics, obtained here. The approximation is accurate at
the level of 10−3 in the area where the muon wave function
of low states is localized. Our main results are related to
the virtual-Delbrück-scattering contribution to the Lamb shift;
however, we present numerical results for all three light-by-
light (LbL) contributions (see Fig. 1), because their compari-
son can be useful.

The 2p − 2s Lamb-shift interval cannot be successfully
measured in all the two-body muonic atoms (because of the
range of the interval); however, the theory of the Lyman-α
transition is very similar. The data on such gross-structure
transitions play an important role in determination of the rms
charge radius of a large variety of elements (see, e.g., [16]).
In this paper we tabulate the virtual light-by-light-scattering
contribution to the Lamb shift of the 1s, 2s, 2p states, which is
sufficient for the calculation of both the 2p − 2s interval and
the energy of the 2p − 1s transition. The considered range of
the nuclear charge is Z = 1, ...10.

II. THE EFFECTIVE POTENTIAL AND THE
STATIC-MUON APPROXIMATION

As demonstrated in [10], once we can neglect various con-
tributions to the muon propagator, such as the binding energy

FIG. 2. “Double-external-field” approximation with a static nu-
cleus and a static muon.

and those related to momentum transfer [between the muon
and the electron loop] in comparison with its energy transfer
q0, we arrive at the nonrelativistic propagator reduced to δ(q0).
For Zαmμ/n � me (n is the principle quantum number), the
energy transfer is determined by the me scale. In the opposite
case, when Zαmμ/n � me, the characteristic value of q0 is
determined by the value of the momentum (in the LbL loop),
which in its turn is determined by the characteristic atomic
momentum Zαmμ. That means that once Zα � 1, we can
apply the static-muon approximation. (In [10] we considered
a stronger condition (Zα)2mμ � me.) All that is related,
indeed, to only 2:2 and 3:1 contributions. The standard WK
contribution does not require any conditions on the muon but
only on the static regime of the nucleus. Those conditions
are weaker and the validity of the WK potential is due to
relativistic-recoil effects, i.e., due to corrections which are
of higher order in both small parameters of the two-body
Coulomb problem, Zα and mμ/M , where M is the nuclear
mass.

Once the static-muon approximation is applicable, we
arrive at a “double-external-field” limit, the diagrams for
which are presented in Fig. 2. In particular, that allows us to
immediately set a relation between the 3:1 contribution and
the 1:3 one (WK):

�E3:1(ns) = 1

Z2
�E1:3(ns) , (1)

since the related integrands differ by their normalization only.
Note that Eq. (1) is correct only under the static-muon ap-
proximation. The corrections beyond the approximation are
of different orders for �E3:1 and �E1:3.

The potential for the 1:3 contribution was studied for a
while and there are a number of efficient approximations,
such as those mentioned above from [3,5]. (Still, we revisit
the problem in Sec. IV.) An effective potential for the 2:2
contribution, an evaluation of which is the main purpose of
this paper, is considered in detail in the next section.

III. THE EFFECTIVE POTENTIAL FOR THE
VIRTUAL-DELBRÜCK-SCATTERING CONTRIBUTION

Following [10], the contribution of virtual Delbrück scat-
tering to the Lamb shift in light muonic atoms can be pre-
sented in terms of a certain potential. In the momentum space
the result reads [10]

�E2:2 =
∫

d3q
(2π )3

V2:2(q2) F (q2), (2)
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where the potential V (q2) is discussed in detail in [11], and

Fnl (q2) =
∫

d3p
(2π )3

[�nl (p − q)]∗�nl (p) =
∫

d3r [�nl (r)]∗ e−i(q·r)�nl (r) (3)

is the form factor of the atomic nl state, while �nl (p) is its nonrelativistic Coulomb wave function (with the reduced mass mr ).
The potential V2:2(q2) is presented in momentum space as an integral over the Feynman parameters [10]

V2:2(q2) = 3

4π
α2(Zα)2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
du

∫ 1

0
dv

∫ 1

0
dw

∫ 1

0
dt

×
∑
k=1,2

{
B(k)

2:2(
s

(k)
2:2 q2 + m2

e

) + C (k)
2:2 q2(

s
(k)
2:2 q2 + m2

e

)2 + D(k)
2:2 q4(

s
(k)
2:2 q2 + m2

e

)3

}
, (4)

where B(k)
2:2, C (k)

2:2 , D(k)
2:2, and s

(k)
2:2 are bulky dimensionless functions of those parameters considered in [10]. The parameter k is to

distinguish two diagrams contributing to V2:2: k = 1 stands for the left 2:2 graph (see Fig. 2) and k = 2 is for the right one.
The dependence on q2 is simple, which allows us to immediately perform the Fourier transformation

V2:2(r ) = 4π

r

∫ ∞

0

dq

(2π )3
q sin(qr )V2:2(q2) (5)

and to obtain a result in the coordinate space, which reads

V2:2(r ) = 3

4π
α2(Zα)2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
du

∫ 1

0
dv

∫ 1

0
dw

∫ 1

0
dt

∑
k=1,2

exp

⎛
⎝− mer√

s
(k)
2:2

⎞
⎠

×
⎧⎨
⎩ B(k)

2:2

4πs
(k)
2:2 r

+ C (k)
2:2(

s
(k)
2:2

)3

2s
(k)
2:2 − mer

√
s

(k)
2:2

8π r
+ D(k)

2:2(
s

(k)
2:2

)4

8s
(k)
2:2 − mer

(
7
√

s
(k)
2:2 − mer

)
32π r

⎫⎬
⎭. (6)

The explicit representation of the potential V2:2(r ) is cumber-
some, and for practical applications we further look for an
efficient approximate formula. To derive it we first find the
value of the potential in certain points in the coordinate space
(see Fig. 3) and then fit them with a Padé approximation.

To improve the accuracy of the fit, prior to fitting, we
look for the asymptotics. The potential behaves as ∝r−1 at
short distances, as one should expect from (6), while at long
distances it is ∝r−4. The general situation is illustrated in

0.001 0.01 0.1 1 10 100

10−6

0.01

100

106

1010

x = mer

V2:2

FIG. 3. The “data” (i.e., the results of our numerical calculation
of (6) in coordinate space), their asymptotics, and the fit from (9) (see
below). The potential V2:2 is given in units of −α2(Zα)2me, and the
distance is characterized with x = rme.

the plot in Fig. 3. The range of characteristic values of x,
which are of interest for light muonic atoms, is summarized
in Table I.

The short-distance asymptotic coefficient can be directly
established from (6) in a rather straightforward way. The result
of the numerical integration reads

V2:2(r � 1/me ) � −0.027 565(13)
α2(Zα)2

r
. (7)

The large-distance asymptotic behavior is not that simple
to establish from (6). Considering the LbL contributions (see
Fig. 1) in the t channel, we note that some pure photonic
intermediate states are possible there, which sets the branch
point for t = −q2 to zero and eventually leads to a certain
r−p behavior at large distances for each of the LbL potentials
(cf. [17]). In the case of V2:2(r ) in the form of (6), that tech-
nically means a singularity of the effective dispersion-relation
variable [cf. (4)] at m2

e/s
(k)
2:2 = 0, which should transform the

exponential factor in (6) to r−p.
Fortunately, the asymptotic behavior of the 2:2 potential

can be successfully studied in a different way; namely, we
find it from the virtual-Delbrück-scattering amplitude for soft
photons [18–20] (cf. [21]) as

V2:2(r � 1/me ) � − 59

2304

α2(Zα)2me

(mer )4

� −0.025 61
α2(Zα)2me

(mer )4
. (8)
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With the asymptotic coefficients in hand, we fit the numerical results. The fit reads

V
approx

2:2 (r ) = −α2(Zα)2

r

7.236 + 0.3099x + 2.561x2

262.5 + 902.0x + 751.7x2 + 458.6x3 + 2.62x4 + 100x5
, (9)

where x = mer . The fit has χ2 = 9.5 for 22 degrees of
freedom. We estimate the accuracy of the fit as 1 × 10−3 for
x � 1. In the interval of 1 < x < 10 the uncertainty gradually
increases to a few percent level. For higher x, thanks to the
correct asymptotic behavior, the error does not exceed that
level.

As an independent test of our fit, we compare the results
obtained by using the fit for the n = 2 Lamb shift in the
lightest two-body muonic atoms with the direct ones [10,11]
(see Table II). The results are in perfect agreement within our
estimation of the uncertainty of the fit as 10−3.

The virtual-Delbrück-scattering situation is very different
from the WK one. As mentioned, the WK potential V1:3(r )
[17] is valid when one can neglect the recoil effects, i.e., it is
a result of an expansion not only in Zα, but also in m/M . Be-
cause of the recoil nature of the corrections, the WK potential
is applicable in both ordinary and muonic atoms. In the former
we are interested in a large range of distances at x � 1, while
the latter deals only with x ∼ 1 or x � 1. The 2:2 potential
is applicable only for muonic atoms [10,11] and therefore the
area with x � 1 and even with x � 1 is of low interest. It still
may appear in evaluation of the energy for the highly excited
states with n2/Z � 1, but most of the applications rely on a
study of the lower states with n = 1, 2. For such states the
accuracy of the Padé approximation (9) is at the level of 10−3.

TABLE I. Characteristic differences of the wave functions of the
low states (1s, 2s, 2p) in light two-body muonic atoms. Here, κ =
Zαmr/me is the characteristic momentum of the muonic states in
the units of me, while xn = n2/κ is the characteristic radius of the nl

state in units of λ̄e = h̄/mec.

Ion Z κ x1 x2

1H 1 1.356 0.737 2.950
2H 1 1.428 0.700 2.800
3H 1 1.454 0.688 2.751
3He 2 2.908 0.344 1.375
4He 2 2.935 0.341 1.363
6Li 3 4.443 0.225 0.900
7Li 3 4.455 0.224 0.898
9Be 4 5.960 0.1678 0.671
10B 5 7.460 0.1341 0.536
11B 5 7.467 0.1339 0.536
12C 6 8.968 0.1115 0.446
13C 6 8.975 0.1114 0.446
14N 7 10.48 0.0954 0.382
15N 7 10.48 0.0954 0.382
16O 8 11.99 0.0834 0.334
17O 8 11.99 0.0834 0.334
18O 8 12.00 0.0834 0.333
19F 9 13.50 0.0741 0.296
20Ne 10 15.00 0.0667 0.267
21Ne 10 15.01 0.0666 0.267
22Ne 10 15.01 0.0666 0.266

Note that this is the accuracy of the approximation of V2:2(r )
potential. Meanwhile, the very applicability of that potential
due to the static-muon approximation has lower accuracy (see
above).

As an example of applicability of the x � 1 area to practi-
cal cases, we mention neutral antiprotonic helium, where the
characteristic size of the antiproton orbit is comparable with
the 1s orbit of an electron in a hydrogen atom (see, e.g., [22]).

IV. NUMERICAL RESULTS

The purpose of the paper is a derivation of an effective
potential for the 2:2 contribution to the muonic-atom Lamb
shift at medium Z, which has been done in the previous
section. It is interesting to compare the numerical results with
those from other LbL terms, and in particular, with the WK
ones.

There are two fits for the WK potential for the muonic
atoms, which are available in literature. [The potential is valid
by itself for ordinary and muonic atoms; however, the purpose
of the fit determines the range of the distances of interest (see
above).] One of them is [5]

V1:3(r ) = 0.3617
α(Zα)2

π

Zα

r

× exp[0.3728 x −
√

2.906 + 11.4 x + 4.417 x2].

(10)

Another fit applied in numerical calculations in muonic
atoms is [3]

V1:3 = α(Zα)3

π3r

{−0.1755+0.1559x+0.0880x2

x6 for x � 1
0.649−0.208x

1.374x3+1.41x2+2.672x+1 for x � 1
. (11)

Both fits are based on numerical calculations by Vogel
[6] for the interval of 0.1 < x � 1, and in that area the fits

TABLE II. The 2:2 contributions to the 2s and 2p Lamb shift
in light muonic atoms. The results of direct calculations are taken
from [10,11]. The uncertainty of the integration over the fit in (9) is
the statistical one. The error due to the static-muon approximation is
the same for the direct calculations and for those from the fit. The
characteristic value of x is x = x2.

Contribution [meV]

Atom, state x Eq. (9) Direct

μH (2s) 2.95 −0.001 791(4) −0.001 793(3)
μH (2p) −0.000 642(1) −0.000 642(2)

μD (2s) 2.80 −0.001 966(4) −0.001 968(3)
μD (2p) −0.000 733(1) −0.000 734(2)

μ4He+ (2s) 1.36 −0.027 28(3) −0.027 31(4)
μ4He+ (2p) −0.015 88(2) −0.015 88(3)
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TABLE III. The WK contributions to the 2s and 2p Lamb shift in light muonic atoms. The results of direct calculations are taken from
[10,11]. The uncertainty of the fits for x > 1 is a priori unclear and not shown.

Contribution [meV]

Atom, state x Eq. (10) Eq. (11) Eq. (12) Direct

μH (2s) 2.95 0.001 240 0.001 238 0.001 243 0.001 2472(7)
μH (2p) 0.000 2196 0.000 2196 0.000 2270 0.000 228 87(4)

μD (2s) 2.80 0.001 362 0.001 358 0.001 364 0.001 3693(7)
μD (2p) 0.000 2609 0.000 2609 0.000 2691 0.000 271 23(4)

μ4He+ (2s) 1.36 0.037 67 0.037 30 0.037 69 0.037 833(22)
μ4He+ (2p) 0.017 68 0.017 68 0.017 82 0.017 8676(15)

well agree with the numerical results (at the level of 10−3).
They both utilize the known leading asymptotic term at low
x. They are different in area x > 1. The advantage of (10)
is more smooth behavior around x = 1 and therefore a better

extrapolation to the low end of the x > 1 interval, while the
fit in (11) accommodates the asymptotic term at x � 1 and is
better at high end of the interval.

We use our own fit of Vogel’s data [6]

Vapp. WK(x) = α(Zα)3

r

5.026 + 0.02676x + 0.2829x2

240.0 + 725.4x + 542.2x2 + 649.8x3 + 150.2x4 + 9.457x5 + 100x6
, (12)

which fits the data for 0.1 < x � 1 with a fractional uncer-
tainty better than 10−3 and correctly reproduces the asymp-
totics at low r [17] (see also [23,24]) and at high r [17] (see
also [5,25]). In contrast to the fit (11) from [3], our fit in (12)
has smooth behavior at around x = 1.

The application of the fits to the n = 2 Lamb shift in
muonic hydrogen is rather questionable (see Table I), since

we essentially need to integrate over an interval outside of the
data area of [6], which was used to derive the fit. The smooth
behavior at around x = 1 and a correct x � 1 asymptotics
(mentioned above) should deliver a reasonable result, but its
accuracy is unclear.

Previously, while calculating the results for muonic hydro-
gen, deuterium, and helium [10,11,14] we have used a direct

TABLE IV. The LbL contributions to the Lamb shift of the 1s state in a light two-body muonic atom. The contributions are given in units
of α3(Zα)2mr and meV. The results are given for the total LbL contribution and for its components (see Fig. 1). We present in the table the
central values, while the accuracy of the calculation is discussed in the text.

�E1:3 �E2:2 �E3:1 �ELbL(1s ) �ELbL(1s )
Nucleus Z Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] [meV]

1H 1 0.005 804 −0.008 095 0.005 804 0.003 513 0.006 903
2H 1 0.006 073 −0.008 410 0.006 073 0.003 736 0.007 734
3H 1 0.006 167 −0.008 520 0.006 167 0.003 814 0.008 038
3He 2 0.040 28 −0.026 23 0.010 07 0.024 13 0.2034
4He 2 0.040 49 −0.026 35 0.010 12 0.024 26 0.2063
6Li 3 0.1118 −0.047 97 0.012 43 0.076 30 1.474
7Li 3 0.1120 −0.048 02 0.012 44 0.076 39 1.479
9Be 4 0.2227 −0.071 50 0.013 92 0.1651 5.704
10B 5 0.3737 −0.096 03 0.014 95 0.2926 15.81
11B 5 0.3738 −0.096 06 0.014 95 0.2927 15.83
12C 6 0.5656 −0.1213 0.015 71 0.4600 35.87
13C 6 0.5657 −0.1213 0.015 72 0.4601 35.90
14N 7 0.7988 −0.1471 0.016 30 0.6681 71.00
15N 7 0.7989 −0.1471 0.016 30 0.6682 71.04
16O 8 1.073 −0.1731 0.016 77 0.9170 127.4
17O 8 1.073 −0.1732 0.016 77 0.9171 127.5
18O 8 1.074 −0.1732 0.016 77 0.9172 127.5
19F 9 1.390 −0.1995 0.017 15 1.207 212.5
20Ne 10 1.747 −0.2260 0.017 47 1.539 334.5
21Ne 10 1.747 −0.2260 0.017 47 1.539 334.6
22Ne 10 1.747 −0.2260 0.017 47 1.539 334.7
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TABLE V. The LbL contributions to the Lamb shift of the 2s state in a light two-body muonic atom. The contributions are given in units
of α3(Zα)2mr and meV. The results are given for the total LbL contribution and for its components (see Fig. 1). We present in the table the
central values, while the accuracy of the calculation is discussed in the text.

�E1:3 �E2:2 �E3:1 �ELbL(2s ) �ELbL(2s )
Nucleus Z Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] [meV]

1H 1 0.000 6323 −0.000 9114 0.000 6323 0.000 3532 0.000 6941
2H 1 0.000 6592 −0.000 9498 0.000 6592 0.000 3687 0.000 7631
3H 1 0.000 6686 −0.000 9632 0.000 6686 0.000 3740 0.000 7880
3He 2 0.004 404 −0.003 188 0.001 101 0.002 317 0.019 53
4He 2 0.004 431 −0.003 207 0.001 108 0.002 332 0.019 83
6Li 3 0.013 19 −0.006 236 0.001 465 0.008 416 0.1625
7Li 3 0.013 21 −0.006 246 0.001 468 0.008 432 0.1633
9Be 4 0.028 39 −0.009 825 0.001 774 0.020 34 0.7027
10B 5 0.050 96 −0.013 83 0.002 039 0.039 17 2.117
11B 5 0.050 99 −0.013 84 0.002 040 0.039 19 2.121
12C 6 0.081 68 −0.018 21 0.002 269 0.065 75 5.127
13C 6 0.081 72 −0.018 21 0.002 270 0.065 78 5.132
14N 7 0.1210 −0.022 87 0.002 470 0.1006 10.69
15N 7 0.1210 −0.022 88 0.002 470 0.1006 10.70
16O 8 0.1693 −0.027 78 0.002 645 0.1442 20.03
17O 8 0.1693 −0.027 78 0.002 646 0.1442 20.04
18O 8 0.1694 −0.027 79 0.002 646 0.1442 20.06
19F 9 0.2269 −0.032 90 0.002 801 0.1968 34.64
20Ne 10 0.2938 −0.038 19 0.002 938 0.2585 56.20
21Ne 10 0.2938 −0.038 19 0.002 937 0.2586 56.23
22Ne 10 0.2938 −0.038 20 0.002 938 0.2586 56.24

calculation instead of the fits. To verify the accuracy of the
previous fits and our fit, we compare our results of a direct
calculation and the results from the fits for 2s, 2p for a few

light atoms where the characteristic values of x are the largest
(see Table III). The error of our fit is about 1%, while for
the others it is at a few-percent level. Eventually we estimate

TABLE VI. The LbL contributions to the Lamb shift of the 2p state in a light two-body muonic atom. The contributions are given in units
of α3(Zα)2mr and meV. The results are given for the total LbL contribution and for its components (see Fig. 1). We present in the table the
central values, while the accuracy of the calculation is discussed in the text. That is a nonrelativistic calculation and therefore the results for
2p1/2 and 2p3/2 are the same.

�E1:3 �E2:2 �E3:1 �ELbL(2p) �ELbL(2p)
Nucleus Z Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] Units of [α3(Zα)2mr ] [meV]

1H 1 0.000 1116 −0.000 3265 0.000 1155 −0.000 095 43 −0.000 1875
2H 1 0.000 1300 −0.000 3543 0.000 1300 −0.000 094 24 −0.000 1951
3H 1 0.000 1353 −0.000 3642 0.000 1353 −0.000 093 55 −0.000 1971
3He 2 0.002 065 −0.001 848 0.000 5161 0.000 7332 0.006 180
4He 2 0.002 095 −0.001 867 0.000 5237 0.000 7518 0.006 394
6Li 3 0.008 568 −0.004 338 0.000 9520 0.005 182 0.1001
7Li 3 0.008 597 −0.004 349 0.000 9552 0.005 203 0.1007
9Be 4 0.021 43 −0.007 548 0.001 339 0.015 22 0.5258
10B 5 0.041 72 −0.011 30 0.001 669 0.032 09 1.734
11B 5 0.041 76 −0.011 31 0.001 670 0.032 12 1.738
12C 6 0.070 29 −0.015 51 0.001 952 0.056 73 4.423
13C 6 0.070 33 −0.015 52 0.001 954 0.056 76 4.429
14N 7 0.1076 −0.020 08 0.002 196 0.089 72 9.535
15N 7 0.1076 −0.020 08 0.002 197 0.089 75 9.543
16O 8 0.1540 −0.024 93 0.002 406 0.1315 18.27
17O 8 0.1540 −0.024 94 0.002 407 0.1315 18.28
18O 8 0.1541 −0.024 94 0.002 408 0.1315 18.29
19F 9 0.2098 −0.030 03 0.002 590 0.1824 32.10
20Ne 10 0.2751 −0.035 31 0.002 751 0.2425 52.72
21Ne 10 0.2751 −0.035 32 0.002 751 0.2425 52.74
22Ne 10 0.2751 −0.035 32 0.002 751 0.2426 52.76

062519-6



LIGHT-BY-LIGHT-SCATTERING CONTRIBUTIONS TO … PHYSICAL REVIEW A 98, 062519 (2018)

the accuracy of our fit as follows: at 0.1 < x � 1 it is below
1 × 10−3, and it gradually reduces for x < 0.1 and x > 1
down to a 1% level.

The results for n = 1, 2 states in a two-body muonic atom
are summarized in Tables IV, V, and VI for all three LbL
contributions (the 1:3, 2:2, 3:1 ones). The uncertainty of the
fits is discussed above, as well as the uncertainty of the static-
muon approximation.

V. CONCLUSIONS

In conclusion, we have derived a representation for an
effective potential induced by the virtual Delbrück scatter-
ing in the leading nonrelativistic approximation. We have
obtained its numerical values in a number of points in the
coordinate space and found an efficient Padé approximation.
The accuracy of the Padé approximation is the highest for
mer < 1, which allowed us to find the contributions to the
Lamb shift of the low states in light two-body muonic atoms.
We estimate the accuracy of the numerical evaluation as at
the level of one part in a thousand, which is higher than
the accuracy of the leading nonrelativistic approximation by
itself.

The uncertainty of the Padé approximation for the potential
is the best for mer < 1 (at the level of 10−3), and it gradually

increases to the few-percent level for mer � 10. The data of
the numerical evaluation of the potential itself at higher mer

are not accurate enough; however, the Padé approximation is
constrained by the long-distance asymptotic behavior, which
we have established by an independent evaluation.

In particular, we have tabulated the related contributions
to the Lamb shift of the 1s, 2s, 2p states in muonic atoms
with Z � 10. Those states are sufficient for two important
problems, namely, for a theory of the n = 2 Lamb shift and
of the Lyman-α interval.

We have also compared the results for the virtual-
Delbrück-scattering contribution and the Wichmann-Kroll
one. At Z = 1 they are comparable (being of opposite signs).
They increase with the value of Z, but the Wichmann-
Kroll one increases faster. At Z = 10 the virtual-Delbrück-
scattering contribution is between 10% and 20% of the
Wichmann-Kroll contribution, depending on the state.
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