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In multipole-bound anions, the excess electron is attached by a short-range multipole potential of a neutral
molecule. Such anions are prototypical marginally bound open quantum systems. In particular, around the
critical multipole moment required to attach the valence electron, multipole-bound anions exhibit critical
behavior associated with a transition from bound states dominated by low-� partial waves to the electron
continuum. In this work, multipole-bound anions are described using a nonadiabatic electron-plus-rotor model.
The electron-molecule pseudopotential is represented by a short-range multipole field with a Gaussian form
factor. The resulting coupled-channel Schrödinger equation is solved by means of the Berggren expansion
method, in which the electron’s wave function is decomposed into bound states, narrow resonances, and the
nonresonant scattering continuum. We show that the Gaussian model predicts the critical transition at the
detachment threshold. Resonant states, including bound states, decaying resonances, subthreshold resonances,
and antibound states are studied, and exceptional points where two resonant states coalesce are predicted. We
discuss the transition of rotational band structures around the threshold and study the effects of channel coupling
on the decay width of resonant poles.
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I. INTRODUCTION

The question of whether or not a neutral molecule can
attach an excess electron to form a bound anion is not simple
to answer [1–4]. Fermi and Teller, in their pioneering work
[5], demonstrated the existence of the minimal dipole moment
required to bind an electron in an external point dipolar
field. This result stimulated many theoretical and experimen-
tal investigations on multipole-bound anions using effective
potential methods [1,6–17] and ab-initio approaches [18–30].

Because of the similarity of single-electron and rotational
energy scales, there appears a strong, nonadiabatic coupling
between the valence-electron and molecular rotational mo-
tions that impact the critical multipole moment required to
form an anion [12,31–35]. Moreover, while the evidence
for dipole-bound anions is solid, this is not the case for
higher multipolarities [4,17,36]. In our previous study on
the resonant spectrum of quadrupole-bound anions [17] we
predicted narrow resonances above the detachment threshold.
The energies and widths of those resonances appear to be
rather insensitive to details of the potential and are almost
identical for prolate and oblate charge distributions.

While the binding of multipole-bound anions is fragile,
low-energy resonances in such systems are expected to be
less sensitive to details of the short-range molecular poten-
tial as the spatial extension of the valence electron is huge.
This situation resembles universal behavior, independent of
the details of the interaction, exhibited by other weakly
bound and/or unbound quantum systems, such as nuclear and
hadronic halos, cold atomic gases near a Feshbach resonance,
and helium dimers and trimers; see, e.g., Refs. [37–46]. In
all of those cases, simple arguments based on scale separa-
tion and effective field theory capture the essential physics
[42,47–52]. Consequently, to investigate generic properties of

multipole-bound anions, we consider a schematic model,
which contains the following crucial physics ingredients: (1) a
short-range multipole potential and (2) nonadiabatic coupling
between electronic and molecular motion.

In the present study, we investigate the generic near-
threshold behavior of multipole-bound anions at the transition
between the subcritical and supercritical regimes. The main
interest of this study is to show the role of low-� partial waves
in shaping the properties of low-lying states. We assume
that the potential representing the molecular core is given
by a Gaussian radial form factor with a multipolar angular
distribution. The particular choice of the radial form factor
is not important as it represents an a priori unknown short-
range attraction. One can view this particular realization as a
regularized zero-range interaction. The continuum couplings
are included using the Berggren expansion method as in
Refs. [15–17]. To study the threshold behavior of the system
we investigate the pattern of resonant poles as a function of
four parameters: the strength and range of the Gaussian form
factor, the multipolarity of the potential, and the molecular
moment of inertia.

The paper is organized as follows. Section II presents the
model and method used. The results obtained in this study are
discussed in Sec. III. Finally, Sec. IV contains a summary and
conclusions.

II. MODEL AND METHOD

A. Hamiltonian

In this work, we use the electron-plus-molecule Hamilto-
nian similar to that of Refs. [15,16]. As shown in Fig. 1 the
valence electron is weakly coupled to the core. Without con-
sidering the spin-orbit interaction or the vibrational motion of
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FIG. 1. A schematic illustration of the electron-plus-molecule
model used in this work.

the core, the Hamiltonian can be written as

Ĥ = ĵ 2

2I
+ p̂2

e

2me

+ V (r ). (1)

The first term is the rotational energy of the molecule with
angular momentum ĵ and moment of inertia I . The second
term represents the kinetic energy of the electron of mass me

and linear momentum p̂e. The interaction between the rotor
and the valence electron is modeled by the axially deformed
Gaussian potential of multipolarity λ:

V (r ) = −V0 exp

(
− r2

2r2
0

)
Pλ(cos θ ), (2)

where r is the electron’s position vector in the molecular refer-
ence frame, V0 is the potential strength, and r0 is the potential
range. The angular part of the potential is given by a Legendre
polynomial of order λ, with θ being the angle between the
direction of the valence electron r̂ and the symmetry axis of
the rotor.

B. Coupled-channel equations

The total angular momentum of the system Ĵ is given
by the sum of the angular momentum of the rotor ĵ and
the valence electron �̂. Because the system is rotationally
invariant in the laboratory reference frame, Ĵ commutes with
the Hamiltonian Ĥ and the eigenvectors can be written as

�J =
∑

c

uJ
c (r )�J

c , (3)

where c labels all possible channels (j, �) for a given J ,
uJ

c (r ) is the radial channel wave function, and �J
c is the

angular channel wave function. The eigenstates of Eq. (3)
are also labeled by means for the parity quantum number π ;
hence, in the following we use the spectroscopic notation Jπ

n ,
where n = 1 marks the lowest Jπ -state, n = 2 - the next one,
and so on. Due to the symmetries of V (r ), the ground-state
rotational band of the molecule has states with j = 0, 2, 4, . . .

and π = + for λ-even and jπ = 0+, 1−, 2+, 3−, . . .

for λ-odd [53].

The coupled-channel equations are obtained by inserting
the wave function (3) into the Schrödinger equation:[

d2

dr2
− jc(jc + 1)

I
− �c(�c + 1)

r2
+ EJ

]
uJ

c (r )

=
∑
c′

V J
cc′ (r )uJ

c′ (r ), (4)

where V J
cc′ (r ) is the channel-channel coupling potential.

Throughout the paper, we will be using Rydberg units (energy
expressed in Ry and distance in a0).

In the coupled-channel approach, the motion of the elec-
tron is weakly coupled to the rotation of the molecule. The
adiabatic, or strongly coupled, limit corresponds to an infinite
moment of inertia where the rotational band of the molecule
collapses to the band-head energy.

C. Berggren expansion method

The coupled-channel equations (4) can be solved by
means of the direct integration method (DIM), but a good
initial guess is required to ensure convergence [17]; this can
be difficult for weakly bound states and broad resonances.
Also, higher-multipolarity potentials require a larger number
of channels, which makes this method computationally
demanding.

An alternative to the DIM is the Berggren expan-
sion method (BEM), previously applied in the context of
multipole-bound anions [16,17] and nuclear halos [54–56].
The Berggren basis [57,58] used in this work is defined in
the complex momentum plane; it contains explicitly resonant
states (poles of the one-body S-matrix) and scattering states
defined along a contour L+ in the fourth quadrant of the
momentum plane. The completeness relation for the Berggren
ensemble can be written as∑

b,a,d

|ũn〉 〈un| +
∫
L+

|ũ(k)〉 〈u(k)| dk = 1, (5)

where the sum over discrete resonant states includes bound
states b, antibound (or virtual) states a, and decaying poles d

lying between the positive real axis and the contour L+. The
tilde symbol indicates time reversal. In the unlikely situation
that bound states of energies higher than antibound states are
present, they must be excluded from the sum in Eq. (5). The
decaying poles in the fourth quadrant, which lie close to the
real-k axis and have a real energy Re(E) > 0 and a width
� = −2Im(E) > 0 can be interpreted as narrow resonances.
The poles with Re(E) < 0 and � > 0, located below the −45◦
line in Fig. 2 and close to the origin, can be associated with
subthreshold resonances [59–62].

In practical applications, one often considers a contour
L+

1 of Fig. 2 that starts at the origin, extends into the fourth
quadrant up to kpeak, comes back to the real axis at kmid,
and continues along the real axis up to the cutoff momentum
kmax. To be able to explore S-matrix poles in other regions of
the complex momentum plane, two other contours are used
in this work. With the contour L+

2 we explore the region of
subthreshold resonances. The contour L+

3 can be employed
to reveal antibound states lying on the negative imaginary
momentum axis and the capturing resonances lying in the
third complex-k quadrant.
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FIG. 2. Berggren ensemble in the complex-k plane. Bound, an-
tibound, decaying, and capturing resonant states are marked. The
distribution of poles is symmetric with respect to the imaginary-k
axis because of time reversal symmetry. Three different scattering
contours L+

1 , L+
2 , and L+

3 reveal S-matrix poles in different sectors
in complex momentum-energy plane. The −45◦ line separating
decaying resonances from subthreshold resonances is marked.

For each channel, the basis is generated using the diagonal
part of the potential in the channel basis Vcc [16]. Bound
states and decaying resonances entering the Berggren basis
for a given partial wave are obtained by a direct integration
of the Schrödinger equation for the diagonal term of the
potential, while the selected scattering states along the contour
L+ are discretized in the momentum space using a Gauss-
Legendre quadrature as in Refs. [16,17]. The nonresonant
continuum is limited by the momentum cutoff kmax that has
to be sufficiently large to ensure the completeness of the
Berggren basis. While the bound states are normalized in the
standard way, decaying resonances are normalized using the
exterior complex scaling method [63,64]. The scattering states
are normalized to Dirac-delta function. This representation
provides a natural way to include continuum couplings for
each desired partial wave.

The spectrum of the system is obtained by diagonalizing
the complex-symmetric Hamiltonian matrix. It consists of
resonant eigenstates representing bound states and narrow res-
onances, and nonresonant scattering solutions. Differentiating
resonant states from the nonresonant scattering background
requires special treatment. Since resonant states do not depend
on a detailed choice of the contour L+, by moving the contour
slightly a new spectrum can be obtained, where nonresonant
states move according to the contour change and resonant
states stay invariant [17]. In this way, resonant states can be
located. As a further test, these resonant states are used in the
DIM as an initial guess, and it is checked that the BEM results
are reproduced.

III. RESULTS

A. Threshold trajectories for multipolar Gaussian
potentials in the adiabatic limit

Multipole-bound anions can be characterized by their crit-
ical multipole moments Q±

λ,c, which mark the limit between
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FIG. 3. Threshold trajectories (V0, r0)±c for multipolar Gaussian
potentials with λ = 1 − 4 in the adiabatic limit.

the subcritical and supercritical regimes. We note that for odd-
multipole potentials Q−

λ,c = −Q+
λ,c, but there is no such rela-

tion for even-multipole potentials. For instance, there are two
critical values of the quadrupole moment for a quadrupole-
bound anion (λ = 2): Q+

2,c (prolate) and Q−
2,c (oblate), and

Q−
2,c �= −Q+

2,c.
As the usual −1/rλ+1 radial dependence of multipolar

potentials is replaced in our work by the Gaussian form factor,
the detachment threshold is obtained at the critical trajectories
of (V0, r0)±c . Figure 3 shows such trajectories obtained in the
adiabatic limit for the Jπ = 0+

1 ground states of anions with
multipolarities λ = 1 − 4.

The complex-momentum contours used in the Berggren
basis are defined by the points k = (0, 0), kpeak = (0.5,−0.1),
kmid = 1.0, and kmax = 14.0 (in units of a−1

0 ), with each
segment being discretized by 40 Gauss-Legendre points. To
ensure convergence, we took �max = 4 for λ = 1, 2, 3 and
�max = 8 for λ = 4, 5.

As one would expect, the absolute value of the critical
potential strength |V0,c| required to bind an excess electron
is decreasing with the range r0 and for a fixed range |V0,c|
increases with multipolarity. Also, as noted in previous stud-
ies [17,65–67], for even multipolarities, the value of |V0,c|
for negative-V0 potentials (“prolate”) is larger than that for
positive-V0 potentials (“oblate”).

It is interesting to note that at the threshold, the wave
functions are dominated by the � = 0 component. Dividing
the intrinsic wave function into the inner region (r < R) and
outer region (r > R) contributions, where R is the distance
at which the core potential becomes practically unimportant,
one can show [68–70] that the probability of finding the
electron in the outer region approaches one at the detachment
threshold, if the � = 0 component is present in the intrinsic
wave function. This has been practically demonstrated in our
previous work on quadrupole-bound anions [17] in the context
of the scaling properties of root-mean-square radii.
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FIG. 4. The lowest 0+ resonant state of the quadrupolar Gaussian
potential with r0 = a0 as a function of V0. Top: real energy and
imaginary momentum. Bottom: the channel decomposition of the
real part of the norm. The critical strength V0,c is marked by arrow.

B. Resonances of the near-critical quadrupolar
Gaussian potential

In order to study the role of low-� partial waves in
multipole-bound anions at the interface between the sub-
critical and supercritical regimes, one has to recognize the
impact of � = 0 partial waves on resonant states near thresh-
old [70]. In our coupled-channel formalism, resonant states
appear through the mixing of different channels. To study
general features of near-threshold resonances, we consider
three states of the quadrupolar potential in the adiabatic
approximation. Namely, we investigate the following: (1) the
Jπ = 0+

1 ground state dominated by the � = 0 partial wave,
(2) an excited Jπ = 0+

d state dominated by the � = 2 channel,
and (3) the lowest Jπ = 1−

1 state, which is primarily � = 1.
The quadrupolar case discussed here is characteristic of other
multipolar potentials.

1. Resonant states dominated by the � = 0 channel

The ground state (g.s.) of the quadrupolar potential is
computed with the BEM, using the extended contour L3

of Fig. 2 defined by the points: k = (0, 0), (−0.1,−0.4),
(0.1,−0.4), (2,0), and (14,0) (all in a−1

0 ), each segment being
discretized with 40 Gauss-Legendre points. By considering
the contour that extends into the third quadrant of the complex
momentum plane, antibound states can be revealed; see Fig. 2
and Refs. [71–73].

Figure 4(a) shows the energy and momentum of the 0+
1

state for different values of the potential strength V0. For large
values of V0, the g.s. is bound [Re(E) < 0] and has a positive
imaginary momentum. As the potential strength decreases, the
energy of the ground state moves up and approaches the E =
0 threshold at V0,c = 8.7 Ry. For V0 < V0,c the lowest 0+ state
becomes antibound [Re(E) < 0, Im(k) < 0]. As illustrated in
Fig. 4(b), the contributions N� to the complex norm of the
wave function from different �-channels (� = 0, 2, 4) vary
smoothly when crossing the threshold. The norm is largely
dominated by the � = 0 component. At the critical strength,

FIG. 5. Trajectory of the 0+ resonant state in the complex-k
plane of the quadrupolar potential with r0 = 4 a0 as the potential
strength V0 increases in the direction indicated by an arrow. At the
lowest value V0 = 1.1 Ry, the 0+ ground state is bound and the state
of interest is an excited 0+

2 state associated with a decaying reso-
nance. At V0 = 1.8 Ry the pole crosses the −45◦ line and becomes
a subthreshold resonance 0+

d . At V0 = 2.857 Ry the decaying pole
reaches the imaginary-k axis and coalesces with the capturing pole
with Im(k) < 0 forming an exceptional point. The antibound states
at V0 = 1.8 Ry and V0 = 2.7 Ry are marked.

the � > 0 contributions to the norm vanish, cf. discussion in
Sec. III A. The presence of near-threshold antibound states
impacts the structure of the low-energy continuum and can
manifest their existence through peaks in the scattering cross
section at low energy [60,74–77].

2. Resonant states dominated by a � �= 0 channel

We now consider the evolution of an excited state of
the quadrupolar potential with r0 = 4 a0. At V0 = 1.1 Ry the
lowest 0+ state is bound and the second Jπ = 0+

2 state is a
decaying resonance; see Fig. 5. Figure 6(a) shows the channel
decomposition for this state. It is seen that its configuration
has the predominant � = 2 component.

As the potential gets deeper, the pole crosses the −45◦ line
at V0 ≈ 1.8 Ry and becomes a subthreshold resonance labeled
as 0+

d . At V0 = 2.7 Ry a rapid transition to a configuration
dominated by the � = 4 partial wave takes place, which is
indicative of a level crossing in the complex-k plane. At
V0 = 2.857 Ry the decaying pole arrives at the imaginary-k
axis and coalesces with the symmetric capturing pole forming
an exceptional point [78–80]. At still larger values of V0, the
exceptional point splits up into two antibound states moving
up and down along the imaginary-k axis as shown in Fig. 5.
A similar situation was discussed in Refs. [81,82] in the
context of electron-molecule scattering and optical lattice
arrays, respectively.

In the range of V0 corresponding to the trajectory 0+
2 → 0+

d

shown in Fig. 5, there appear antibound states in the threshold
region. Their trajectories along the imaginary k axis are
shown in Fig. 7 and their channel decompositions are given
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FIG. 6. Real norms of the channel wave functions for the decay-
ing pole 0+

d shown in Fig. 5 and the antibound states 0+
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c of
Fig. 7.

in Figs. 6(b) and 6(c). As V0 increases, the antibound states
0+

a , 0+
b , and 0+

c emerge as bound physical states of the system
labeled as 0+

1 , 0+
2 , and 0+

3 , respectively. The lowest antibound
state 0+

a has a dominant � = 0 configuration, similar to that of
Fig. 4. At low values of V0, the wave function of the antibound
state 0+

b is predominantly � = 2. As seen in Fig. 5, this state
appears close to the decaying pole 0+

d at V0 ≈ 1.8 Ry and the
crossing between these two poles in the complex-k plane is
seen in their wave function decompositions. Following the
crossing, the state 0+

b acquires a large � = 0 component.
The antibound state 0+

c begins as an � = 4 configuration. At
V0 ≈ 2.7 Ry, this state interacts with 0+

d and its configuration
changes to � = 2. One can thus see that the presence of
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antibound states results in the particular shape of the 0+
d -pole

trajectory in the complex-k plane.
The dependence of the 0+

d -pole trajectory on the potential
range is illustrated in Fig. 8. For potentials with longer ranges,
pole trajectories appear closer to the origin. In all the cases
shown, a transition from decaying to subthreshold resonances
takes place. These poles have large widths, and are expected to
impact the structure of the low-energy scattering continuum.

3. Resonant states without a � = 0 component

Here we discuss the lowest Jπ = 1−
1 state, which is primar-

ily � = 1 with a small admixture of the � = 3 channel. This
case closely follows the discussion of Ref. [81] for p-wave
scattering from short-range potentials. The corresponding tra-
jectory of this state in the complex momentum plane is shown
in Fig. 9(a). At larger values of V0, the 1−

1 state is bound.
As V0 decreases, this state crosses the detachment threshold
and becomes a narrow decaying resonance. The trajectory of
the capturing resonance, symmetric with respect to the Im(k)
axis, is not shown. As discussed in Ref. [81], the exceptional
point appears at the origin at V0,c. Close to the threshold, the
bound state and the antibound state are located symmetrically
to the origin. For the p-wave dominated state, the transition
from the subcritical to the supercritical regime is smooth,
i.e., the wave function amplitudes hardly change with V0; see
Fig. 9(b). This is because the contributions from antibound
and bound state poles cancel each other out. In this case, the
structure of the low-energy continuum is not expected to be
affected by the presence of threshold poles.

The situation presented in Fig. 9 is rather generic for p-
wave dominated resonant poles. Increasing the potential range
moves the pole trajectory closer to the real-k axis. Conse-
quently, states containing no s-wave component are likely to
appear as isolated narrow resonances. For odd-multipolarity
potentials, a (j = J, � = 0) component of a Jπ state be-
comes large as the detachment threshold is approached; see
Sec. III B 1. On the other hand, for even-multipolarity po-
tentials, odd-J states cannot have an s-wave component, as
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the core’s angular momentum j must be even, and narrow
near-threshold resonances can appear.

C. Rotational motion

To describe multipole-bound anions, one has to take into
account the nonadiabatic coupling between the rotational mo-
tion of the molecule and the single-particle motion of the elec-
tron. Whether a multipole-bound anion can exhibit rotational
bands depends on the molecule’s multipolarity. For instance,
it was shown in Ref. [16] that rotational bands of dipolar
anions do not extend above the detachment threshold while a
similar study for quadrupole-bound anions [17] demonstrated
that the rotational motion of the anion is hardly affected by
the continuum effects. The reason for this difference might be
due to the existence of two coupling regimes in the dipolar
case: a strong coupling regime below the threshold (valence
electron follows the rotational motion of the core) and a weak
coupling regime in the continuum region (valence electron is
almost entirely decoupled from the molecular rotation).

Figure 10 illustrates the case of a rotational band built
upon the subthreshold Jπ = 0+

1 state of the Gaussian dipolar
potential. It is seen that the rotational band is not affected
when the zero-energy threshold is crossed below J = 4.
This result indicates that the presence of the two coupling
regimes predicted to exist in realistic calculations for dipole-
bound anions [16] must be due to difficulties in imposing
proper boundary conditions at infinity for the dipolar potential
(∼r−2) when the rotational motion of the molecule is consid-
ered nonadiabatically [15]. Since in the present work the ra-
dial part of the dipolar pseudopotential is replaced by a Gaus-
sian, the outgoing boundary condition can be readily imposed.
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103 mea

2
0 have been chosen to place the band-head energy slightly

below the zero-energy threshold, where rotational motion of the rotor
can excite the system into the continuum. The energy is plotted as a
function of J (J + 1).

A similar result is obtained for the quadrupolar case shown
in Fig. 11 for two rotational bands built upon the Jπ = 0+

1 and
1−

1 bandheads. The existence of rotational bands extending
above the detachment threshold is consistent with the findings
of Ref. [17] employing the realistic quadrupolar pseudopoten-
tial. The results for higher-multipolarity potentials follow the
pattern obtained for the dipolar and quadrupolar cases; hence,
they are not shown here.

We now investigate the impact of the molecular rotation
on the anion’s energy spectrum. By definition, changing the
moment of inertia of the rotor is expected to have a larger
effect on states dominated by channels with large j , but
in practice such channels are unlikely to dominate at low
energies. As an illustrative example, we study the 3−

1 state
of the quadrupolar (λ = 2) Gaussian potential. Figures 12(a)
and 12(b) show, respectively, the energy and decay width of
the 3−

1 resonance as a function of the potential strength and
the inverse moment of inertia.

At large values of V0 when the 3−
1 resonance lies close

to the threshold, its wave function is primarily described in

-0.2

0.0

0.2

0.4

I = 50 mea
2
0

I = 100mea
2
0

angular momentum J

en
er

gy
 (R

y)

3- 4+2+0+1- 5-

detachment
threshold

λ = 2

FIG. 11. Similar to Fig. 10 but for rotational bands built upon
the J π = 01

+ and 11
− bandheads of a quadrupolar Gaussian po-

tential with V0 = 12.38 Ry, r0 = a0, and for I = 50 mea
2
0 and I =

100 mea
2
0 .
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FIG. 12. Energy (a) and decay width (b), both in Ry, of the
3−

1 resonance of the quadrupolar Gaussian potential with r0 = a0

as a function of the inverse of the moment of inertia and the
potential strength. The detachment threshold (E = 0) is indicated.
The dominant (j, �) channel is marked in panel (b). When the
rotational energy of the molecule E

j=4
rot lies below/above the energy

of the 3−
1 resonance, the (4,1) decay channel is open/closed. The line

E
j=4
rot = E(3−

1 ) (thick solid) separating these two regimes is marked,
so is the line E

j=2
rot = E(3−

1 ) (thick dotted) which corresponds to the
threshold energy for the opening of the (2,1) channel. The norms
of the two dominant channels (2,1) (solid line) and (4,1) (dotted
line) are shown as a function of V0 for 1/I = 0.04 m−1

e a−2
0 (c) and

0.02 m−1
e a−2

0 (d).

terms of two channels with (j, �) = (2, 1) and (4,1) with the
dominant (2,1) amplitude; see Figs. 12(c) and 12(d). At a
finite value of I , as the energy of the resonance increases,
a transition takes place to a state dominated by the (4,1)
component that is associated with a reduction of the decay
width. This transition can be explained in terms of channel
coupling. At very low values of 1/I the resonance’s energy
E(3−

1 ) lies above the rotational 4+ state of the molecule.
As the moment of inertia decreases, the 4+ member of the
ground-state rotational band of the molecule moves up in
energy, and at some value of I it becomes degenerate with the
energy of the E(3−

1 ) resonance, i.e., E
j=4
rot = E(3−

1 ). At still
higher values of 1/I , the (4,1) channel is closed to the anion’s
decay. As seen in Fig. 12(b), the irregular behavior seen in
the width of the resonance can be attributed to the (4,1) chan-
nel closing effect [56]. A second irregularity in Figs. 12(c)
and 12(d), seen at large potential strengths, corresponds to
E

j=2
rot = E(3−

1 ). As the resonance approaches the threshold,
its tiny decay width can be associated with the (0,3) channel.
Due to its higher centrifugal barrier, (0,3) channel contributes
around 1% to the total norm in the threshold region.

D. Unbound threshold solutions in the supercritical region

In our previous study on quadrupole-bound anions [17],
based on a realistic pseudopotential, it was shown that there
appear series of narrow resonances at energies close to
the rotor energies, exhibiting fairly regular patterns. Similar

10−8

10−6

10−4

10−2

W
id

th
(R

y)

λ = 2, Jπ = 0+, V0 = 8 Ry, r0 = a0

10−7 10−6 10−5 10−4 10−3 10−2

Energy (Ry)

10−8

10−6

10−4

10−2

Re(k ) = 0.5

Im(k ) = −0.1

-0.15
-0.10
-0.05
-0.01

Im(k )

0.3
0.4
0.5
0.6

Re(kpeak)

(a)

(b)

FIG. 13. Unbound threshold 0+ states of the quadrupolar Gaus-
sian potential obtained by using scattering L-contours with different
kpeak (in units of a−1

0 ) in the complex momentum plane; see Fig. 2.
The potential has V0 = 8 Ry and r0 = a0.

sequences of threshold states, predicted by the present model,
are shown in Fig. 13, which displays unbound 0+ states of
the quadrupolar Gaussian potential computed with different
scattering contours in the complex momentum plane obtained
by varying kpeak; see Fig. 2. It is seen that the calculated states
exhibit appreciable contour dependence.

Similar results have been obtained for other Jπ states
and Gaussian potentials with higher-multipolarity potentials.
Since the general pattern of near-threshold solutions obtained
in different calculations seems to be fairly generic, and pri-
marily depends on the shape of the contour used, they should
be interpreted in terms of nonresonant scattering continuum
states rather than resonance poles.

IV. CONCLUSIONS

In this work, we studied properties of near-threshold states
of multipole-bound anions using the Berggren expansion
method within the coupled-channel formalism. We consid-
ered a Hamiltonian of a nonadiabatic electron-plus-molecule
model with the particle-core interaction being represented by
a multipolar Gaussian potential. Such a four-parameter model,
rooted in scale-separation arguments of halo effective field
theory, is expected to describe general trends of near-threshold
resonant poles for multipolarities λ � 2.

By calculating the threshold lines for anions of different
multipolarity, we predicted that within this model, higher-
λ anions can exist as marginally bound open systems. The
role of the low-� channels in shaping the transition between
subcritical and supercritical regimes has been explored. We
demonstrate the presence of a complex interplay between
bound states, antibound states, subthreshold resonances, and
decaying resonances as the strength of the Gaussian poten-
tial is varied. In some cases, we predict the presence of
exceptional points. The fact that antibound states and sub-
threshold resonances can be present in multipolar anions is
of interest as they can affect scattering cross sections at low
energy.

For Gaussian potentials, the outgoing boundary condition
can be readily imposed. Consequently, the rotational band
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of the anion is not affected when the zero-energy threshold
is reached. This indicates that the presence of two coupling
regimes of rotation predicted to exist in realistic calcula-
tions for dipole-bound anions [16] must be due to specific
asymptotic behavior of the dipolar pseudopotential in the
presence of molecular rotation. The nonadiabatic coupling
due to the collective rotation of the molecular core can give
rise to a transition into the supercritical region. We also predict
interesting channel-coupling effects resulting in variation of
an anion’s decay width due to rotation.

In summary, by looking systematically at the pattern of
resonant poles of multipole-bound anions near the electron
detachment threshold we uncover a rich structure of the

low-energy continuum. These simple systems are indeed
splendid laboratories of generic phenomena found in
marginally bound molecules and atomic nuclei.
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