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Calculation of the electron correlation energy Ec of ground and excited states through the partitioning and
evaluation of the dynamic Ed

c and nondynamic End
c components requires one to account for the interplay of

these correlation modes as well as for the excitation effect. In this paper it is demonstrated that both local
suppression of dynamic correlation (SDC) by nondynamic correlation and enhancement of dynamic correlation
(EDC) due to excitation to a state of the ionic nature can be quantified with the ratio x(r ) between the correlated
and uncorrelated on-top pair densities �(r ). A CAS�DFT scheme is proposed, in which End

c is calculated with
the complete active space approach in a small basis, while Ed

c is calculated in the same basis with a functional of
density functional theory corrected for SDC and EDC with an original correction function of x(r ). Correlation
energies calculated with CAS�DFT along the bond-dissociation coordinate for the paradigmatic H2 and N2

molecules as well as for the C2 molecule with strong nondynamic correlation at the equilibrium agree well with
the reference data, thus providing a proof of concept for CAS�DFT.

DOI: 10.1103/PhysRevA.98.062510

I. INTRODUCTION

Though somewhat arbitrary, the partitioning of the
Coulomb electron correlation to dynamic and nondynamic
(static) modes is useful for its efficient calculation and mean-
ingful interpretation. In the latter mode correlated electrons
are placed to the separated spatial regions and the paradig-
matic system in this case is the dissociating H2 molecule, in
which “left-right” correlation [1] places two electrons with
the opposite spins to the different H atoms. The energy
of nondynamic correlation End

c can be evaluated with the
complete active space (CAS) (n, n) configuration interaction
(CI) [2–4], in which 2n electrons are distributed in all possible
ways among the bonding and antibonding orbitals associated
with n valence bonds.

Dynamic correlation is characterized with a rather short-
range concerted configuration of electrons arranged to reduce
their mutual repulsion. Its particular modes in atoms are radial
“in-out” and “angular” correlations; the latter is taken into
account in ab initio wave function methods by the inclusion
of higher angular momentum functions [5]. For atoms its
energy Ed

c can be efficiently evaluated with correlation func-
tionals [6–9] of density functional theory (DFT). In molecules
dynamic correlation can be strongly influenced with other
many-electron effects, such as the above mentioned nondy-
namic correlation.

One of the topics of this paper is the elucidation of the
opposite trends, which exhibits dynamic correlation in the
molecular ground state and in the excited states of ionic na-
ture. The latter states are the most important low-lying excited
states within the small CAS approach. It will be demonstrated
that in the ground-state dynamic correlation experiences the
suppression with nondynamic correlation, which gradually

increases with the bond stretching. In the excited state dy-
namic correlation exhibits the enhancement due to the ionic
character of the state. The CAS on-top pair density �CAS(r )
is proposed as the descriptor of these trends. In general, �(r )
is defined as the pair density of the wave function � evaluated
at the electron coalescence point r1 = r2 = r ,

�(r ) = N (N − 1)
∫

|�(x1, x2, . . . , xN )|2

× dσ1dσ2dx3...dxN |r1=r2=r , (1)

where x ≡ {r, σ } stands for both spatial r and spin σ coordi-
nates [10].

Another topic of this paper is the efficient evaluation of the
total correlation energy Ec,

Ec = End
c + Ed

c , (2)

with the combined approach, in which End
c is obtained

with CAS(n, n), while Ed
c is calculated with a (corrected)

DFT functional. In the ground state the main problem of
such an approach is to avoid the double counting of elec-
tron correlation coming from different methods [11–14]. Re-
cently, to avoid this problem altogether, the method was
proposed [15], in which the total exchange-correlation (xc)
energy Exc is calculated with a DFT functional. At vari-
ance with the conventional DFT, this xc functional em-
ploys �CAS(r ) as an additional argument, in order to be
able to switch between dynamic and nondynamic correla-
tion modes, when calculating Exc[ρ,�CAS]. This switching
is achieved by introducing an artificial electron spin polar-
ization in the singlet state evaluated from �CAS(r ) [15].
A promising way to avoid the double-counting problem is
based on the range-separation approach, which combines the
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multiconfigurational self-consistent field (MCSCF) approach
to treat the long-range part of the electron-electron interaction
with the short-range DFT functional [16].

In this paper, we follow the earlier work [11,13], in which
the CAS(n, n) contribution and the proper spin-restricted
description of singlet systems are fully retained, so End

c is
calculated as the difference,

End
c = ECAS − EHF, (3)

between the CAS ECAS and Hartree-Fock (HF) EHF to-
tal electronic energies. In its turn, Ed

c is calculated as
follows:

Ed
c =

∫
P [�CAS](r )εDFT

c [ρ](r )d r, (4)

where εDFT
c [ρ](r ) is the energy density of a suitable conven-

tional DFT correlation functional, in this paper εLYP
c [ρ](r ) of

the popular Lee-Yang-Parr (LYP) correlation functional [7,17]
is employed. Previously, the LYP functional was employed in
the combined CAS and DFT approach in Ref. [13], though
in a different from (4) way, in which �CAS was directly
inserted into the LYP expression for εDFT

c . In this paper, the
DFT energy density is corrected in (4) with the multiplicative
correction function P [�CAS], a functional of �CAS and ρ (see
below the form of this functional).

The CAS�DFT approach [Eqs. (3) and (4)] allows one
to carry out the calculations of Ec of (2) in a small basis.
Indeed, the main purpose of using large basis sets in the
conventional CI approach is a reliable evaluation of dynamic
correlation. However, DFT calculations are, usually, not so
sensitive to the basis choice. Then, the use of a small basis
leads to a tremendous speed-up of calculations. Due to this,
such calculations become a rather hot topic in the literature.
In particular, approximate methods, such as tight-binding
DFT (DFTB) [18], adapted to the minimal basis set make
possible calculations of very large supermolecular systems
and molecular complexes.

In this paper, the correction function P [�CAS] is proposed,
which accounts for both the above mentioned suppression
of dynamic correlation (SDC) in the ground state and the
enhancement of dynamic correlation (EDC) in the excited
ionic state. In Sec. II the ratio x(r ) of �CAS(r ) to its un-
correlated counterpart is put forward as the descriptor of the
changes of the effective conditional density due to nondy-
namic correlation and excitation. In Sec. III the correction
function P (x(r )) is introduced for the whole range of the x(r )
variation. In Sec. IV CAS�DFT with the proposed P (x(r ))
is applied to calculation of Ec along R for the ground 1�+

g

states of the paradigmatic molecules H2 and N2. In Sec. V
Ec is evaluated for the C2 molecule, in which rather strong
nondynamic correlation takes place already at the equilibrium
R. In Sec. VI CAS�DFT is applied to calculation of Ed

c

along R for the excited ionic 1�+
u state of the H2 molecule.

The results of the calculations in small basis sets agree
well with the reference data. In Sec. VII the conclusions
are drawn.

II. ON-TOP PAIR DENSITY RATIO AS A LOCAL
DESCRIPTOR OF NONDYNAMIC CORRELATION

AND EXCITATION EFFECTS

As was already mentioned in the introduction, the
CAS(n, n) wave function provides the basic effect of non-
dynamic correlation in the ground state. For example, in the
paradigmatic case of the H2 molecule the CAS(1,1) ground
state �CAS

g is the linear combination,

�CAS
g = c1�0 − c2�

uu
gg = (c1 − c2)�0 +

√
2c2�

HL, (5)

of the Hartree-Fock (HF) reference �0 and its double excita-
tion �uu

gg . The former represents the 1σ 2
g configuration, while

the latter is the 1σ 2
u , where 1σg and 1σu are the bonding

occupied and antibonding virtual molecular orbitals (MOs)
of H2.

Equivalently, �CAS
g is written in (5) as the linear combina-

tion of �0 and the Heitler-London (HL)-type wave function
�HL, the latter includes the 1σ 2

g and 1σ 2
u configurations with

the equal weights. It is �HL, which introduces nondynamic
correlation in �CAS

g . On the other hand, the CAS(1,1) excited
state �CAS

u of the 1�+
u symmetry is the correlationless ex-

cited HF state �CAS
u ≡ �u

g , which represents the spin-adapted
1σg1σu configuration.

The local effect of nondynamic correlation in the ground
state and the effect of excitation on the electron distribution
can be quantified by the comparison of the CAS on-top pair
density �CAS(r ) with its uncorrelated counterpart, the Hartree
product �H (r ) of the electron densities ρ,

�H (r ) = ρ(r1)ρ(r2)|r1=r2=r = ρ2(r ). (6)

Valuable information is produced with the (doubled) ratio of
these quantities,

x(r ) = 2�CAS(r )

�H (r )
= 2�CAS(r )

ρ2(r )
= 2ρ

(↑↓)CAS
cond (r|r )

ρ(r )
, (7)

which is, simultaneously, the ratio of the opposite-spin com-
ponent ρ

(↑↓)CAS
cond (r|r ) of the CAS on-top conditional density to

its uncorrelated counterpart 1
2ρ(r ). In general, the conditional

density ρcond(r2|r1) is defined as the ratio of the pair density
�(r1, r2) to the electron density ρ(r1),

ρcond(r2|r1) = �(r1, r2)

ρ(r1)
, (8)

and it gives the density of the remaining electrons at r2

when the reference electron is at r1. Then, the stronger the
nondynamic correlation is, the harder it pushes other electrons
of the opposite spin from the vicinity of the reference electron
of a given spin, which makes �CAS(r ), ρ

(↑↓)CAS
cond (r|r ), and the

ratio (7) smaller.
Figures 1–3 display the ratio (7) calculated for the ground

state of the H2 and N2 molecules as a function x(z) of the
bond axis coordinate z. For H2 the calculations are performed
in the double-zeta (DZ) basis of Dunning [19] with only two
basis functions per atom. For N2 the cc-pVDZ basis [20]
is used without the d functions, i.e., with only nine basis
functions per atom. The CAS CI calculations are carried
out, with the CAS(n,n) configurations being augmented with
single excitations from the active to the outer space. This
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FIG. 1. The ratio x of the CAS on-top pair density to its un-
correlated counterpart along the bond axis z of the ground-state H2

molecule at R(H-H)=1.4 bohr. The H nuclei are placed at −0.7 and
0.7 bohr.

inclusion improves the resultant electron density in the sense
that the occupations of all its natural orbitals (NOs) become
larger than 10−7, which is the required threshold in the em-
ployed GAMESS-US package [21,22]. This does not apprecia-
bly change the major occupations of the lowest NOs and x(z)
calculated for the ground-state H2 displays the same trend as
that obtained previously in Ref. [23] with the CAS SCF.

Figure 1 describes the effect of nondynamic correlation
in the ground state of H2 with the decrease of x(z) up to
0.8, when approaching the nuclei. Due to the dominating
contribution of the HL-type wave function in (5), this effect
is much stronger for the stretched H2 (see Fig. 2). Indeed,
strong nondynamic correlation causes vanishing of x(z) in the
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FIG. 2. The ratio x of the CAS on-top pair density to its un-
correlated counterpart along the bond axis z of the ground-state H2

molecule at R(H-H)=4 bohr. The H nuclei are placed at −2 and
2 bohr.
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FIG. 3. The ratio x of the CAS on-top pair density to its un-
correlated counterpart along the bond axis z of the ground-state N2

molecule at R(N-N)=3 Å = 5.67 bohr. The N nuclei are placed at
−2.835 and 2.835 bohr.

regions of the H atoms. On the other hand, the bond midpoint
region is distinguished with relatively high x(z) values (see
Figs. 1 and 2). Apparently, it is the dynamic correlation, which
is responsible for correlating electrons in this region.

For the N2 molecule x(z) exhibits the same qualitative
trends as for H2. One can see from Fig. 3 that x(z) distin-
guishes between the outer valence and inner regions. In the
former, the strong nondynamic correlation from the CAS(3,3)
wave function lowers x(z) to ca. 0.65. The apparent inability
of CAS(3,3) to efficiently correlate electrons in the inner
regions keeps x(z) close to 1 in these regions.

Remarkably, excitation to the ionic state produces the
opposite effect on x(z) compared to that of nondynamic
correlation (see Figs. 4 and 5). Indeed, x(z) calculated for the
11�+

u state of H2 at R = 2 bohr is substantially larger than
1, reaching the value of ca. 1.6 at the nuclei (see Fig. 4).
In the bond midpoint region x(z) vanishes due to the node
of the excited wave function. For the larger R = 4 bohr x(z)
further increases in the atomic regions, approaching the value
x(z) = 2 (see Fig. 5).

For the considered excited state the values x(z) > 1 are
physically meaningful; they reflect its ionic nature. Indeed,
in an ionic state excitation squeezes two electrons of the
opposite spins in the same atomic region. As a result, in the
vicinity of the reference electron with the spin α we have a
single electron with the spin β, so in the ideal ionic situation
the on-top pair density tends to ρ(r )ρ(r ), which is twice as
large as the corresponding Hartree product in the denominator
of (7). From this rationalization it follows that the increase of
x(z) in the atomic regions, when going from R = 2 to R = 4
bohr implies the increase of the ionic character of the 11�+

u

state with the molecular stretching.
Now, we turn to the opposite trends in dynamic correlation

caused by nondynamic correlation and excitation to the ionic
state. One can introduce a physical notion of the suppression
of dynamic correlation (SDC) with nondynamic correlation.
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FIG. 4. The ratio x of the CAS on-top pair density to its uncor-
related counterpart along the bond axis z of the excited-state H2

molecule at R(H-H)=2 bohr. The H nuclei are placed at −1 and
1 bohr.

SDC means that, placing electrons to the separated spatial re-
gions, nondynamic correlation makes irrelevant their shorter-
range dynamic correlation. Locally, SDC can be viewed as
follows. Nondynamic correlation reduces the repulsion of the
reference electron at r1 due to the reduction of the conditional
density ρ

(↑↓)CAS
cond (r2|r1) of other electrons with the opposite

spin in its vicinity. Naturally, this weakens further reduction
of the repulsion due to dynamic correlation of the electrons.
Then, as follows from the relation (7), the regions with SDC
are characterized with the reduced x(r ) < 1. These regions
are displayed in Figs. 1–3.
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FIG. 5. The ratio x of the CAS on-top pair density to its uncor-
related counterpart along the bond axis z of the excited-state H2

molecule at R(H-H)=4 bohr. The H nuclei are placed at −2 and
2 bohr.

On the other hand, squeezing of electrons upon excitation
to an ionic state increases the repulsion of the reference
electron at r1 due to the increase of the conditional density
ρ

(↑↓)CAS
cond (r2|r1). Naturally, this increase can be partially com-

pensated with the enhanced dynamic correlation (EDC) of the
electrons. Then, as follows from the relation (7), the regions
with EDC are characterized with the enhanced x(r ) > 1.
These regions are displayed in Figs. 4 and 5.

III. CAS�DFT CORRECTION FUNCTION FOR
THE WHOLE RANGE OF THE x(r ) VARIATION

The description of local effects of nondynamic correlation
and excitation in terms of the “effective” conditional density
and the related argument x(r ) naturally serves for designing
of the correction function in the CAS�DFT expression (4) for
Ed

c . Indeed, the above mentioned reduction of ρ
(↑↓)CAS
cond due

to nondynamic correlation effectively moves the correlation
energy density in (4) to lower density. This can be repre-
sented with the SDC segment P SDC[x] of the correction func-
tion, P [�CAS] ≡ P SDC[x] � 1 for x(r ) � 1. The increase of
ρ

(↑↓)CAS
cond due to excitation to the ionic state effectively moves

the correlation energy density to higher density. This can be
represented with the EDC segment P EDC[x] of the correction
function, P SDC[x] > 1 for x(r ) > 1.

These two segments constitute the total correction function
P [x] of this paper defined for the whole range of the x(r )
variation,

P [x] =
{
P SDC(x(r )) � 1, x � 1
P EDC(x(r )) > 1, x > 1

. (9)

Here, P SDC(x(r )) is the following [1/1] Padé approximant
P SDC

[1/1](x(r )),

P SDC
[1/1](x(r )) = ax(r )

1 + bx(r )
. (10)

The form of P SDC
[1/1](x(r )) is chosen to provide the correct SDC

asymptotics in the x → 0 and x → 1 limits. In particular,
P SDC

[1/1](x(r ) → 0) vanishes reflecting strong SDC with strong
nondynamic correlation in this limit. This leads to the vanish-
ing at r correlation energy density, the integrand in (4).

The opposite limit x → 1 represents a weak nondynamic
correlation, which does not suppress dynamic correlation, so
P SDC

[1/1](1) = 1. This condition fixes one of two parameters a

and b of the [1/1] Padé approximant, b = a − 1. The single
free parameter a of (10) is fitted to reproduce the reference
data for the ground state of H2 (see Sec. IV).

In its turn, P EDC(x(r )) of the following form,

P EDC(x(r )) = c 4
√

x(r ) − d(x(r ) − g)2, (11)

is used in (9). The condition P EDC(1) = 1 of the continuity of
the total function (9) fixes one of the three parameters of (11),

d = c − 1

(1 − g)2
. (12)

The parameters c and g of (11) are fitted to reproduce the
reference data for the excited 1�+

u state of H2. Their actual
values as well as the justification of the two-term form of (11)
will be given in Sec. VI.
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FIG. 6. The (minus) full CI correlation energy (FCI), the total
CAS and corrected DFT correlation energy (CAS�DFT), and the
nondynamic (non-dyn) and dynamic (dyn) contributions (in hartree)
to the latter calculated along the dissociation coordinate of the H2

molecule.

Equations (2)–(4) and (9)–(12) represent the CAS�DFT
approach of this paper. We would like to emphasize that
in the subsequent ground- and excited-state calculations in
Secs. IV–VI the total two-segment function (9) and not its
individual segments (10) and (11) will be used in all cases.

IV. GROUND-STATE CORRELATION ENERGY ALONG
THE BOND-DISSOCIATION COORDINATE

WITH CAS�DFT

Figure 6 and Tables I–III present the results of the
CAS�DFT ground-state calculations of the correlation en-
ergy for the paradigmatic H2 and N2 molecules along the
bond-dissociation coordinate as well as for the C2 molecule
at the equilibrium. The calculations are performed with the
same wave functions and densities obtained in the same small
basis sets as those employed for the calculation of x(r ) of
the previous section. The parameter a = 0.35 is chosen in the
SDC segment (10) of the correction function (9).

Figure 6 displays the ground-state correlation energy Ec to-
gether with its dynamic Ed

c and nondynamic End
c components

calculated with the present CAS�DFT with CAS(1,1) along
the bond-dissociation coordinate R(H-H) of the paradig-

matic H2 molecule. The CAS�DFT Ec is compared with
the reference full CI (FCI) one calculated in the large aug-
mented correlation-consistent quadruple-zeta (aug-cc-pVQZ)
basis [20].

One can see from Fig. 6 that the CAS�DFT Ec closely
reproduces the reference FCI one at all distances considered
with, basically, the chemical accuracy of 0.001–0.002 hartree.
The absolute Ec value steadily increases with R, due to
the gradual development of strong nondynamic correlation.
The interplay between dynamic and nondynamic correlation
components is vividly depicted with crossing of the Ed

c and
End

c curves.
As one can expect, at the equilibrium distance R = 1.4

bohr dynamic correlation prevails. However, after the curve
crossing point at R ca. 1.8 bohr nondynamic correlation
dominates. The SDC effect becomes very visible after R =
2.5 bohr and at larger R Ed

c vanishes. From this and the
comparison with the reference FCI curve one can conclude,
that the SDC effect is well represented with the correction
function (9) (see Fig. 6).

Table I collects the results of the CAS�DFT calculations
with CAS(3,3) for four different bond distances R(N-N) of
the triple-bonded N2 molecule, which offers a more stringent
test. Besides Ed

c , the nondynamic component End
c , and its sum

Ec, Table I displays the total ECAS and EHF energies in (3).
Also, the standard uncorrected LYP correlation energy ELYP

c

is shown.
Note that DFT calculations of the correlation energy en-

counter the problem of the proper ab initio reference. The
point is that conventional DFT functionals are designed to
account for the total correlation, including full dynamic cor-
relation of core and deep valence electrons. Since the H2

molecule considered above has only a pair of outer valence
electrons, calculation of the total correlation with FCI in a
large basis does not present a problem. On the other hand,
a reliable evaluation along the dissociation coordinate of
the total correlation energy of the N2 molecule with its 1s

core and 2s-type deep valence states in a moderate basis is
hardly achievable with standard techniques. Because of this,
schemes of the extrapolation of the HF and FCI energies to
the complete basis set (CBS) limit have been developed in the
literature [24].

Table II collects the reference ab initio data for N2. Its
first column contains the CBS HF and FCI (applied to valence
electrons) energies as well as the resultant correlation energy
of valence electrons Eval

c evaluated in Ref. [24] for the N2

molecule at the equilibrium N-N distance R = 2.075 bohr.

TABLE I. The total correlation energy Ec obtained with CAS�DFT and their nondynamic End
c and dynamic Ed

c components (in hartree)
for four N-N separations (in bohr) in the N2 molecule.

N2 R (bohr) 2.075 3.779 4.724 5.669

EHF −108.87876 −108.32218 −108.11775 −107.99316
ECAS −108.99725 −108.78304 −108.78047 −108.77707
End

c −0.11849 −0.46086 −0.66272 −0.78391
Ed

c −0.44705 −0.32995 −0.30618 −0.30132
Ec (CAS�DFT) −0.56554 −0.79081 −0.96890 −1.08523
ELYP

c −0.48271 −0.45888 −0.45425 −0.45179

062510-5



GRITSENKO, VAN MEER, AND PERNAL PHYSICAL REVIEW A 98, 062510 (2018)

TABLE II. The reference correlation energies (in hartree) for
four N-N separations (in bohr) in the N2 molecule.

N2 R (bohr) 2.075 3.779 4.724 5.669

EHF −108.99383 −108.35798 −108.14928 −108.02718
EFCI/MRCI −109.42513 −109.04420 −109.01892 −109.01575
Eval

c −0.43130 −0.68622 −0.86964 −0.98857
EFCI/MRCI

c −0.550 −0.805 −0.989 −1.108

To obtain the total correlation energy Ec, Eval
c is augmented

with the core correlation energy of −0.119 hartree also eval-
uated in [24]. For larger R, Eval

c is obtained in this paper as
the difference between the total energies of the multireference
CI (MRCI) in occupation restricted multiple active spaces
(ORMAS) [25] and HF calculated in the cc-pVTZ basis.
The present ORMAS includes all excitations within the full
valence space (including 2s-type deep valence states) to the
three lowest virtual orbitals as well as all singles and doubles
(SD) from the full valence space to the outer space.

Remarkably, the total correlation energies Ec calculated
with the present CAS�DFT are rather close to the reference
Ec values for all four N-N distances considered (compare
Tables I and II). Note that at the equilibrium the SDC effect is
rather small, so the lowering of the absolute value |Ed

c | of (4)
compared to the uncorrected |ELYP

c | is only 0.036 hartree (see
Table I). As was established in the literature [26], in DFT the
major part of nondynamic correlation in molecules around
equilibrium is effectively provided with the DFT exchange
functional. In its turn, in CAS�DFT nondynamic correlation
is calculated directly via the difference (3). Evidently, the
corresponding HF energy of −108.879 hartree in Table I
calculated in a small basis is considerably higher than its CBS
limit of −108.994 hartree in Table II. However, this basis set
error is effectively compensated with that in ECAS. Due to this,
the resultant CAS�DFT sum (2) of −0.565 hartree is only
by 0.015 hartree off its CBS limit value of −0.550 hartree
(compare Tables I and II).

At larger R, LYP itself does not show the SDC effect, so
ELYP

c stays nearly constant at ca. −0.455 hartree (see Table I).
Altogether, DFT exchange-correlation functionals fail to re-
produce the build-up of strong nondynamic correlation with
R. This causes the well-known problems of conventional DFT
with the description of molecular dissociation, with too high
energies of the spin-restricted DFT for stretched closed-shell
molecules.

Then, the proposed CAS�DFT gives for N2 the same
qualitative picture of the interplay between dynamic and
nondynamic correlation as for H2, adapted to dissociation of
not single, but three bonds of N2. Again, at the equilibrium
dynamic correlation (this time including the core and deep

valence contributions) prevails (see Table I). At larger R,
|End

c | greatly increases, due to the gradual build-up of strong
nondynamic correlation in three dissociating N2 bonds.

The accompanying SDC effect substantially decreases |Ed
c |

from 0.447 hartree at R = 2.075 bohr to 0.301 hartree at
R = 5.669 bohr (see Table I). Apparently, this decrease is
caused with the vanishing dynamic correlation of electrons
of three dissociating bonds, while that of the core and deep
valence electrons is expected not to alter appreciably. Yet
(due to strong nondynamic correlation), the total CAS�DFT
correlation energy |Ec| experiences an almost twofold rise
with R, which rather closely reproduces that of the reference
|Ec| (compare Tables I and II).

V. GROUND-STATE CORRELATION ENERGY
OF THE CARBON DIMER WITH CAS�DFT

While strong nondynamic correlation characterizes the
stretched H2 and N2, in the ground state of C2 it takes place
already for the equilibrium R = 2.348 bohr. Besides, the
CBS data for the equilibrium C2 was reported in Ref. [24].
This makes C2 at the equilibrium an instructive test for the
proposed CAS�DFT.

Unlike H2 with its single paradigmatic two-electron bond
and N2 with its three bonds, the bonding in C2 can be de-
scribed as intermediate between two and four bonds. Indeed,
in the C2 wave function obtained with the full-valence space
multiconfigurational self-consistent field method (MCSCF)
the leading valence configuration 2σ 22σ ∗22π2

x 2π2
y represents

two π bonds [24]. However, it has a strong admixture of
the configuration 2σ 23σ 22π2

x 2π2
y , which formally represents

four bonds. It is a combination of these two configurations
including the localized 2σ ∗ and relatively diffuse 3σ MOs,
respectively, which is responsible for strong nondynamic cor-
relation in C2.

This peculiar bonding pattern presents the problems for
its reliable theoretical description. In particular, the strong
zeroth-order multiconfigurational character of the C2 elec-
tronic structure makes problematic its description with the
conventional coupled-cluster (CC) methods. In DFT it re-
quires the construction of the ground-state ensemble for the
Kohn-Sham (KS) noninteracting system [27], in spite of the
above mentioned pure-state representation of the interacting
C2 system.

In the present CAS�DFT, the CAS(3,3) with six electrons
in the active space 2σ ∗3σ2πx2πy2π∗

x 2π∗
y of six MOs is cho-

sen to describe nondynamic correlation in C2 at the equilib-
rium. The CAS�DFT calculations are performed in the same
small cc-pVDZ basis without d functions as was employed in
the previous sections for N2. Table III displays the CAS�DFT
nondynamic correlation energy End

c together with the generic

TABLE III. Comparison of the CAS�DFT and the reference CBS correlation energies (in hartree) for the C2 molecule at the equilibrium.

C2, R =2.348 bohr EHF ECAS End
c Ed

c Ec (CAS�DFT) ELYP
c

−75.35713 −75.56911 −0.21198 −0.31357 −0.52555 −0.38216
CBS EHF EFCI Eval

c Ecore
c EFCI

c

−75.40759 −75.81445 −0.40686 −0.1124 −0.5193
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TABLE IV. Comparison of the CAS�DFT Ed
c and reference

correlation energies EFCI
c (in hartree) for four H-H separations (in

bohr) in the first excited 1�+
u state of the H2 molecule.

H2 R (bohr) 2 3 3.5 4

ECAS −0.68577 −0.70566 −0.69411 −0.67954
ECIS −0.71266 −0.70914 −0.69852 −0.68616
EFCI −0.75173 −0.75212 −0.74449 −0.73507
ECIS

c −0.02689 −0.00348 −0.00441 −0.00662
Egd

c −0.03907 −0.04298 −0.04597 −0.04891
EFCI

c −0.06596 −0.04646 −0.05038 −0.05553
Ed

c −0.06315 −0.05544 −0.05505 −0.05413
ELYP

c −0.03205 −0.03072 −0.03001 −0.02931

EHF and ECAS total energies. It also compares Ed
c of (4) with

the uncorrected ELYP
c . Besides, Table III shows the reference

data of Ref. [24]. It includes the CBS limits EHF and EFCI of
the total HF and FCI energies (the latter includes only valence
correlation), the corresponding correlation energy of valence
electrons Eval

c , and the CBS limit Ecore
c of the core correlation

energy.
The relative strength of nondynamic correlation in C2 can

be assessed by comparing the CAS(3,3) End
c values for C2

and N2. For C2 |End
c | is nearly twice as large than that for

the equilibrium N2 (compare Tables I and III). The relative
strength of nondynamic correlation also can be assessed by
its SDC effect (the latter can be evaluated from the SDC cor-
rection) by taking the difference between the CAS�DFT Ed

c

and ELYP
c . For C2 this difference of 0.06859 hartree (see

Table III) is more than twice as large as that of 0.03092 hartree
for N2 (see Table I). This data confirms that, indeed, in C2

nondynamic correlation is considerably stronger compared to
the equilibrium N2.

Remarkably, the total CAS�DFT correlation energy Ec,
the sum of End

c and Ed
c , reproduces closely the reference CBS

limit value, the sum of Eval
c and Ecore

c . The corresponding
deviation is only 0.006 hartree (see Table III). Thus, also in
the case of the peculiar complicated bonding pattern in C2

the proposed CAS�DFT produces a good quality correlation
energy in a small basis.

VI. EXCITED-STATE CORRELATION ENERGY ALONG
THE BOND-DISSOCIATION COORDINATE

WITH CAS�DFT

Table IV displays the results of the correlation energy
calculations for four different bond distances R of the excited
11�+

u state of H2. The reference correlation energies EFCI
c

is calculated in the large aug-cc-pVQZ basis as the differ-
ence between the total FCI EFCI and the energy ECAS of
the correlationless excited state �CAS

u mentioned in Sec. II,
which are also shown in Table IV. As was already mentioned
in Sec. II, in this case the only CAS configuration of the
proper symmetry is just the excited HF configuration, so End

c

of (3) vanishes and Ec solely represents the effect of dynamic
correlation.

First of all, note a general enhancement of dynamic correla-
tion represented by Ec compared to the ground state. Indeed,

at all R the absolute Ec of Table IV are much larger, than
the largest ground-state equilibrium |Ed

c | = 0.02809 hartree
displayed in Fig. 6, and they are even larger than the total
equilibrium FCI energy |Ec| = 0.04045 hartree, which also
contains the contribution of nondynamic correlation. This can
be anticipated from the qualitative arguments of Sec. II on the
relative magnitude of x((r )) for the ground and excited states.

On top of this general enhancement background, one can
notice the nonmonotonic dependence of Ec on R. Specifically,
|Ec| is the largest for the shortest R = 2 bohr, it reaches the
minimum at R = 3 bohr, and it continues its rise for larger
R (see Table IV). In order to rationalize this complicated
behavior, Ec is partitioned as follows:

Ec = ECIS
c + Egd

c . (13)

Here, the first term is the correlation contribution from CI with
single (CIS) excitations from the CAS reference,

ECIS
c = ECIS − ECAS, (14)

while the remainder E
gd
c associated in the considered case

of H2 with double excitations can be called the energy of
“genuine” dynamic correlation.

One can see from Table IV, that |Egd
c | monotonically

increases with R. This, together with the increase of x(r ) with
R shown in Sec. II, indicates the enhancement of genuine
dynamic correlation with the increase of the ionic character
of the excited state. It is ECIS

c , which is responsible for the
nonmonotonic behavior of the total Ec. The absolute value of
ECIS

c drops from 0.027 hartree at R = 2 bohr to only 0.003
hartree at R = 3 bohr and then increases somewhat to 0.007
hartree at R = 4 bohr. With this, the CIS correlation counters
the increase of the CAS energy, when going from its minimal
value at R = 3 bohr. This countereffect of CIS is the largest
for the “squeezed” excited state at R = 2 bohr.

The above mentioned nonmonotonic pattern of correlation
in the excited state is to be reproduced with a nonmonotonic
dependence of the EDC segment (11) on x(r ). This is so,
since, as was shown in Sec. II, the structure with the enhanced
CIS correlation effect at R = 2 bohr is characterized with
smaller x(r ), than those of the structure with R = 4 bohr
(compare Figs. 4 and 5). To accomplish this, P EDC(x(r ))
of (11) consists of two terms. The first term with c = 2.6 pro-
vides the above mentioned general EDC in the excited state,
while its second term with g = 1.5 introduces the required
nonmonotonic dependence on x(r ).

One can see from Table IV, that the total correction
function (9) enhances the electron correlation compared to
the LYP functional, so that the absolute Ed

c values are sub-
stantially larger than the ELYP

c ones. This means that the
enhancement segment P EDC(x(r )) > 1 for x(r ) > 1 brings
the dominant contribution in this case.

This enhancement moves Ed
c values rather close to the

reference Ec ones. CAS�DFT qualitatively reproduces the
decrease of |Ec| with the decreasing CIS correlation, when
going from R = 2 to R = 3 bohr. Admittedly, it replaces the
increase of |Ec| beyond R = 3 bohr with a near saturation
of Ed

c . Nevertheless, at the shortest separation R = 2 bohr
the deviation between Ed

c and Ec is only 0.003 hartree, while
at the longest separation R = 4 bohr CAS�DFT correlation
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energy error reaches its minimum of just ca. 0.001 hartree (see
Table IV).

VII. CONCLUSIONS

In this paper it is shown that the on-top pair density, in
the form of its ratio x(r ) to the uncorrelated counterpart, can
meaningfully describe both the local effect of nondynamic
correlation and that of excitation to a state of the ionic
nature on the electron distribution. The opposite trends in
dynamic correlation caused by these effects, SDC by (strong)
nondynamic correlation and EDC by excitation, are elucidated
by considering the corresponding changes of the conditional
density.

Based on this description in terms of the “effective” den-
sities, the correction function to the conventional DFT corre-
lation functionals is proposed. It accounts for both SDC and
EDC, so it is physically meaningfully defined in the whole
range of the x(r ) variation. One can consider it as a step
forward compared to the previous work [15], in which for the
correction function to the whole exchange-correlation func-
tional the argument x(r ) was cut off at x = 1 for x > 1. Then,
the correction function of this paper describes in the region
x > 1 the nonmonotonic dependence of the correction on x(r )
caused by the interplay of the correlation contributions from
CIS and “genuine” dynamic correlation.

The CAS�DFT scheme of the calculation of the total
correlation energy is proposed. In this scheme, nondynamic
correlation is taken into account with the CAS(n,n), while
dynamic correlation is evaluated with the LYP functional cor-
rected with the developed correction function. This proposed

CAS�DFT reproduces rather closely the reference data on
single-bond stretching in H2 and on triple-bond stretching
in N2. Based on the present result, we can conclude that
it is the neglect of SDC, which is responsible for double
counting of electron correlation in the ground state, when
an uncorrected DFT correlation functional is combined with
CAS(n,n). Furthermore, CAS�DFT closely reproduces the
reference correlation energy for the C2 molecule, a peculiar
system where strong nondynamic correlation surfaces already
at the equilibrium.

The proposed CAS�DFT offers a promising scheme of
evaluation of the total correlation energy in a small basis,
since it requires only rather inexpensive CAS(n,n) and �DFT
in such a basis. Thus, it exploits the relative insensitivity of
DFT calculations to the basis choice. Furthermore, the present
results demonstrate the ability of CAS(n,n) to produce an
adequate description of nondynamic correlation in a small
basis.

The present results illustrate the well-known problem
of conventional DFT with the description of molecular
bond breaking. In particular, the standard LYP functional
yields almost constant correlation energies along the bond-
dissociation coordinate. Nevertheless, with the additional in-
formation provided with the CAS on-top pair density, it can
serve as the basis of the corrected description of the electron
correlation with the proper account of both SDC and EDC.
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