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Nuclear-structure corrections to the hyperfine splitting in muonic deuterium
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Nuclear structure corrections of orders Zα EF and (Zα)2EF are calculated for the hyperfine splitting of the
muonic deuterium. The obtained results disagree with previous calculations and lead to a 5 σ disagreement with
the current experimental value of the 2S hyperfine splitting in muonic deuterium.
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I. INTRODUCTION

Nuclear structure effects represent the main limitation
for precise theoretical description of atomic energy levels.
These effects are particularly important for muonic atoms,
where the Compton wavelength of the bound muon ∼2 fm
is of the same order as the nuclear size. It is, therefore, not
surprising that the uncertainty of modern theoretical predic-
tions of energy levels of light muonic atoms is dominated by
the uncertainty of nuclear-structure effects. Specifically, the
current theoretical value of the hyperfine splitting (hfs) of the
2S state of muonic deuterium (μD) is [1]

Ehfs(2S)theo = 6.2791 (50) meV, (1)

where the uncertainty comes almost exclusively from the
deuteron polarizability (±0.0049 meV). The theoretical value
(1) was obtained in Ref. [1] by compiling two independent
calculations, by Borie [2] and by Faustov et al. [3]. The
theoretical result is in good agreement with the experimental
value [4]:

Ehfs(2S)exp = 6.2747(70)stat (20)syst meV. (2)

In this work we will demonstrate that the deuteron structure
corrections to hfs in μD were previously treated incorrectly
and that the good agreement with the experimental value was
probably accidental. Specifically, the calculation by Borie [2]
included only the elastic part of the nuclear structure, which
does not reproduce even the correct sign of the total nuclear
structure effect. Faustov and coworkers [3] included both the
Zemach and the Low corrections at the same time, which is
inconsistent, and, moreover, used an incorrect formula for the
nuclear polarizability.

In the present work we derive the nuclear-structure correc-
tions in μD induced by the two- and three-photon exchange
between the bound muon and the nucleus and analyze discrep-
ancies with the previous calculation [3] and the experimental
result [4].
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The leading-order hfs of atomic levels of light atoms is
independent of nuclear structure and is given (for the nS

states) by the Fermi contact term,

EF = 4gNm3
r

3mp m n3
(Zα)4 〈�sN · �sμ〉 , (3)

where n is the principal quantum number, Z is the nuclear
charge number, α is the fine-structure constant, m and mp are
masses of the lepton and the proton, respectively, mr is the
reduced mass of the atom, �sμ and �sN are the spin operators of
the lepton and the nucleus, respectively, gN is the “modified”
g-factor of the nucleus defined by

�μN = Ze gN

2 mp

�sN , (4)

�μN is the nuclear magnetic moment operator, and e is the
elementary charge. Numerical values of EF for the ground
and the first excited state of muonic deuterium are

EF =
{

49.0875 meV, for the 1S state,

6.13594 meV, for the 2S state.
(5)

If we assume the point nuclear model and account for all
known QED corrections, the theoretical result for the 2S state
is [1]

Ehfs(point) = 6.17815(20) meV, (6)

which corresponds to the sum of entries h1 + h2 + h4 + h5 +
h7 + h8 + h9 + h9b + h12 + h13 + h14 + h18 from Table IV
of Ref. [1]. The deviation of the experimental value (2) from
the theoretical point-nucleus result (6) can be regarded as the
“experimental value” of the nuclear-structure correction:

δEnucl = Ehfs(expt) − Ehfs(point) = 0.0966(73) meV. (7)

From the theoretical side the nuclear-structure correction
for light atoms can be described within the Z α expansion,

δEnucl = δ(1)Enucl + δ(2)Enucl + · · · , (8)

where δ(1)Enucl is the two-photon exchange correction of order
(Z α) EF , δ(2)Enucl is the three-photon exchange correction
of order (Z α)2 EF , and · · · denotes smaller contributions
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due to exchange of larger number of photons and radiative
corrections. In the following discussion, we calculate the
two-photon and the three-photon exchange nuclear-structure
corrections for the hfs of nS states of muonic deuterium.
Relativistic units (h̄ = c = 1) are employed throughout.

II. TWO-PHOTON EXCHANGE NUCLEAR STRUCTURE

The most straightforward way of including the nuclear ef-
fects is to assume that the nucleus is described by some elastic
electric and magnetic form factors. This leads to the so-called
elastic, or finite-nuclear-size (fns), corrections. The leading
fns correction originates from the two-photon exchange. It
was derived long ago by Zemach [5] and is given by

δEZem = −2 mrZα rZEF , (9)

where rZ is the Zemach radius defined by

rZ =
∫

d3r1

∫
d3r2 ρM (r1) ρE (r2) |�r1 − �r2|. (10)

(Note that the subscript Z in rZ is not related to the nuclear
charge.) In the above equation, ρE and ρM are the charge
and the magnetic-moment distributions of the nucleus, respec-
tively, i.e., the Fourier transform of the corresponding form
factors. The numerical value of the Zemach correction for the
2S state of μD, in the nonrecoil limit, with rZ = 2.593(16) fm
[6], is

δEZem = −0.1177(33) meV. (11)

We note the opposite sign of the Zemach correction as com-
pared to the experimental value of the total nuclear structure
(7). This demonstrates that the description of the nucleus only
through the elastic form factors is not adequate.

Various hfs corrections arise from excitations of the nu-
cleus by the bound lepton, usually referred to as the inelastic
nuclear-structure corrections. In the case of the proton, the
inelastic contribution can be obtained from the experimentally
accessible spin-dependent structure functions by using disper-
sion relations [7–10]. For other nuclei, including deuteron, the
inelastic spin-dependent structure functions are unknown, and
one has to rely on theoretical calculations.

In our calculations we consider the elastic and inelastic
contributions together and use a perturbation expansion over
a small parameter, namely, the ratio of the average nucleon
binding energy over the nucleon mass. Specifically, the two-
photon exchange correction can be represented as

δ(1)Enucl = δELow + δE1nucl + δEpol + · · · . (12)

The leading-order term δELow was first derived by Low [11].
For the particular case of an nS state in μD, the numerical
value of Low’s correction in the point-nucleon model is

δELow ≈ −2 mr α EF

gn

gd

〈R〉 = 2.640

n3
meV. (13)

Here R is the distance of the proton from the center of mass.
Its expectation value was calculated using the AV18 potential
[12] as 〈R〉 = 1.629 fm.

A more detailed calculation of the leading-order term was
performed by Friar and Payne [13,14], with inclusion of
the finite nucleon size and meson exchange currents. Their

result was reported for the 1S state of ordinary (electronic)
deuterium, δELow(eD) = 87.3 kHz. Rescaling it to the nS

states of μD, one gets

δELow = m4
r (μD)

m4
r (eD)

m(e)

m(μ)

1

n3
δELow(eD) = 2.566

n3
meV, (14)

in good agreement with the approximate result of Eq. (13).
δE1nucl is the contribution induced by individual nucleons.

It is given by the individual nucleon Zemach corrections:

δE1nucl = −8 α2

3 n3

m3
r

mp + m
�sμ ·

〈∑
a

ga �sa raZ

〉
, (15)

where raZ is the effective radius of the nucleon a. If only
the elastic part is included, the result for the proton is
rpZ = 1.086(12) fm [6] and for the neutron, rnZ = −0.042 fm
[14]. The result for the proton effective radius that in-
cludes the recoil and polarizability contributions can be ob-
tained from the 1S muonic hydrogen correction δEnucl(μH) =
−1.131(24) meV obtained by Tomalak in Ref. [15], namely,
rpZ = 0.883(19) fm, and for the neutron from Ref. [16], rnZ =
0.06(1) fm.

δEpol is the contribution of the nuclear vector polarizabil-
ity. It has been studied for ordinary atoms by Khriplovich and
Milstein [17] and later by one of us (Pachucki) [18]. Results
of Ref. [17] obtained in the logarithmic approximation were
shown in Ref. [18] to be incorrect, because the coefficient of
logarithm for an arbitrary chosen cutoff vanishes completely.
Moreover, the derivation of Ref. [17] is applicable only for the
“electronic” atoms but not for the muonic ones. Nevertheless,
the result of Ref. [17] was later used by Faustov et al. in their
calculations of the nuclear structure in μD [3]. In the present
work we derive the nuclear vector polarizability correction
δEpol for muonic deuterium.

Following the method of Ref. [18], we obtain the vector
polarizability corrections to hfs in μD in the form

δEpol = − e2 ψ2(0)
∫

d ω

2 π

∫
d3k

(2 π )3

× (ω2 εklj + ki kk εlij − ki kl εkij ) σ j αkl

ω (ω2 + 2 m ω − k2) (ω2 − 2 m ω − k2) (ω2 − k2)
,

(16)

where αkl is the antisymmetric part of the scattering amplitude
tensor T kl . In the simplest case of the electric dipole coupling
− �D · �E, αkl takes the form

αkl = ω2

〈
Dk 1

EN − H̃N − ω
Dl + Dl 1

EN − H̃N + ω
Dk

〉
,

(17)

where H̃N = HN + k2/(2 M ), HN is the nuclear internal
Hamiltonian, EN = 〈HN 〉, �D = ∑

a ea
�Ra , and �Ra is the nu-

cleon position with respect to the mass center. After integra-
tion over ω and k, and expansion in the small parameter,

X =
√

2(HN − EN )

mr

, (18)
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we obtain the dipole polarizability correction as

δEpol0 = − i e2

12π
ψ2(0)

(mr

m

)2
εijkσ k〈Di X Dj 〉. (19)

δEpol0 vanishes in the nonrelativistic limit, and its numerical
contribution is expected to be small, because it requires the
presence of both the spin-orbit and the quadrupole-spin inter-
actions between nucleons.

There are, however, other polarizability corrections that
yield significant numerical contributions. The first one is the
correction due to the magnetic quadrupole interaction:

δH = −
∑

a

e ga

2 mp

Ri
a sj

a B
j

,i . (20)

The corresponding contribution to the scattering tensor is

δαkl = i ω
∑

a

e ga

2 mp

〈
�Ra

�k (�sa × �k)k
1

EN − H̃N − ω
Dl

+ Dl 1

EN − H̃N + ω
�Ra

�k (�sa × �k)k

− (k ↔ l, ω → −ω)

〉
. (21)

The first term in the small-X expansion gives the following
correction to the hyperfine splitting of μD:

δEpol1 = − 2α

3

gp − gn

gd

EF m2
r 〈 �R X �R〉. (22)

The second correction of the same order in X comes from
the magnetic dipole interaction, which is enhanced by the
factor of (gp − gn)2:

δH = − e

2 mp

[∑
a

ga �sa − gd �sd

]
�B = −( �μ − 〈�μ〉) �B.

(23)

The corresponding contribution to the scattering tensor is

δαkl =
〈
[( �μ − 〈�μ〉) × �k]k

1

EN − H̃N − ω
[( �μ − 〈�μ〉) × �k]l

+ (k ↔ l, ω → −ω)

〉
, (24)

which gives the following correction to the hyperfine splitting
in μD:

δEpol2 = − α

16

m2
r

mp m

(gp − gn)2

gd

EF 〈(�sp − �sn) X (�sp − �sn)〉.
(25)

Further corrections are of higher order in X. The X2 terms
vanish, as shown in Ref. [18], and the next-order nonvanishing
terms are proportional to X3. Namely, the next-order (in X)
term of the correction coming from δαkl in Eq. (21) is

δEpol3 = α

4

gp − gn

gd

EF

5mr − 2m

3 m3
m4

r 〈 �R X3 �R〉. (26)

Another X3 correction, δEpol4, comes from the following
spin dependent coupling to the electric field [18],

δH = − �T · ∂ �E
∂t

, (27)

where �T is defined as

�T =
∑

a

[
ea

2mp

(ga − 1) − Z e

2M

]
�sa × �xa. (28)

The corresponding vector polarizability correction is

δαkl = i ω3

〈
Dk 1

EN − H̃N − ω
T l + T l 1

EN − H̃N + ω
Dk

− (k ↔ l, ω → −ω)

〉
, (29)

and the contribution to the hyperfine splitting of μD is

δEpol4 = −α

3

gp − gn − 1

gd

EF

m4
r

m2
〈 �R X3 �R〉. (30)

The last nuclear polarizability correction δEpol5 comes
from the fourth-order terms of the expansion of the vector
polarizability δαkl in the small parameter �k · �R. In order to
derive this correction, we rewrite Eq. (16) by using ki T ik =
ω T 0k and apply the nonrelativistic approximation. The
result is

δEhfs = − e2 ψ2(0)
∫

d ω

2 π

∫
d3k

(2 π )3

(�k × �σ )i (T 0i − T i0)

k2 (2 m ω − k2)(2 m ω + k2)

= e4

m
ψ2(0)

∫
d3k

(2 π )3
i

(�σ × �k)i

k4

∑
a,b

〈
j 0
a ei �k· �Ra

1

HN − EN + k2

2 mr

j i
b e−i �k· �Rb

〉
, (31)

where, in the nonrelativistic approximation, j 0
a = 1 and j i

b = −i �σb × �k gb/(4 mp ). By neglecting HN − EN in the above
expression one obtains the Low correction given by Eq. (13). The quadratic terms of the expansion of Eq. (31) in �k · �Ra gives
δEpol1. We now consider the fourth power of �k · �Ra and obtain for μD the following correction:

δEpol5 = α

15
EF m4

r

{
5

6

gp+gn

gd

〈R2 X3 R2〉 − 2
gp − gn

gd

〈R2 �R X3 �R〉 + gp + gn

gd

〈(RiRj − R2 δij /3) X3 (RiRj − R2 δij /3)〉
}
.

(32)
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We are not aware of any further significant contribu-
tions, therefore we write the nuclear vector polarizability
correction as

δEpol =
5∑

i=1

δEpol i (33)

and assume a 5% uncertainty due to omitted δEpol0 and
higher-order (in X) corrections. Our result disagrees with the
result by Faustov and Martynenko [3], because they used an
incorrect formula for the polarizability correction derived for
electronic atoms and included in addition the Low correction.

The nuclear vector polarizability is presently the main
source of the theoretical uncertainty of the total nuclear-
structure correction. This means that in the future detailed
investigations should reanalyze all possible contributions to
the nuclear vector polarizability.

III. THREE-PHOTON-EXCHANGE
ELASTIC CORRECTION

The (Zα)2 EF elastic contribution to the hyperfine splitting
δ(2)Efns can be derived by following the approach developed
earlier for the case of the Lamb shift in Ref. [19]. Instead
of a direct use of the Dirac equation, which is possible but
tedious, we shall split the total correction into low-energy δEL

and high-energy δEH parts. Both these parts are separately
divergent, so we employ dimensional regularization with d =
3 − 2ε (see Appendix for details) and cancel singularities
∼1/ε in the sum δ(2)Efns = δEL + δEH . For convenience we
assume lepton mass m = 1 from now on and restore it only in
the final expression from dimensional analysis.

A. Low-energy part

In the low-energy part, where p ∼ Zα, the nonrelativistic
approximation is valid. The nonrelativistic Hamiltonian H

with the nuclear electric GE and magnetic GM form factors
(with their respective Fourier transforms ρE, ρM ), here nor-
malized to unity, is given by

H = p2

2
+ V (r ) + 4πZα

dmp

gp(�sp · �sμ)ε ρM (r ), (34)

where the potential V is defined by its Fourier transform

V (p) = −GE (p2)
4πZα

p2
(35)

and where (�sp · �sμ)ε is defined in (A3).
Because the characteristic momentum p is much smaller

than the inverse of the nuclear size, the nuclear form factors
can be expanded in p2. We thus obtain

H = H0 + Hhfs + δV + δHhfs, (36)

where

H0 = p2

2
− Zα

[
1

r

]
ε

, (37)

Hhfs = 4πZα

dmp

gp(�sp · �sμ)εδ
(d )(�r ), (38)

δV = − 4πZα G′
E (0) δ(d )(�r ), (39)

δHhfs = − 4πZα

dmp

gp(�sp · �sμ)ε G′
M (0)∇2δ(d )(�r ), (40)

and where [1/r]ε denotes a d-dimensional generalization of
the 1/r potential. The corresponding correction to the hyper-
fine splitting of order (Zα)6 is

δEL = 2

〈
δV

1

(E0 − H0)′
Hhfs

〉
+ 〈δHhfs〉. (41)

Calculating matrix elements in d dimensions and using
G′

E (0) = −r2
p/6, G′

M (0) = −r2
m/6, with rp and rm being

charge and magnetic radius of the nucleus, respectively, we
obtain the following expression for the low-energy part:

δEL = 4

d
(rpZα)2EF

[
− 1

4ε
− 1

n
− 1

2
+ γ − ln

n

2

+ �(n) + ln(Zα) + r2
m

4r2
pn2

]
. (42)

The singularity ∼1/ε in the above equation will cancel out
with δEH .

B. High-energy part

In the high-energy part δEH , the lepton momentum is
of the order of the inverse of the nuclear size, so one can
employ the scattering approximation. Specifically, δEH is
given by the forward three-photon exchange amplitude, which
can be represented by the three diagrams shown in Fig. 1. The
resulting expression is

δEH = δEH1 + δEH2 + δEH3, (43)

δEH1 = ψ2(0)
∫

ddp

(2 π )d

∫
ddq

(2 π )d
〈t̄ | e �γ · �A(− �p)

× 1

/p − 1
γ 0V ( �p − �q )

1

/q − 1
γ 0V (�q ) |t〉 ,

δEH2 = ψ2(0)
∫

ddp

(2 π )d

∫
ddq

(2 π )d
〈t̄ | γ 0V (− �p)

× 1

/p − 1
γ 0V ( �p − �q )

1

/q − 1
e �γ · �A(�q ) |t〉 ,

δEH3 = ψ2(0)
∫

ddp

(2 π )d

∫
ddq

(2 π )d
〈t̄ | γ 0V (− �p)

× 1

/p − 1
e �γ · �A( �p − �q )

1

/q − 1
γ 0V (�q ) |t〉 ,

where t = (1, �0), /p = (1, �p)νγν , and

Ai (q ) = i Z e gp

4 mp

σ ik
p

qk

q2
GM (q2). (44)

After performing Dirac algebra, δEH can be expressed in the
coordinate representation as

δEH = 8ψ2(0)

dmp

(Zα)3gp 〈�sp · �sμ〉
ε

×
∫

ddr
{
2πρM (r )

[
V (2)

E

]2 + VMVEV (2)
E

}
, (45)

062513-4



NUCLEAR-STRUCTURE CORRECTIONS TO THE … PHYSICAL REVIEW A 98, 062513 (2018)

FIG. 1. Three diagrams representing contributions to the high-energy part δEH . Wavy lines represent magnetic photons carrying potential
(44), and dashed lines are electric photons carrying potential (35).

where d-dimensional potentials VE and VM are defined in
Appendix. The first term under the integral sign is convergent
due to the presence of ρM and thus can be evaluated in three
dimensions. The second term, however, contains a singularity
∼1/ε, which has to be separated out. This is achieved by
splitting the domain of integration into (0,�) and (�,∞).
The integral over (�,∞) is evaluated by using the asymptotic
form of the potentials in d dimensions. The final result for the
high-energy part is

δEH = 4

d
(rpZα)2EF

[
1

4ε
+ ln rpp + 1

2
+ γ

]
. (46)

Here rpp is the effective radius defined by

ln
rpp

rp

= 1

G′
E (0)

∫ ∞

0
dr ln

r

rp

d

dr
r3

{
2πρM (r )

[
V

(2)
E

]2

+ VMVEV
(2)
E + 1

r2

[
r

2
− G′

E (0)

r

]}
, (47)

where VE(M ) are three-dimensional versions of potentials
VE(M ), which depend on electric and magnetic form factors,
and are presented in Appendix.

The final result for the elastic three-photon exchange cor-
rection, δ(2)Efns = δEL + δEH , with m restored from dimen-
sional analysis, is

δ(2)Efns = 4

3
EF (mrpZα)2

[
−1

n
+ 2γ − ln

n

2
+ �(n)

+ ln(mrppZα) + r2
m

4r2
pn2

]
. (48)

This expression is valid for any nucleus, both for muonic and
electronic atoms.

For the dipole parametrization of the nuclear form factors

GE (q ) = GM (q ) = 1

(1 + q2/�2)2
, (49)

one easily obtains the following results:

rm = rp, rZ/rp = 35

16
√

3
, rpp/rp = 5.274 565 . . . ,

(50)

which are independent of parameter � and thus valid for any
nucleus. Numerical values of the elastic (Zα)2 EF correction
for the 1S and 2S states of muonic hydrogen are

δ(2)Efns(μH) =
{−0.0093 meV, for the 1S state,

−0.00096 meV, for the 2S state.
(51)

The above result for the 2S state deviates from the value of
−0.00065 meV calculated by Indelicato [20] and quoted by
Antognini et al. [21] (entry h21 in Table III of that work).
One of possible reasons could be the inclusion of the reduced
mass in Indelicato’s calculation, while our result is obtained
in the nonrecoil limit. We claim that the recoil effect on this
relativistic correction cannot be accounted for in terms of the
reduced mass. Our analytic result is verified by a numerical
calculation in the following subsection.

C. Numerical verification

The analytical expression (48) for the fns correction of
order (Zα)2EF has been verified by comparison with the
numerical evaluation of the fns correction to all orders in
Zα. Specifically, the numerical all-order fns correction was
obtained by evaluating the expectation value of the Fermi-
Breit operator Hμ with solutions of the Dirac equation with
an extended nucleus and subtracting the point-nucleus result.
The (extended-nucleus) Fermi-Breit operator is

Hμ = |e|
4π

α · [μ × r]

r3
F (r ), (52)

where μ is the nuclear magnetic moment operator, α is
the vector of Dirac matrices, and F (r ) describes the radial
distribution of the magnetic moment, F (r ) ≈ 1 outside of the
nucleus. For the dipole parametrization (49), the distribution
function is given by

F (r ) = 1 − e−λr
[
1 + λr + 1

2 (λr )2
]
, (53)

where λ = 2
√

3/rm.
We define the relativistic fns correction that contains orders

(Zα)2EF and higher by subtracting the Zemach contribution
from the numerical fns correction:

δ(2+)Efns = Efns,num − δEZem. (54)

Results for the relativistic fns correction are presented in
Fig. 2, which demonstrates agreement between the numerical
and analytical approaches for Z = 0. The difference between
the numerical and analytical results scales linearly with Z,
representing the contribution of orders (Zα)3EF and higher.

IV. THREE-PHOTON EXCHANGE
NUCLEAR-STRUCTURE CORRECTION

In this section we address the inelastic three-photon ex-
change nuclear-structure correction ∼(Z α)2 EF to the hyper-
fine splitting, which has not been studied in the literature so
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FIG. 2. Numerical and analytical results for the fns correction
normalized by the factor of EF (Zα)2, for the 1S state of muonic
hydrogen-like ions with the nuclear root-mean-square radius 1 fm,
as a function of nuclear charge Z. Solid line and dots (red) represent
numerical results (54); dashed line (green) shows analytical results
(48); dotted line and triangles (blue) show the difference.

far. We will perform an approximate treatment of this correc-
tion and evaluate the largest contribution, namely, that due to
the electric dipole polarizability. Furthermore, we will demon-
strate partial cancellations occurring between the elastic and
inelastic parts for the case of muonic deuterium, μD.

The nuclear-structure correction δ(2)Enucl can be repre-
sented as a sum of several contributions,

δ(2)Enucl = δEDP + δEL(D) + δEH (p) + δEH (pn), (55)

where δEDP is the low-energy dipole polarizability contribu-
tion, δEL(D) is the elastic low-energy part, and δEH (p) and
δEH (pn) are the high-energy corrections.

It is convenient to introduce the common factor

E = 4π α

3mp

ψ2(0), (56)

which will frequently appear in formulas below.

A. Elastic low-energy contribution

The elastic low-energy part δEL(D) can be obtained from
Eq. (42) by replacing the proton charge rp and magnetic rm

radii with their deuteron counterparts rd and rmd , because at
low energies muon sees the nucleon as a whole. The resulting
expression is

δEL(D) = 4

d
(rdα)2E

[
− 1

4ε
− 1

n
− 1

2
+ γ − ln

n

2

+ �(n) + ln α + r2
md

4r2
dn2

]
gd 〈�sd · �sμ〉ε, (57)

where 〈�sd · �sμ〉
ε

is defined in Eq. (A3).

B. Polarizability contribution

We derive here the leading dipole polarizability correction
δEDP and represent it as a sum of two terms:

δEDP = δEDP1 + δEDP2. (58)

The first one δEDP1 is obtained by taking the second-order
matrix element with dipole interaction in the nonrelativistic
approximation and perturbing it with the magnetic dipole-
dipole interaction Hhfs. The result is

δEDP1 = α2δhfs〈ψφN | �R · �∇
[

1

r

]
ε

× 1

EN + E0 − HN − H0

�R · �∇
[

1

r

]
ε

|ψφN 〉. (59)

Here �R is the proton position with respect to the deuteron
mass center, and δhfs denotes the first-order perturbation due
to the hyperfine interaction Hhfs which is an analog of Hhfs in
Eq. (38) for the deuterium,

Hhfs = 4πα

dmp

δ(d )(�r ) gd (�sd · �sμ)ε, (60)

where HN is the nuclear Hamiltonian and H0 is the nonrela-
tivistic muon Hamiltonian defined in Eq. (37). The perturba-
tive treatment of Hhfs means that the polarizability correction
is expressed as a sum of two terms, originating from perturba-
tions of the denominator and the wave function. However, the
first term vanishes, and δEDP1 becomes

δEDP1 = 2α2〈ψφN | �R · �∇
[

1

r

]
ε

1

E0 + EN − H0 − HN

�R · �∇

×
[

1

r

]
ε

1

(E0 − H0)′
Hhfs|ψφN 〉. (61)

Because we are interested in the leading correction only, we
neglect the D-wave in the ground deuteron state and neglect
the Coulomb corrections, so

δEDP1 = 12

d2
α2E

∑
�

〈φN | �R |�〉 〈�| �R |φN 〉 gd 〈�sd · �sμ〉
ε

×
∫

ddp

(2π )d
ddq

(2π )d
4π

p2

4π

q2

�p · �q
( �p − �q )2

2

p2 + 2�
. (62)

After integration we obtain the following expression for the
polarizability correction:

δEDP1 = 4

d
(rsα)2E

(
1

4ε
+ 2

3
− 1

2
ln 2Ē

)
〈gd�sd · �sμ〉ε, (63)

where Ē is the mean excitation energy defined by

ln
Ē

m
= 1

r2
s

〈φN | �R ln

[
(HN − EN )

m

]
�R | φN 〉, (64)

and rs is the deuteron structure radius

rs =
√〈

R2
〉
. (65)

The mean excitation energy (64) was calculated in
Ref. [19] using the AV18 potential [12], with the result

Ē = 7.37(7) MeV. (66)
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The pionless EFT in the next-to-leading order [22] reproduces
this result with 2% accuracy.

The second dipole polarizability contribution δEDP2 is
the Coulomb distortion correction to the leading two-photon

exchange contribution δEpol1 in Eq. (22). We derive it by
considering the nonrelativistic formula for the second-order
correction to energy that comes from the electric dipole inter-
action and the magnetic quadrupole term in Eq. (20):

δEDP2 = 4πα2 gp − gn

dmp

〈�sd · �sμ〉εδC〈ψφN | �R · �∇
[

1

r

]
ε

1

H0 + HN − E0 − EN

�R · �∇ δ(�r )|ψφN 〉, (67)

where δC denotes the Coulomb correction, namely, that beyond Epol1 in Eq. (22). This Coulomb correction is the forward-
scattering three-photon exchange amplitude, which takes the following form in the momentum representation:

δEDP2 = 3α2

d

gp − gn

gd

EF

∑
�′

〈φN |Rk|�〉 〈�|Ri |φN 〉
∫

ddp

(2π )d
ddq

(2π )d
4 π pk

p2

4 π qi

q2

2 + �

[
1

p2

2 + �

1

| �p − �q|2 + 2

| �p − �q |4
]
. (68)

After integration we obtain for δEDP2

δEDP2 = 4

3
(α rs )2 gp − gn

gd

EF

(
3

4
− ln 2

)
. (69)

Its value is heavily suppressed by the numerical factor in the parentheses.

C. High-energy contribution δEH ( pn)

When muon momentum is of the order of the inverse of internucleon distance, the muon sees different positions of the
proton and the neutron inside the nucleus, and effectively one can discern which photon interacts with which nucleon in the
three-photon exchange. Because one can neglect the nuclear excitation energy in comparison to the muon kinetic energy, the
high-energy contribution can be represented as an expectation value of the effective interaction potential,

δEH (pn) = 〈φN |δVH |φN 〉, (70)

where

δVH = ψ2(0)
∫

ddp

(2 π )d

∫
ddq

(2 π )d
[δVH1 + δVH2 + δVH2] (71)

and

δVH1 = 〈t̄ | e �γ · �Aa (− �p)ei �p· �Ra
1

/p − 1
γ 0Vb( �p − �q )ei(�q− �p)· �Rb

1

/q − 1
γ 0e−i �q· �RcVc(�q ) |t〉 ,

δVH2 = 〈t̄ | γ 0Vc(− �p)ei �p· �Rc
1

/p − 1
γ 0Vb( �p − �q )ei(�q− �p)· �Rb

1

/q − 1
e−i �q· �Ra e �γ · �Aa (�q ) |t〉 ,

δVH3 = 〈t̄ | γ 0Vb(− �p)ei �p· �Rb
1

/p − 1
e �γ · �Aa ( �p − �q )ei(�q− �p)· �Ra

1

/q − 1
γ 0e−i �q· �RcVc(�q ) |t〉 .

Indices (a, b, c) ∈ {p, n} discern whether the interacting nucleon is the proton or the neutron. We neglect all the contributions
where the electric photon interacts with the neutron (b = c = p) and thus are left with two cases. We first consider the case when
the magnetic photon hits the neutron (a = n). This gives the following correction:

δEH (pn) = 8ψ2(0)

dmp

α3gn 〈�sn · �sμ〉
ε
〈φN |

∫
ddr

{
2πρM (�r + 2 �R)

[
V (2)

E

]2 + VM

(�r + 2 �R)
VEV (2)

E

}|φN 〉, (72)

which is almost the same as Eq. (45), but has magnetic terms shifted by the proton-neutron distance. All the potentials in Eq. (72)
are functions of r , unless explicitly written and magnetic potentials refer to the neutron form factor, while electric ones to the
proton one, both through definitions (A5). The treatment of Eq. (72) follows the same pattern as that of Eq. (45). The only
difference is that magnetic factors are shifted by 2 �R, which leads to additional terms. The result is

δEH (pn) = 4

d
(rpα)2Egn〈�sn · �sμ〉ε

(
1

4ε
+ γ − 1

2
+ 3r2

pn + 2r2
s

r2
p

+ ln 2rl

)
, (73)
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TABLE I. Effective radii and g-factors for the three-photon
nuclear-structure correction for μD, given by Eq. (77). Proton-
neutron radius rpn is taken in the point-nucleon limit (rpn = rs), and
rl is obtained with the AV18 potential [12].

Variable Value Units Source

rp 0.84087(39) fm Ref. [23]
rd 2.1256(8) fm Ref. [24]
rs 1.954661(79) fm Ref. [19]
rmd 2.312(10) fm Ref. [25]
rpp 4.435 fm Eq. (47)
rpn 1.955 fm Eq. (75)
rpZ 0.883(19) fm Ref. [15]
rnZ 0.06(1) fm Ref. [16]
rl 1.339 fm Eq. (74)
gp 5.585 694 702(17) Ref. [26]
gd 0.8574382311(48) Ref. [26]
gn −3.82608545(90) Ref. [26]

where rl is defined as

ln (2mrl ) = 〈φN | ln (2mR)|φN 〉 , (74)

and its value can be found in Table I. The effective proton-
neutron radius rpn in Eq. (73) is defined as

2πr2
pn = 〈φN |

∫
d3r

{
2πρM (�r + 2 �R)

[
V

(2)
E

]2

+VM (�r + 2 �R) VE V
(2)
E

+ 1

|�r + 2 �R|

[
1

2
− G′

E (0)

r2

]}
|φN 〉, (75)

where ρM and VM correspond to the neutron, while GE and
VE correspond to the proton. It is worth noting that in the
point-nucleon limit the proton-neutron effective radius rpn,
given by Eq. (75), is equal to the deuteron structure radius
(rpn → rs).

TABLE II. Nuclear structure corrections for hyperfine splitting
of the 1S and 2S states of muonic deuterium, in meV. Numerical
results are obtained with the AV18 potential [12].

Correction 1S 2S Source

δEpol1 −1.1007 −0.1376 Eq. (22)
δEpol2 −0.0823 −0.0103 Eq. (25)
δEpol3 0.1513 0.0189 Eq. (26)
δEpol4 −0.1979 −0.0283 Eq. (30)
δEpol5 −0.0327 −0.0041 Eq. (32)

δEpol −1.2623(631) −0.1578(79) Eq. (33)
δE1nucl −0.9450(224) −0.1181(28) Eq. (15)
δELow 2.566 0.3208 Eq. (14)

δ(1)Enucl 0.3587(670) 0.0448(84) Eq. (12)
δ(2)Enucl −0.0547(137) −0.0065(16) Eq. (77)

δEnucl,theo 0.304(68) 0.383(86) Eq. (8)
δEnucl,exp 0.0966(73) Eq. (7)
Difference 0.0583(113)

D. High-energy contribution δEH ( p)

In the case when all three photons interact with the proton,
one should use the complete four-vector current, as in the two-
photon case. We are not able to perform such a calculation at
present, and thus we assume that the dominating contribution
comes from the elastic part in the nonrecoil limit:

δEH (p) = 4

d
(rpα)2E

[
1

4ε
+ ln rpp + 1

2
+ γ

]
gp〈�sp · �sμ〉ε .

(76)

E. Total three-photon exchange correction

Summing all contributions in Eq. (55) and restoring
m’s from dimensional analysis, we obtain the three-photon
nuclear-structure correction of order (Z α)2 EF for μD:

δ(2)Enucl = 4

3
(mα)2EF

{
r2
pn

3gn

2gd

+ r2
md

1

4n2
+ r2

s

[
gn

gd

− γ

+ gp − gn

gd

(
3

4
− ln 2

)
+ 1

6
− 1

2
ln

2Ē

m

]

+ r2
d

[
2γ − 1

n
− ln

n

2
+ �(n) + ln α

]

+ r2
p

[
gp ln(mrpp ) + gn ln(2mrl ) − gn

]
1

2gd

}
.

(77)

In deriving this final formula we made use of an approximate
identity 〈gd�sd〉 ≈ 〈gp�sp + gn�sn〉 / to cancel out the ε singu-
larity and 〈�sp〉 = 〈�sn〉 = 〈�sd〉 /2 for further simplifications.
Numerical values for all parameters in the final formula are
listed in Table I.

Our final results for the three-photon exchange deuteron
structure correction δ(2)Enucl are presented in Table II. We
assume a 25% uncertainty of these results, due to neglect
of the polarizability corrections beyond the electric dipole
contribution and of the unknown inelastic proton contribution,
although we must admit that we can not well justify this
uncertainty estimate.

Our results for the three-photon exchange structure cor-
rection disagree with corresponding formulas obtained by
Faustov et al. [3] [given by Eqs. (55), (58), and (59) of that
work]. The reason for this disagreement is twofold. First,
Faustov et al. considered only the low-energy part of the
nuclear-structure correction, omitting completely the high-
energy part. Second, the term proportional to the deuteron
magnetic radius rmd in their calculation contains an additional
factor of 1/n3, due to a mistake in evaluation of the matrix
element presented in Eq. (A8).

V. SUMMARY

A summary of all known nuclear-structure contributions to
the hyperfine splitting of the 1S and 2S states in μD is pre-
sented in Table II. We find that the total theoretical result for
the deuteron structure correction for the 2S state differs from
the experimental value by about 5 σ . A possible reason for this
discrepancy might be our insufficient knowledge of the spin-
dependent coupling of nucleus to the electromagnetic field,
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in particular the unknown corrections to the nonrelativistic
current in Eq. (31). Another possible reason could be a
mistake in calculations of QED effects for the point nucleus,
although it looks much less probable since these calculations
were performed independently by two groups [2,3].

Summarizing, in the present work we have calculated the
two- and three-photon exchange nuclear structure corrections
to the hyperfine splitting of the nS states in μD. The obtained
results disagree with the previous theoretical calculation [3]
and with the experimental result [4].
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APPENDIX: DIMENSIONAL REGULARIZATION

In order to extend spin 1
2 into d dimensions, we define

antisymmetric tensor

σ ij = i

2
[γ i, γ j ], (A1)

that in the three-dimensional limit simplifies to

σ ij d→3= 2εijksk. (A2)

Additionally, for the deuteron we define σ
ij

d = σ
ij
p + σ

ij
n and

use the following convenient notation:

(�sa · �sb )ε = 1
8σ ij

a σ
ij

b . (A3)

Throughout our calculations we extensively used the follow-
ing result for the general d-dimensional integral:∫

ddp

(2π )d
4π

pn
ei �p·�r = 22−nπ1−d/2 �

(
d−n

2

)
�

(
n
2

) rn−d . (A4)

Two special cases are of particular importance (with d =
3 − 2ε):

V (r ) =
∫

ddp

(2π )d
4π

p2
ei �p·�r = πε−1/2�(1/2 − ε)

1

r1−2ε
,

V (2)(r ) =
∫

ddp

(2π )d
4π

p4
ei �p·�r = 1

4
πε−1/2�(−1/2 − ε)r1+2ε .

We define also the associated potentials:

VX = 4π

∫
ddp

(2π )d
GX(p2)

p2
ei �p·�r ,

V (2)
X = 4π

∫
ddp

(2π )d
GX(p2)

p4
ei �p·�r , (A5)

where X ∈ {E,M}. Asymptotic forms of these potentials at
r → ∞ are

VX → V + local terms,

V (2)
X → V (2) + G′

X(0)V + local terms.

The corresponding three-dimensional potentials are

VX = 4π

∫
d3p

(2π )3

GX(p2)

p2
ei �p·�r ,

V
(2)
X = 4π

∫
d3p

(2π )3

[GX(p2) − 1]

p4
ei �p·�r , (A6)

with the asymptotic form

VX → 1

r
+ local terms,

V
(2)
X → − r

2
+ G′

X(0)

r
+ local terms. (A7)

Furthermore, we point out that in the framework of
dimensional regularization the following matrix element
vanishes:

〈 �p δ(d )(�r ) �p〉 = 0. (A8)
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