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Relativistic coupled-cluster calculations of the polarizabilities of atomic thallium
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Using the relativistic coupled-cluster method, we calculate the static dipole polarizabilities of the 6p, 7s,
7p, 8s, 8p, and 6d states and the dynamic dipole polarizabilities of the 6p and 7s states of the thallium atom.
The trivalent thallium atom is computationally treated as a monovalent system, together with all linear and
nonlinear terms of single- and double-cluster operators included in the correlation calculations. We observe that
the dominating contributions to the static scalar polarizabilities of the 7s1/2, 7p1/2, 8p1/2, and 8p3/2 states are
from one or two specific transitions. The matrix elements of these specific transitions can be determined by
combining the experimental values of relevant static scalar polarizabilities. A number of magic wavelengths
for the 6p1/2–7s and 6p3/2–7s transitions in the range of 488–1300 nm and the longest tune-out wavelength of
the ground state are determined. These magic wavelengths and tune-out wavelength may be useful for further
thallium experiments. Experimental measurements of the magic wavelengths near 1245 nm would give estimates
of the 7s1/2–7p1/2 and 7s1/2–7p3/2 transition matrix elements and their ratio. Furthermore, lifetimes of many
excited states, as well as the Stark-induced scalar and vector dipole polarizabilities for the 6p1/2–7p1/2 transition,
are also evaluated and compared with available theoretical and experimental values.
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I. INTRODUCTION

The polarizability of an atom or ion can be considered
as a measure of response of the atomic charge cloud to an
external electric field [1]. Studies of polarizabilities for atoms
and ions are very important in many areas of physics. For
example, static polarizabilities are required for evaluating the
blackbody radiation (BBR) shift of a clock state, which could
be significant for the uncertainty budget of an atomic clock
[2,3]. Dynamic polarizabilities can be used to identify magic
wavelengths of an atomic transition and tune-out wavelengths
of an atomic state. The identification of magic wavelengths
and their use in making optical lattices have resulted in the
development of optical lattice clocks [4,5]. Knowledge of
magic wavelengths are also very useful for laser cooling and
trapping of atoms and for high-precision measurements [6–9].
The concept of tune-out wavelength has been applied to mul-
tispecies atomic trapping [10,11]. Because the polarizability-
related shifts are equal to zero at the magic and tune-out wave-
lengths, it should be possible to measure these wavelengths
to high precision. Measurements of these wavelengths open a
route to determine electron dipole transition matrix elements
(E1) of some specific transitions or the ratios between these
matrix elements [12–15]. At the same time, it also provides
an opportunity for testing atomic structure theories [16–18].

The atomic thallium, the heaviest element of the IIIA group
of the periodic table, has played an important role in studying
atomic parity nonconservation (PNC) [19–21] and the elec-
tron’s electric dipole moment (e-EDM) [22,23]. Knowledge of
polarizabilities, magic wavelengths, and tune-out wavelengths
of Tl may be useful for further PNC, e-EDM and related
high-precision measurements based on Tl atom. The present

work reports calculations of the static dipole polarizabilities of
the 6p, 7s, 7p, 8s, 8p, and 6d states and the dynamic dipole
polarizabilities of the 6p and 7s states of Tl. A number of
magic wavelengths for the 6p1/2–7s and 6p3/2–7s transitions
and the longest tune-out wavelength of the ground state are
given.

There have been several reported works for the polariz-
abilities of Tl [21,22,24–29]. The Stark-induced amplitudes
of the 6p1/2–7p1/2 transition have been measured by Tanner
and Commins [24], and by Demille et al. [25]. Doret et al.
measured the scalar Stark shift in the 6p1/2–7s1/2 transition
using a Tl atomic beam apparatus and a stabilized frequency-
doubled diode laser system [26]. On the theoretical side,
Kozlov et al. used the relativistic configuration interaction
plus many-body perturbation theory (RCI+MBPT) to eval-
uate the scalar and tensor dipole polarizabilities of the 6p1/2

and 6p3/2 states of Tl [21]. Safronova et al. calculated the
Stark-induced dipole scalar and vector polarizabilities for
6p1/2–7p1/2 using a relativistic all-order method [27], which
is equivalent to the linear version of the coupled-cluster
method (LCCSD). Dzuba and Flambaum reported the scalar
dipole polarizabilities of the ground state of Tl using the
RCI+MBPT method [22]. Borschevsky et al. employed a
finite field coupled-cluster method to calculate the static
dipole polarizabilities of the 6p1/2 and 6p3/2 states of Tl [28].
Recently the all-order method and a hybrid method combing
configuration interaction and the all-order method were used
to calculate the static scalar polarizabilities of the 6p1/2, 7s1/2,
and 7p1/2 states of Tl [29], and the 7p state lifetimes were
extracted by comparing an existing Tl Stark shift measure-
ment [26]. These works have mainly focused on the static
polarizabilities of the first few low-lying states. Recently,
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the polarizabilities of the 6p and 7p states of the atomic
indium have been measured accurately by using the two-step
diode laser spectroscopy, which can be extended to Tl [30,31].
Therefore, theoretical investigation of 7p and 8p states’ static
polarizabilities of Tl are interesting. To our knowledge, no
theoretical calculations of the dynamic polarizabilities of Tl
are available in the literature.

Accurate theoretical predictions for atomic properties of
Tl require a powerful relativistic many-body method, which
should treat relativistic and electron-electron correlation ef-
fects on the same footing. Tl is nominally a trivalent atomic
system with the ground-state configuration being 6s2

1/26p1/2.
An exact calculation of this trivalent system needs to include
the core-core, core-valence, and valence-valence correlations,
which demands huge computation sources. We thus approx-
imate Tl as a monovalent atomic system with the close-shell
core being Xe (6s2), as in Refs. [27,32]. Comparing to the all-
order method used in Refs. [27,32], here we use a relativistic
coupled-cluster method at single and double approximation
(RCCSD) that includes all linear and nonlinear terms. The
nonlinear terms account for the contributions from many of
the triple and quadruple determinantal states, which is nec-
essary for achieving high accurate results. Gharibnejad and
Derevianko have calculated atomic properties of some low-
lying states of boron, the lightest member of the IIIA group
elements, using the RCC method at various approximations
[33]. Their results have demonstrated that the higher order
correlation beyond LCCSD, in particular the correlations from
the nonlinear terms, are essential for obtaining high accurate
results.

This paper is organized as follows. The theoretical for-
mulation of the coupled-cluster method is given in Sec. II.
Numerical results are presented in Sec. IV, together with
comparisons with available experimental and theoretical data.
Finally, a summary is given in Sec. V. Atomic units are used
throughout unless otherwise stated.

II. THEORETICAL FORMULATION

A. Polarizabilities

The dynamic dipole polarizability of a state |�v〉 at photon
energy ω is defined by

α
(1)
0 (ω) = 2

3(2Jv + 1)

∑
i

|〈�i‖D‖�v〉|2εiv

ε2
iv − ω2

, (1)

where εiv represents the transition energy between states i and
v and the summation runs over all intermediate states with
allowed 〈�i‖D‖�v〉 electric dipole transitions. The dipole
polarizability has a tensor component if Jv > 1/2, which can
be written as

α
(1)
t (ω) = 4

[
5Jv (2Jv − 1)

6(Jv + 1)(2Jv + 1)(2Jv + 3)

]1/2

×
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(2)

The polarizability for a state with nonzero angular momentum
Jv depends on the magnetic projection Mv ,

α
(1)
Mv

(ω) = α
(1)
0 (ω) + α

(1)
t (ω)

3M2
v − Jv (Jv + 1)

Jv (2Jv − 1)
. (3)

The dynamic polarizability is reduced to the static one if
ω = 0. The polarizability includes the contributions from
the core, core-valence, and valence correlations, i.e., α(1) =
α(1)

c + α(1)
cv + α(1)

v . In this work, α(1)
c = 19.6 was used, which

was taken from the CI + all-order calculation by Zuhrianda
et al. [34]. The main contributions are from the low-lying
intermediate states, which were calculated using the RCCSD
method. For the contributions from the core-valence correla-
tion, higher-lying states, and the continuum, we evaluate them
by employing the Dirac-Fock plus core potential (DFCP)
method [14,35].

B. The coupled-cluster theory

In the coupled-cluster framework, the exact wave func-
tion for an atomic system with a valence orbital v can be
expressed as

|�v〉 = eS |�v〉, (4)

where |�v〉 is the reference state that can be taken as the
lowest-order Dirac-Hartree-Fock wave function, and S is the
cluster operator that can be expressed as a sum of n-particle
excitation Sn of the lowest-order wave function,

S =
N∑

n=1

Sn, (5)

with N the number of electrons in the system. In the coupled-
cluster method at single and double approximation (CCSD)
used here, the wave function of the system is simplified to the
form,

|�v〉 =
[

1 + S1 + S2 + 1

2

(
S2

1 + S2
2 + 2S1S2

)

+ 1

3!

(
S3

1 + 3S2
1S2

) + 1

4!
S4

1

]
|�v〉. (6)

According to the number of valence holes and the number of
valence particles to be excited with respect to the reference
determinant, the cluster operator S can be partitioned into

S = S (0,0) + S (0,1)

= S
(0,0)
1 + S

(0,0)
2 + S

(0,1)
1 + S

(0,1)
2 . (7)

S (0,0) and S (0,1) correspond to the excitation from the core and
from the valence electrons, respectively. In the language of
second quantization, the cluster operator for the core excita-
tion is

S (0,0) = S
(0,0)
1 + S

(0,0)
2

=
∑
ra

{a†
r aa}sr

a + 1

2

∑
rsab

{a†
r a

†
s aaab}srs

ab, (8)

and the cluster operator for the valence excitation is

S (0,1) = S
(0,1)
1 + S

(0,1)
2

=
∑
r �=v

{a†
r av}sr

v +
∑
rsa

{a†
r a

†
s avaa}srs

va. (9)
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In the above, the subscripts a and b denote the core orbitals, r

and s the virtual orbitals, and v the valence state. Also in the
above, a† and a are, respectively, the single-particle creation
and annihilation operators, and s ···

··· are the cluster amplitudes.
These cluster amplitudes are obtained by iterating the coupled
equations for the cluster operators. In practice, the equation
for the S (0,0) is first solved iteratively until a convergence
is reached. The sector S (0,1) is then solved using the known
S (0,0). In this work, we use the direct inversion of iterative
space (DIIS) [36,37] to accelerate the convergence.

After obtaining the cluster amplitudes, the transition matrix
element of a one-particle operator Z between �w and �v can
be evaluated according to

Zwv = 〈�w|Z|�v〉√〈�w|�w〉〈�v|�v〉

= 〈�w|eS†ZeS |�v〉√
〈�w|eS†eS |�w〉〈�v|eS†eS |�v〉

. (10)

One may note that this expansion gives rise to an infinite
number of terms. Thus, in practice, we just take account of
the linearized expansion of the coupled-cluster wave functions
with single and double excitations, which produces a finite
number of terms:
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1
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S
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(11)

and

eS†eS ≈ 1 + S
(0,0)†
1 S

(0,0)
1 + S

(0,1)†
1 S

(0,1)
1

+ S
(0,0)†
2 S

(0,0)
2 + S

(0,1)†
2 S

(0,1)
2 , (12)

where H.c. stands for the Hermitian conjugated part. In our
previous work [38], we used this approximation to evaluate
transition properties of atomic francium, where a comparison
with available experimental data showed that this approxima-
tion can offer precise results.

III. COMPUTATIONAL DETAILS

In the Dirac-Hartree-Fock formalism, the large and small
components of the radial wave functions are expanded using
50 B splines of order k = 15 defined on the finite domain
[0,200]. The knot sequence of B splines satisfies an expo-
nential distribution [39]. The Fermi nuclear distribution is
used to describe the Coulomb potential between electrons and
the nucleus. The Breit interaction is considered on the same
footing as the electron-electron Coulomb interaction. The
details of the Dirac-Fock calculation based on the B-spline
basis are given in Refs. [35,38]. For the electron correlations,
virtual orbitals with the energy smaller than 1500 and the

TABLE I. Theoretical and experimental energy levels of Tl in
cm−1. EDF and ECCSD are the energies obtained using the DF and
CCSD approximations, respectively. δ = |EExpt − ECCSD|/EExpt.

Level EDF ECCSD EExpt [40] δ(%)

6p1/2 − 43710.38 − 49179.94 − 49266.66 0.18
6p3/2 7107.93 7647.22 7792.70 1.87
7s1/2 22611.31 26359.84 26477.50 0.44
7p1/2 29448.59 34091.51 34159.90 0.20
7p3/2 30359.77 35081.01 35161.10 0.23
6d3/2 31492.26 36029.17 36117.90 0.25
6d5/2 31542.29 36116.02 36199.93 0.23
8s1/2 33673.90 38652.33 38745.90 0.24
8p1/2 36117.29 41289.88 41368.10 0.19
8p3/2 36464.19 41658.67 41740.80 0.20
7d3/2 36845.85 41938.70 42011.40 0.17
7d5/2 36872.59 41980.24 42049.00 0.16
5f7/2 36847.29 42229.39 42318.44 0.21
5f5/2 36847.43 42229.56 42318.44 0.21
9s1/2 37818.86 43077.27 43166.20 0.21
9p1/2 38972.05 44298.98 44380.90 0.18
9p3/2 39142.57 44478.47 44562.50 0.19
8d3/2 39319.46 44599.11 44672.60 0.16
8d5/2 39334.36 44621.16 44692.70 0.16
6f7/2 39317.17 44736.78 44823.52 0.19
6f5/2 39317.28 44736.93 44823.52 0.19
10s1/2 39833.33 45192.35 45296.80 0.23
10p1/2 40468.30 45858.09 45939.30 0.18
10p3/2 40564.85 45959.08 46043.60 0.18
9d3/2 40661.87 46022.38 46098.50 0.17
9d5/2 40670.86 46035.32 46110.30 0.16
7f7/2 40659.48 46098.55 46185.25 0.19
7f5/2 40659.56 46098.65 46185.25 0.19
11s1/2 40965.25 46369.63 46456.90 0.19
11p1/2 41351.79 46772.17 46853.80 0.17
11p3/2 41411.76 46834.63 46917.10 0.18
10d3/2 41470.92 46872.11 46949.90 0.17
10d5/2 41476.71 46880.33 46958.00 0.17
8f7/2 41468.98 46918.75 47004.55 0.18
8f5/2 41469.04 46918.82 47004.55 0.18

partial wave �max � 6 are included in the calculation. In DFCP
calculation, 70 B splines of order 15 were used, and the size
of the B-spline domain was set to be 300.

IV. RESULTS AND DISCUSSIONS

A. Energies

The energy levels for the ns (n = 7–11), np (n = 6–11),
nd (n = 6–10), and nf (n = 5–8) states of Tl are calcu-
lated using the relativistic coupled-cluster method in single
and double approximation. In Table I, we present the DF
energies (denoted by EDF) and CCSD energies (denoted by
ECCSD), and compare with available experimental values from
NIST [40]. The energies of excited states are present as
the differences between the excited and ground states. δ is
the relative difference between theoretical and experimental
values δ = |EExpt − ECCSD|/EExpt. From Table I, one can find
that our CCSD method gives fairly accurate results. The fine
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TABLE II. Reduced electric-dipole matrix elements of Tl. ZDF, and ZCCSD are the results obtained using the DF and CCSD approximations,
respectively. ZLCCSD results are from all-order calculations by Safronova et al. [32].

Transitions ZDF ZCCSD ZLCCSD [32] Transitions ZDF ZCCSD ZLCCSD [32] Transitions ZDF ZCCSD

6p1/2–7s1/2 2.057 1.811 1.820 7p1/2–8s1/2 6.503 6.213 6.251 8s1/2–9p3/2 3.067 2.959
6p3/2–7s1/2 3.970 3.399 3.395 7p3/2–8s1/2 11.06 10.53 10.62 8s1/2–10p1/2 0.685 0.656
6p1/2–8s1/2 0.645 0.540 0.531 7p1/2–9s1/2 1.339 1.285 1.272 8s1/2–10p3/2 1.470 1.420
6p3/2–8s1/2 0.978 0.803 0.774 7p3/2–9s1/2 1.719 1.630 1.585 8s1/2–11p1/2 0.409 0.389
6p1/2–9s1/2 0.366 0.302 0.299 7p1/2–6d3/2 11.99 10.77 10.58 8s1/2–11p3/2 0.925 0.893
6p3/2–9s1/2 0.533 0.428 0.414 7p3/2–6d3/2 5.395 4.843 4.747 8p1/2–10s1/2 2.314 2.235
6p1/2–6d3/2 2.734 2.423 2.374 7p3/2–6d5/2 16.29 14.68 14.40 8p1/2–11s1/2 1.141 1.104
6p3/2–6d3/2 1.636 1.432 1.419 7p1/2–7d3/2 4.181 4.691 4.761 8p1/2–9d3/2 3.093 3.401
6p3/2–6d5/2 4.850 4.222 4.169 7p3/2–7d3/2 2.683 2.869 2.926 8p1/2–10d3/2 2.020 2.178
6p1/2–7d3/2 1.451 1.165 1.130 7p3/2–7d5/2 7.857 8.356 8.520 8p3/2–9d3/2 1.825 1.920
6p3/2–7d3/2 0.781 0.626 0.611 7p1/2–8d3/2 2.198 2.344 2.360 8p3/2–9d5/2 5.366 5.635
6p3/2–7d5/2 2.326 1.859 1.810 7p3/2–8d3/2 1.251 1.272 1.282 8p3/2–10d3/2 1.136 1.173
6p1/2–8d3/2 0.949 0.728 0.700 7p3/2–8d5/2 3.695 3.757 3.788 8p3/2–10d5/2 3.353 3.462
6p3/2–8d3/2 0.491 0.378 0.366 6d3/2–5f5/2 15.81 13.64 13.30 6d3/2–7f5/2 2.788 2.826
6p3/2–8d5/2 1.466 1.125 1.087 6d5/2–5f5/2 4.266 3.705 3.615 6d3/2–8f5/2 1.841 1.903
7s1/2–7p1/2 6.618 6.019 5.904 6d3/2–6f5/2 5.144 5.007 4.973 6d3/2–9f5/2 1.347 1.407
7s1/2–7p3/2 8.797 8.062 7.871 6d5/2–6f5/2 1.372 1.340 1.331 6d5/2–5f7/2 19.08 16.57
7s1/2–8p1/2 0.801 0.695 0.722 6p1/2–10s1/2 0.248 0.203 6d5/2–6f7/2 6.135 5.990
7s1/2–8p3/2 1.627 1.471 1.502 6p1/2–11s1/2 0.184 0.150 6d5/2–7f5/2 0.740 0.752
7s1/2–9p1/2 0.350 0.289 0.306 6p1/2–9d3/2 0.688 0.515 6d5/2–7f7/2 3.309 3.361
8p1/2–9s1/2 12.64 12.24 12.33 6p1/2–10d3/2 0.531 0.390 6d5/2–8f5/2 0.487 0.504
8p3/2–9s1/2 20.88 20.23 20.42 6p3/2–10s1/2 0.356 0.283 6d5/2–8f7/2 2.179 2.255
8p1/2–6d3/2 3.706 3.002 2.812 6p3/2–11s1/2 0.262 0.207 6d5/2–9f5/2 0.356 0.372
8p3/2–6d3/2 1.177 0.908 0.821 7s1/2–9p3/2 0.796 0.708 6d5/2–9f7/2 1.591 1.664
8p3/2–6d5/2 3.657 2.891 2.631 7s1/2–10p1/2 0.212 0.169 5f5/2–7d3/2 24.57 24.85
8p1/2–7d3/2 24.04 22.71 22.59 7s1/2–10p3/2 0.507 0.446 5f7/2–7d5/2 29.27 29.60
8p3/2–7d3/2 10.89 10.22 10.16 7s1/2–11p1/2 0.148 0.115 5f5/2–7d5/2 6.545 6.620
8p3/2–7d5/2 32.81 30.88 30.70 7s1/2–11p3/2 0.364 0.318 6f5/2–7d3/2 21.79 17.97
8p1/2–8d3/2 5.908 6.845 6.981 7p1/2–10s1/2 0.687 0.661 6f5/2–7d5/2 5.926 4.935
8p3/2–8d3/2 3.969 4.382 4.489 7p1/2–11s1/2 0.449 0.433 6f7/2–7d5/2 26.50 22.08
8p3/2–8d5/2 11.54 12.66 12.97 7p1/2–9d3/2 1.434 1.498 6f5/2–8d3/2 46.40 46.67
8s1/2–8p1/2 12.62 12.00 11.84 7p1/2–10d3/2 1.043 1.077 6f5/2–8d5/2 12.36 12.44
8s1/2–8p3/2 16.51 15.71 15.42 7p3/2–9d3/2 0.781 0.777 6f7/2–8d5/2 55.30 55.66
8s1/2–9p1/2 1.597 1.537 1.586 7p3/2–10d5/2 1.650 1.629 9p1/2–7d3/2 7.953 6.605
9s1/2–9p1/2 20.41 19.66 9s1/2–9p3/2 26.43 25.44 9p3/2–7d3/2 2.564 2.034
10s1/2–9p1/2 20.54 20.06 10s1/2–9p3/2 33.48 32.71 10p1/2–7d3/2 2.406 2.092
10s1/2–10p1/2 29.99 29.09 10s1/2–10p3/2 38.59 37.36 10p1/2–8d3/2 13.49 11.39
10p3/2–7d5/2 2.625 2.205 10p3/2–8d3/2 4.393 3.549 10p3/2–8d5/2 13.69 11.30

structure energy of 6p states differs from the experimental
values 1.87%. The biggest difference between our CCSD
results and experimental values for other energies is less than
0.5%.

B. Reduced matrix elements

There are 210 electric dipole transition matrix elements
among the above mentioned states. Here we just list some of
interesting reduced dipole matrix elements, which are relevant
to the lifetimes and polarizabilities. Table II presents DF
(denoted by ZDF) and CCSD results (denoted by ZCCSD) of
the reduced dipole matrix elements, together with a com-
parison with the all-order results (denoted by ZLCCSD) by
Safronova et al. [32]. The differences between ZCCSD and ZDF

are due to the electron correlation effects. The differences
between ZCCSD and ZLCCSD is due to the contributions from
the nonlinear terms of single- and double-cluster operators.

From Table II, we observe that the differences between ZCCSD

and ZLCCSD are about 1%–4% for most of the transitions. For
those transitions that are sensitive to the electron correlations,
the differences between ZCCSD and ZLCCSD are rather obvious.
For example, the difference is about 10% for the 8p3/2–
6d transition. These differences imply that the inclusion
of higher-order correlations involving nonlinear terms and
triple excitations is important for achieving higher-accuracy
results.

C. Lifetimes

Using the above calculated matrix elements, we deter-
mine the lifetimes for the ns (n = 7–10), np (n = 7–10),
nd (n = 6–8), and nf (n = 5–6) states. The results are listed
in Table III. The recommended values are obtained by us-
ing the CCSD matrix elements and experimental transition
energies. Since the differences between ZCCSD and ZLCCSD
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TABLE III. Radiative lifetimes of Tl in nanoseconds and com-
parison with other theoretical and experimental values. Uncertainties
are given in parentheses.

Level Theory Theory Expt.
(present) (others)

7s1/2 7.24(30) 7.43a,7.17b 7.45(20)c,7.3(4)d

6.79d 7.4(5)e

7p1/2 60.1(2.5) 61.8a,61.0b 63.1(1.7)g

60.21(55)f

7p3/2 46.4(1.9) 47.3a,47.4b 48.6(1.3)g

46.44(42)f

6d3/2 6.09(25) 7.04b,5.9d 8.5(5)d,6.9(5)e

6d5/2 7.24(29) 8.06b,11.09d 7.2(6)e

8s1/2 21.96(90) 20.9b,21.59d 20(3)e,25(2)f

8p1/2 179.5(7.4) 177.6a,185.0b 184.1(4.0)g

157.4d

8p3/2 124.2(5.2) 123.5a,130.0b 127.7(4.9)g

125.3 [43]
7d3/2 15.21(62) 17.5b,16.48d 20.5(1.5)d,16.0(1.3)e

7d5/2 18.31(75) 20.5b,27.25d 19.8(1.5)e

5f5/2 62.3(2.6)
5f7/2 62.8(2.6)
9s1/2 49.2(2.0) 46.0b,57.03d 54(4),43(4)e

9p1/2 368(15) 375.1a,380.0b 391.1(21.8)
323.1d

9p3/2 253(10) 251.3a,267.0b 273.6(13.5)
277.2d

8d3/2 30.6(1.3) 35.0b,37.12d 45(5)d,34(3)e

8d5/2 36.9(1.5) 41.3b,57.93d 44(4)e

6f5/2 116(5)
6f7/2 118(5)
10s1/2 92(8) 86.1b,53.32d 54(4)d,31(3)e

10p1/2 648(26) 570.6d 656.8(14.5)g

10p3/2 449(18) 509.4d 480.8(31.6)g

a[32]
b[41]
c[42]
d[43]
e[44]
f[29]
g[45]

for the transitions which strongly dominate lifetimes and
polarizabilities are in 2%, we evaluate the uncertainties by
setting ±2% variation of the CCSD matrix elements. We also
compare our results with previously reported calculations and
measurements in Table III [29,32,41–45]. From Table III, one
can see that our lifetime of the 7s1/2 state is in agreement with
the experimental values [42–44]. Our recommended lifetimes
of the 7p1/2 and 7p3/2 states are shorter than the experimental
values [45], but are in perfect agreement with the newest
ones determined by combining the all-order calculations and
experimental data [29]. For other p states, our results are in
agreement with the experimental values of James et al. [45].
Safronova et al. employed the all-order method to evaluate
the lifetimes of 7s and np (n = 7–9) [32], where our recom-
mended values are close to theirs. For other s and d states, it
is seen that there are obvious differences among our results
and two other theoretical results obtained by semiempirical
models [41,43] and the experimental values [43,44]. To the

best of our knowledge, there are no available ab initio calcu-
lations for d- and f -state lifetimes.

D. Static polarizabilities

Table IV lists the contributions of individual transitions
to the static scalar dipole polarizabilities of the 6p, 7s, 7p,
8s, 8p, and 6d states. The recommended values and un-
certainties of the polarizabilities are given in the same way
as for the lifetimes. The contributions from transitions not
explicitly listed in the table and from the core-valence corre-
lation α(1)

cv are labeled “Others,” which are obtained by DFCP
calculation. From Table IV, one can see that the dominating
contributions to the 7s1/2-, 7p1/2-, 8p1/2-, and 8p3/2-state
scalar polarizabilities, which are larger than 85%, are from
one or two specific transitions. The 7s–7p1/2 and 7s–7p3/2

transitions contribute 102% of the total 7s-state polarizability.
The 7s-7p1/2 and 7s-7p3/2 transition matrix elements may be
derived by combining a measured 7s-state static dipole polar-
izability with theoretical results of other contributions and the
ratio between the line strengths of the 7s–7p1/2 and 7s–7p3/2

transitions, which has been demonstrated by Safronova and
Majumder [29]. There is only one transition that dominates
the scalar dipole polarizabilities of the 7p1/2, 8p1/2, and
8p3/2 states. For the 7p1/2-state scalar dipole polarizabil-
ity, the 7p1/2-6d3/2 transition contributes 87% of the total.
For the 8p1/2 state, the 8p1/2–7d3/2 transition contributes 94%
of the total. For the 8p3/2 state, the 8p3/2–7d5/2 transition
contributes 92% of the total. The scalar dipole polarizabilities
of these three states are larger than the 6p1/2 state by at least
two orders of magnitude. The 7p1/2–6d3/2, 8p1/2–7d3/2, and
8p3/2–7d5/2 transition matrix elements can be derived by mea-
suring the scalar dipole polarizabilities of 7p1/2, 8p1/2, and
8p3/2 states, respectively. The experiment techniques, which
have been applied to the measurements of the polarizabilities
of 6p1/2 [30], 7p1/2, and 7p3/2 states of the In atom [31] can
be extended to the Tl atom.

Table V lists the contributions of individual transitions to
the static tensor dipole polarizabilities of 6p3/2, 7p3/2, 8p3/2,
6d3/2, and 6d5/2 states. From Table V, one can see that there
are cancellations among the dominant transitions. The tensor
polarizabilities of 6d states are positive, but the ones of other
states are negative, which is opposite for the case of scalar
polarizabilities.

Table VI is a comparison of the present polarizabilities
with available theoretical and experimental values. For the
ground state, our value for α

(1)
0 is 49.2(2.0), which is in

agreement with the value 49.2 by Kozlov et al. [21], with
the value 48.81 by Dzuba and Flambaum [22] using the
RCI+MBPT method, with the value 52.1(1.6) of Borschevsky
et al. using the finite field coupled-cluster method [28], with
the value 50.0(1.0) of Safronova and Majumder using an
all-order method [29], and with the experimental value 51(7)
[29]. For the 6p3/2 state, our result of α

(1)
0 agrees with the

result by Kozlov et al. [21], but our recommended value
α

(1)
t = −26.7 is smaller than their result −25.0. We also give

the polarizabilities of the 6p3/2 state for different magnetic
projection mj , in order to compare with the results obtained
by the finite field coupled-cluster method [28]. An agreement
is observed between our results and the finite field results.
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TABLE IV. Contributions of individual transitions to the static scalar dipole polarizabilities of 6p, 7s, 7p, 8s, 8p, and 6d states.
Uncertainties are given in parentheses.

Contr. α
(1)
0 Contr. α

(1)
0 Contr. α

(1)
0 Contr. α

(1)
0 Contr. α

(1)
0

6p1/2 7s1/2 7p1/2 8s1/2 8p1/2

7s1/2 9.07(37) 6p1/2 −9 7s1/2 −345(14) 7p1/2 −616(26) 8s1/2 −4021(162)
8s1/2 0.55(2) 7p1/2 345(14) 8s1/2 616(26) 8p1/2 4021(162) 9s1/2 6101(246)
9s1/2 0.15(1) 8p1/2 2 9s1/2 13(1) 9p1/2 31(1) 10s1/2 93(4)
6d3/2 11.89(48) 6p3/2 −45(2) 6d3/2 4331(174) 7p3/2 −2262(91) 6d3/2 −126(5)
7d3/2 2.36(10) 7p3/2 548(22) 7d3/2 205(8) 8p3/2 6029(243) 7d3/2 58 628(2369)
8d3/2 0.87(3) 8p3/2 10(1) 8d3/2 38(2) 9p3/2 110(4) 8d3/2 1037(42)
9d3/2 0.42(2) 9p3/2 2 9d3/2 14 10p3/2 20(1) 9d3/2 179(6)
Others 4.3(1.0) Others 5(1) Others 55(4) Others 34(1) Others 264(5)
Core 19.60 Core 19.60 Core 19.60 Core 19.60 Core 19.60
Total 49.2(2.0) Total 878(34) Total 4946(201) Total 7387(297) Total 62 174(2503)

6p3/2 7p3/2 6d3/2 6d5/2 8p3/2

7s1/2 22.61(91) 7s1/2 −274(11) 6p1/2 −6(1) 6p3/2 -15(1) 8s1/2 −3015(121)
8s1/2 0.76(3) 8s1/2 1131(46) 7p1/2 −2165(88) 7p3/2 −5062(204) 9s1/2 10 499(423)
9s1/2 0.19(1) 9s1/2 12(1) 8p1/2 63(2) 8p3/2 37(1) 10s1/2 73(3)
6d3/2 2.65(10) 6d3/2 897(36) 9p1/2 4 9p3/2 3 7d3/2 14 122(571)
7d3/2 0.42(2) 7d3/2 44(2) 7p3/2 −897(36) 5f5/2 55(2) 8d3/2 239(10)
6d5/2 22.96(93) 6d5/2 7593(307) 8p3/2 5(1) 6f5/2 5 6d5/2 −55(2)
7d5/2 3.69(14) 7d5/2 371(15) 5f5/2 1098(45) 5f7/2 1094(44) 7d5/2 113 205(4573)
8d5/2 1.25(5) 8d5/2 54(2) 6f5/2 105(4) 6f7/2 101(4) 8d5/2 1987(81)
9d5/2 0.58(2) 9d5/2 18(1) 7f5/2 29(1) 7f7/2 28(1) 9d5/2 266(10)
10d5/2 0.32(1) 10d5/2 8 8f5/2 12 8f7/2 11 10d5/2 84(3)
Others 5.0(1.0) Others 60(2) Others 47(2) Others 44(2) Others 237(2)
Core 19.60 Core 19.60 Core 19.60 Core 19.60 Core 19.60
Total 80.0(3.2) Total 9934(398) Total −1685(70) Total −3679(151) Total 137 690(5553)

Our results for the 7s1/2, 7p1/2 states and for the 6p1/2-7s1/2

and 6p1/2-7p1/2 transitions are consistent with the theoretical
results of Ref. [29] and experimental results of Refs. [25,26].
There are no available data for 7p3/2-, 8s-, 8p-, and 6d-state
polarizabilities.

Table VII gives the Stark-induced scalar α(1)
s and vec-

tor β (1)
s dipole polarizabilities for the 6p1/2-7p1/2 transi-

tion, and a comparison with available results [24,25,27].
The detailed expressions of α(1)

s and β (1)
s can be found in

Ref. [27]. We can see from this table that the differences
between our recommended values and the all-order results of

Safronova et al. [27] are about 5.4% for α(1)
s and 2.7% for β (1)

s .
As shown in Table VII, the main difference is from the 6d3/2

state. The reason for this discrepancy is that our result 2.423
for the 6p1/2–6d3/2 transition matrix element is larger than
the value 2.334 of Safronova et al. by about 4%. Also the two
experimental results are in disagreement. The two theoretical
results are closer to the value measured by Demille et al. [25]
than the one by Tanner et al. [24]. Our polarizabilities are
consistent with the experimental values by Demille et al., but
the ratio β (1)

s /α(1)
s = 0.79 is smaller than the measured value

0.83(1) of Demille et al. [25].

TABLE V. Contributions of individual transitions to the static tensor dipole polarizabilities of 6p3/2, 7p3/2, 8p3/2, 6d3/2, and 6d5/2 states.
Uncertainties are given in parentheses.

Contr. α
(1)
t Contr. α

(1)
t Contr. α

(1)
t Contr. α

(1)
t Contr. α

(1)
t

6p3/2 7p3/2 6d3/2 6d5/2 8p3/2

7s1/2 −22.61(91) 7s1/2 274(11) 6p1/2 6(1) 6p3/2 15(1) 8s1/2 3015(121)
8s1/2 −0.76(3) 8s1/2 −1131(46) 7p1/2 2165(88) 7p3/2 5062(204) 9s1/2 −10 499(423)
9s1/2 −0.19(1) 9s1/2 −12(1) 8p1/2 −63(3) 8p3/2 −37(1) 10s1/2 −73(3)
6d3/2 2.12(8) 6d3/2 717(29) 7p3/2 −717(29) 5f5/2 63(2) 7d3/2 11 298(456)
7d3/2 0.33(1) 7d3/2 35(2) 8p3/2 4 6f5/2 6 8d3/2 192(7)
6d5/2 −4.59(18) 6d5/2 −1518(61) 5f5/2 −220(9) 5f7/2 −391(16) 7d5/2 −22 641(915)
7d5/2 −0.74(3) 7d5/2 −74(3) 6f5/2 −21(1) 6f7/2 −36(2) 8d5/2 −397(17)
8d5/2 −0.25(1) 8d5/2 −11(1) 7f5/2 −6 7f7/2 −10 9d5/2 −53(2)
Others −0.1(1.0) Others −8(1) Others 18(1) Others 17(2) Others −19(2)
Total −26.7(2.0) Total −1728(71) Total 1130(47) Total 4655(188) Total −19 177(773)
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TABLE VI. Comparison of the present polarizabilities with
available theoretical and experimental values. Uncertainties are given
in parentheses.

States Theory Theory Expt.
(present) (others)

6p1/2 α
(1)
0 49.2(2.0) 49.2a,48.81b 51(7)d

52.1(1.6)c

50.0(1.0)d

6p3/2 α
(1)
0 80.0(3.2) 79.6a

α
(1)
t −26.7(2.0) −25.0a

α
(1)
1/2 106.7(3.3) 105.0(5.3)c

α
(1)
3/2 53.3(1.2) 55.7(2.8)c

7s1/2 α
(1)
0 878(34) 881(9)d

7p1/2 α
(1)
0 4946(201) 4918(120)d

6p1/2–7s1/2 �α −829(33) −831(8)d −900(48)e

−829.7(3.1)f

6p1/2–7p1/2 �α −4897(196) −4868(120)d −4968(249)e

a[21]
b[22]
c[28]
d[29]
e[25]
f[26]

E. Magic wavelengths

The magic wavelength for a transition is the wavelength
for which the ac Stark shift to the transition energy is
zero. The magic wavelengths are found at the crossings of
the two dynamic polarizability curves associated with the
two states in the transition. The dynamic polarizabilities
for the 7s1/2 and 6p1/2 states of Tl are shown in Fig 1.
There are eight magic wavelengths found in the range of
488–1302 nm, which are indicated by the arrows. The longest
magic wavelength 1245.15 nm lies in the 7s1/2–7p1/2 and

TABLE VII. Stark-induced scalar α(1)
s and vector β (1)

s dipole
polarizabilities for the 6p1/2–7p1/2 transition. Uncertainties are given
in parentheses.

α(1)
s β (1)

s

Contr. Present Ref. [27] Present Ref. [27]

7s1/2 −36.9(1.4) −37.2 −67.0(2.7) −67.5
8s1/2 −29.9(1.3) −29.7 −23.6(1.0) −23.4
9s1/2 −1.9(1) −1.9 −1.3(1) −1.2
10s1/2 −0.5(1) −0.5 −0.3(1) −0.3
11s1/2 −0.2(1) −0.1(1)
6d3/2 514(21) 492.0 −231(9) −220.7
7d3/2 −30.2(1.3) −29.4 10.4(4) 10.1
8d3/2 −7.3(3) −6.9 2.3(1) 2.1
9d3/2 −3.0(1) −2.8 0.9(1) 0.8
10d3/2 −1.5(1) 0.4(1)
Others −13.9(2) −15.7 3.4(2) 2.4
Total 388(16) 368 −306(13) −298
Expt. [24] 247(12) −198(10)
Expt. [25] 377(8) −313(8)

FIG. 1. Dynamic polarizabilities of the 7s1/2 and 6p1/2 states of
Tl. The magic wavelengths are indicated by the arrows.

7s1/2–7p3/2 transitions. Other magic wavelengths occur near
the resonant position of 7s − np (n = 8–11). In the same
range, the dynamic polarizabilities for the 7s1/2 and 6p3/2

states of Tl are shown in Fig. 2, and the magic wavelengths
are also indicated by the arrows. These figures assume linear
polarized light. From Fig. 2, we observe that the first seven
magic wavelengths for two magnetic sublevels occur at the
same resonant position. For the 7s1/2–6p3/2,|mj |=3/2 transition,
there are two additional magic wavelengths near 496 nm and
492 nm lying between the 7s1/2–103/2 and 7s1/2–11p1/2 tran-
sitions. All magic wavelengths and the corresponding polariz-
abilities at the magic wavelengths are listed in Table VIII.

Among these magic wavelengths, the magic wavelength
near 1245 nm is special. Table IX gives the contributions of
individual transitions to the dynamic polarizabilities of 7s1/2,
6p1/2, and 6p3/2 states near 1245 nm. From Table IX, one
can find that there is a rather strong cancellation between
the 7p1/2- and 7p3/2-state contributions to the 7s dynamic
polarizability at these wavelengths. The situation here is
similar to the magic wavelength near 395 nm for the Ca+

clock transition [14]. Experimental measurements on these

FIG. 2. Dynamic polarizabilities of the 7s1/2 and 6p3/2 states of
Tl. The magic wavelengths are indicated by the arrows.
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TABLE VIII. Magic wavelengths in nanometers for the 7s1/2 − 6p1/2 and 7s1/2 − 6p3/2 transitions.

Resonance 7s1/2–6p1/2,|mj |=1/2 7s1/2–6p3/2,|mj |=3/2 7s1/2–6p3/2,|mj |=1/2

Transition λres λmagic α(λmagic ) λmagic α(λmagic ) λmagic α(λmagic )

7s1/2–7p1/2 1301.676
1245.149(1) 50.0(1.1) 1245.104(1) 54.8(1.2) 1244.495(1) 119(4)

7s1/2–7p3/2 1151.596
673.686(1) 55.5(1.3) 673.650(1) 62.5(1.5) 673.127(1) 201(7)

7s1/2–8p1/2 671.564
660.659(1) 56.0(1.3) 660.600(1) 63.1(1.5) 659.626(1) 211(8)

7s1/2–8p3/2 655.166
558.676(1) 61.1(1.5) 558.674(1) 70.2(1.9) 558.623(1) 639(15)

7s1/2–9p1/2 558.553
553.489(1) 61.5(1.5) 553.484(1) 70.8(2.0) 553.262(1) 793(31)

7s1/2–9p3/2 552.944
7s1/2–10p1/2 513.827

513.740(1) 65.5(1.7) 513.737(1) 76.2(2.1) 513.793(1) −436.13
7s1/2–10p3/2 511.088

509.882(2) 66.0(1.8) 509.784(3) 76.9(2.1) 510.775(1) −366(16)
496.45(7) 79.5(2.2)
492.38(8) 80.4(2.2)

7s1/2–11p1/2 490.766
490.474(3) 69.1(1.8) 490.406(7) 80.9(2.2) 490.717(1) −137(8)

7s1/2–11p3/2 489.246 488.670(4) −124(7)

magic wavelengths near 1245 nm would give estimates for
the 7s1/2–7p1/2 and 7s1/2–7p3/2 line strengths and their ratio.

A parameter related to the magic wavelength is the tune-out
wavelength. The tune-out wavelengths for an atomic state
are the wavelengths at which the polarizability for that state
goes to zero. We determined the longest tune-out wavelength
of the 6p1/2 state of Tl. This tune-out wavelength is 354.85
nm, which lies in the 6p1/2–7s1/2 and 6p1/2–5d3/2 transitions.
We hope that this tune-out wavelength and above magic

TABLE IX. Contributions of individual transitions to the dy-
namic polarizabilities of 7s1/2, 6p1/2, and 6p3/2 states near 1245 nm.

λmagic 1245.149 1245.104 1244.495

7s1/2 7s1/2 7s1/2

6p1/2 −9.99 6p1/2 −9.99 6p1/2 −9.99
7p1/2 –3714.96 7p1/2 –3711.81 7p1/2 –3669.60
8p1/2 3.35 8p1/2 3.35 8p1/2 3.35
6p3/2 −55.48 6p3/2 −55.48 6p3/2 −55.49
7p3/2 3785.79 7p3/2 3787.40 7p3/2 3809.45
8p3/2 14.33 8p3/2 14.33 8p3/2 14.33
Others 7.36 Others 7.36 Others 7.36
Core 19.60 Core 19.60 Core 19.60
Total 50.00 Total 54.76 Total 119.01

6p1/2 6p3/2,|mj |=3/2 6p3/2,|mj |=1/2

7s1/2 9.99 6d3/2 5.18 7s1/2 55.49
6d3/2 12.51 6d5/2 19.96 6d5/2 29.95
7d3/2 2.45 7d5/2 3.12 7d5/2 4.68
Others 5.45 Others 6.70 Others 9.29
Core 19.60 Core 19.60 Core 19.60
Total 50.00 Total 54.76 Total 119.01

wavelengths will be useful for further PNC, EDM, and high-
precision measurements based on the Tl atom.

V. SUMMARY

We have employed the relativistic coupled-cluster method
to calculate energies, transition matrix elements, lifetimes,
and polarizability-related properties of Tl. The trivalent Tl
atom has been computationally treated as a monovalent sys-
tem, together with all linear and nonlinear terms of single-
and double-cluster operators included in the correlation cal-
culations. For static dipole polarizabilities, we have observed
that the dominating contributions of the static scalar polar-
izabilities for 7s1/2, 7p1/2, 8p1/2, and 8p3/2 states are from
one or two specific transitions. The 7p1/2–6d3/2, 8p1/2–7d3/2,
and 8p3/2–7d5/2 transition matrix elements can be derived
by combining experimentally measured scalar dipole polariz-
abilities of the 7p1/2, 8p1/2, and 8p3/2 states. The two-step
diode laser spectroscopy method, which has been used for
the measurement of the polarizabilities of 6p1/2, 7p1/2, and
7p3/2 states of the In atom, may be applied to the Tl atom.
The static polarizabilities of 7p3/2, 8s, 8p, and 6d states
have been reported in this paper for the first time. The magic
wavelengths of 6p1/2–7s and 6p3/2–7s transitions and the
longest tune-out wavelength of the 6p1/2 state have also been
identified by evaluating the dynamic polarizabilities of 6p and
7s states. These magic wavelengths and tune-out wavelength
may be useful for further Tl experiments. Among these magic
wavelengths, the magic wavelength near 1245 nm is a special
one. Experimental measurements on the magic wavelengths
near 1245 nm for the 7s–6p1/2 and 7s–6p3/2 transitions
could give estimates for the 7s1/2–7p1/2 and 7s1/2–7p3/2 line
strengths and their ratio.
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