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Correlation energies for many-electron atoms with explicitly correlated Slater functions
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In this work we propose a composite method for accurate calculation of the energies of many-electron atoms.
The dominant contribution to the energy (pair energies) are calculated by using explicitly correlated factorizable
coupled cluster theory. Instead of the usual Gaussian-type geminals for the expansion of the pair functions, we
employ a two-electron Hylleraas basis set and discuss the advantages of the latter approach, e.g., a small number
of nonlinear parameters that need to be optimized. The remaining contributions to the energy are calculated
within the algebraic approximation by using large one-electron basis sets composed of Slater-type orbitals.
The method is tested for the beryllium atom where an accuracy better than 1 cm−1 is obtained. We discuss in
detail possible sources of the error and estimate the uncertainty in each energy component. Finally, we consider
possible strategies to improve the accuracy of the method by 1–2 orders of magnitude and apply it to larger
atoms.
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I. INTRODUCTION

Atomic spectroscopy remains an important and active field
of modern physics. Many theoretical and experimental works
concentrated on different aspects of atomic spectra touch upon
the very fundamentals of the present scientific knowledge.
Search for time-reversal symmetry violations [1], time de-
pendence of fundamental physical constants [2–4], various
empirical tests of the Standard Model, and quantum electro-
dynamics [5–10] are only a handful of prominent examples.
Therefore, the need for development of accurate theoretical
tools to predict the atomic spectra (and other relevant quanti-
ties) is easy to recognize.

If we restrict ourselves to light atoms, the most accurate
theoretical results to date have been obtained with methods
where all interparticle distances are explicitly incorporated
into the trial wave function. This includes basis sets of
Hylleraas-type functions [11–14], explicitly correlated Gaus-
sians (ECG) [15,16], Hylleraas-CI expansions [17–19], and
Slater geminals [20–23]. The common problem among these
methods, however, is the exponential scaling of the computa-
tional costs with the number of particles in the system.

A different approach to the electronic structure is offered
by the coupled cluster (CC) theory [24–27]. The total CC
wave function is parametrized in terms of a cluster operator
which can be truncated in a systematic way. As a result, the
computational costs scale polynomially with increasing num-
ber of particles in the system. The most popular implementa-
tion of the CC theory relies on the algebraic approximation,
i.e., expansion in a set of one-electron orbitals. Unfortunately,
this leads to a relatively slow convergence of the results
towards the complete basis set limit [28]—a manifestation of
Kato’s electron-electron cusp condition [29].
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One possible remedy to this problem is to abandon the
algebraic approximation entirely. To this end, various authors
showed that a basis-set independent CC theory can be formu-
lated in terms of the so-called pair functions [30–42]. The pair
functions are two-electron objects and thus can be expanded in
a basis set which overtly includes all coordinates of the given
electron pair. This idea gave rise to the explicitly correlated
CC theory.

One of the most difficult obstacles preventing straightfor-
ward application of this method is the presence of many-
electron integrals. In the modern R12/F12 theory [43–48],
this difficulty is avoided by proper insertions of the reso-
lution of identity (RI) approximation. A different idea has
been proposed by Szalewicz and collaborators [35–37], who
imposed the strong-orthogonality (SO) requirement for the
pair functions only in the complete basis set limit. This led
to a family of weak-orthogonality (WO) functionals. At the
second-order Møller-Plesset (MP2) level of theory [27], for
example, this eliminates all four-electron integrals from the
working equations, leaving only the relatively simple three-
electron ones [35,36].

The WO functionals are typically combined with the
Gaussian-type geminals (GTG) for expansion of the CC pair
functions. The main advantage of such an approach is that the
resulting three-electron integrals can be evaluated analytically
in a closed form. Unfortunately, all GTG-based approaches
require costly nonlinear optimizations of the GTG exponential
parameters. For one-center systems an interesting alternative
is to use Hylleraas basis set of the form

(4π )−1ru
1 rv

2 rt
12 exp(−ai r1 − aj r2), (1)

where ai, aj > 0, and u, v, t are non-negative integers, for
the expansion of the CC pair functions. As demonstrated
further in the text, this basis set requires introduction of only
a handful of nonlinear parameters per electron pair, making
their optimization a straightforward task. Moreover, the basis
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set (1) can be systematically extended so that the basis set
limits and the corresponding errors bars are easier to estimate.

The Hylleraas basis set has not found a significant use in
CC theory thus far because of the resulting three-electron inte-
grals. However, in the past two decades considerable progress
has been achieved in attempts to evaluate them analytically
and/or recursively. This started with the seminal paper of
Fromm and Hill [49], who solved the simplest three-electron
integral with inverse powers of all interparticle distances. De-
spite this success and subsequent works [50,51], the analytic
formulas were lengthy and their evaluation (and differentia-
tion) both expensive and prone to numerical instabilities.

Somewhat later, Pachucki and collaborators [52] proposed
a set of recursive formulas connecting all three-electron in-
tegrals resulting from the basis set (1), thereby eliminating
many problems shared by the previous approaches. This opens
up a new avenue for application of the WO CC theory to
many-electron atoms within the Hylleraas basis set. Since the
three-electron integrals are no longer a bottleneck, the basis
set is expected to be superior to the GTG expansion, both in
terms of accuracy (satisfies the cusp condition) and compu-
tational efficiency (a small number of independent nonlinear
parameters).

The purpose of this work is twofold. First, we consider
calculation of explicitly correlated coupled cluster energies
with the Hylleraas basis set used for expansion of the pair
functions. We analyze the strengths and weaknesses of this
approach and provide exemplary results for two- and four-
electron closed-shell atomic systems. Second, we propose
a composite method to calculate total energies of many-
electron atoms comprising the aforementioned explicitly cor-
related techniques augmented with calculations based on one-
electron basis sets. We discuss extensions of this method to
heavier atoms, including the open-shell systems, and analyze
the main sources of error.

II. THEORY AND IMPLEMENTATION

A. Explicitly correlated calculations

In the first-quantized formulation of the factorizable cou-
pled cluster doubles theory (FCCD) [38] the electron corre-
lation effects in an N -electron closed-shell system are ex-
pressed in terms of a set of N2/4 spinless pair functions of
well-defined permutational symmetry. There are [N (N/2 +
1)]/4 independent singlet pair functions τ 1

αβ (1, 2) which are
symmetric with respect to the exchange of electron coor-
dinates and orbital indices α and β, and [N (N/2 − 1)]/4
triplet pair functions τ 3

αβ (1, 2) which are antisymmetric un-
der these operations, i.e., τ s

αβ (1, 2) = (2 − s)τ s
αβ (2, 1) = (2 −

s)τ s
βα (1, 2), s = 1, 3.
We assume that the reference Hartree-Fock determinant

is constructed from canonical orbitals φα, α = 1, . . . , N/2
(corresponding to the lowest orbital energies εα) which are
eigenfunctions of the standard closed-shell Fock operator f ,
i.e., f φα = εαφα . In this case, the individual pair functions
τ s
αβ (1, 2) are solutions to the integrodifferential FCCD equa-

tions of the general form [38,53]

[f (1) + f (2) − εα − εβ]τ s
αβ (1, 2) = Rs

αβ[τ ], (2)

with an additional requirement that the pair functions must
fulfill the SO condition

q2(1, 2)τ s
αβ (1, 2) = τ s

αβ (1, 2). (3)

The exact two-electron SO projector q2 in Eq. (3) is defined
as

q2(1, 2) = [1 − p(1)][1 − p(2)], (4)

where the action of a projector p on an arbitrary function χ is
expressed in terms of the occupied orbitals φα as

p(1)χ (1) =
N/2∑
α=1

φα (1)
∫

φ	
α (3)χ (3) d3. (5)

Once the pair functions are known, the total FCCD correlation
energy is computed as a sum of contributions from individual
pairs,

EFCCD =
N/2∑
α=1

ε1
αα +

N/2∑
α<β

(
ε1
αβ + ε3

αβ

)
, (6)

where the pair energies εs
αβ are defined by

εs
αβ = s

1 + δαβ

〈φαφβ |r−1
12

∣∣τ s
αβ

〉
. (7)

The right-hand-side term Rs
αβ[τ ] in Eq. (2) depends explicitly

on all pair functions (indicated by the bold symbol, τ ). In the
FCCD theory it consists of three contributions,

Rs
αβ[τ ] = −q2(1, 2)r−1

12 φs
αβ (1, 2) + Ls

αβ[τ ] + F s
αβ[τ ], (8)

where φs
αβ is a properly (anti-)symmetrized product of

the occupied orbitals, i.e., φs
αβ (1, 2) = φα (1)φβ (2) + (2 −

s)φβ (1)φα (2), Ls
αβ[τ ] collects all terms which are linear in the

pair functions, and the so-called factorizable quadratic terms
are included in F s

αβ[τ ]. The detailed functional form of Ls
αβ[τ ]

and F s
αβ[τ ] is found in Refs. [38,53].

The coupled cluster equations are most conveniently
solved iteratively. In the simplest approach (the straightfor-
ward iteration procedure of Ref. [38]), a sequence of consec-
utive approximations to the pair functions, τ [n], is generated
from an equation similar to Eq. (2) but with the right-hand-
side term calculated using the pair functions from the previous
iteration, Rs

αβ[τ [n−1]].
The SO condition given by Eq. (3) must be fulfilled in each

step of the iteration procedure. We adopt a method of solv-
ing the coupled cluster equations through an unconstrained
minimization of a variational functional which imposes the
SO condition approximately by means of a penalty term [35–
37]. To this end, we employed the super-weak orthogonality
(SWO) functional introduced in Ref. [54]. In the case of the
FCCD theory it has the following form:

J s
αβ[τ̃ ] = 〈τ̃ |f (1) + f (2) − εα − εβ |τ̃ 〉

− 2 Re〈τ̃ |R̄s
αβ[τ [n−1]] + �

αβ

1 〈τ̃ |p(1) + p(2)|τ̃ 〉
+�

αβ

2 〈τ̃ |pe(1) + pe(2)|τ̃ 〉 + �
αβ

3 〈τ̃ |p(1)p(2)|τ̃ 〉,
(9)

where the bar in R̄s
αβ[τ [n−1]] indicates that the one-electron

SO projectors appearing in the definition of Ls
αβ in Eq. (8)
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are omitted, and pe(1) is defined through Eq. (5) with orbital
energies εα multiplying each φα (1) term. No more than three-
electron integrals are necessary within the SWO framework.

The last three terms in Eq. (9) constitute a penalty function
which increases the value of the functional if any SO-violating
components are present in the trial function. We adopt the
formulas from Ref. [54] for the parameters �

αβ

i :

�
αβ

1 = εα + εβ − εHO + η

�
αβ

2 = −1 (10)

�
αβ

3 = 2εHO − εα − εβ,

where εHO is the energy of the highest occupied reference
orbital, and η > 0 is a parameter which allows us to control
the strength of the SO forcing. The value of this parameter is
irrelevant in the limit of the complete basis set but influences
the results in any finite basis set.

The minimization of J s
αβ[τ̃ ], Eq. (9), is performed only

with respect to the linear coefficients in the expansion of the
trial function τ̃ in terms of a set of fixed basis functions.
Therefore, finding a minimum of the functional is equivalent
to solving a set of linear equations. Additionally, after each
step of the iteration procedure we perform an approximate
projection of each pair function [39], where the strong-
orthogonality projector is restricted to the space spanned
by the geminal basis set (SWO with projection technique,
SWOP).

All pair functions are expanded in a common set of prim-
itive functions of the form (1). The proper permutational
symmetry of the singlet and triplet pair functions is ensured by
applying the (anti-)symmetrizer Âs

12 = 1 + (2 − s)P̂12, where
P̂12 interchanges the electron coordinates. The positive ex-
ponents ai and aj , i � j , in Eq. (1) are all possible pairs
(including repetitions) created out of an na-element set of
pairwise distinct exponents. The powers u, v, t are all distinct
triplets of non-negative integers subject to the condition u +
v + t � �. In the case when i = j , an additional constraint,
u � v, is assumed. As a result, the set of primitive functions
is completely specified by a set of na exponents and a single
number �. The total number of symmetric basis functions
used to expand the singlet pairs can be calculated from the
formula

K (na,�) = na κ1(�) + na (na − 1)

2
κ2(�), (11)

with κ1(�) and κ2(�) defined as

κ1(�) = �(� + 2)(� + 4)(2 � + 3)/24�,
κ2(�) = (� + 1)(� + 2)(� + 3)/6, (12)

where �x� denotes the floor function of x. The number of
antisymmetric basis functions used for the expansion of the
triplet pairs is expressed by a formula similar to Eq. (11)
but with the term na κ1(�) replaced by na κ1(� − 1). This
results from the fact that the primitive functions in Eq. (1)
with ai = aj and u = v vanish after antisymmetrization.

The self-consistent field (SCF) orbitals of the beryllium
atom used in the FCCD calculations were calculated with the
basis set in the form

(4π )−1/2 rse−akr , (13)

TABLE I. SCF energies of the beryllium atom calculated with
SCF(na, ω) basis sets along with the optimized exponents (ak) and
the corresponding errors (�ESCF) with respect to the reference value
(see text). All values are given in atomic units.

a1 a2 a3 a4 �ESCF

SCF(2, 7) 1.139 6.377 2 × 10−10

SCF(3, 3) 0.9089 3.000 8.918 9 × 10−10

SCF(3, 5) 0.9276 3.032 10.05 2 × 10−14

SCF(3, 7) 0.9562 3.544 11.88 5 × 10−17

SCF(4, 5) 0.8859 2.476 5.658 16.05 7 × 10−18

where s = 0, . . . , ω, and k = 1, 2, . . . , na . This constitutes
a set of approximations, denoted SCF(na, ω), to the exact
SCF energy. The optimal exponents were found by vari-
ational minimization of the SCF energy for fixed na and
ω. Several representative examples of the calculated SCF
energies are given in Table I. The estimated limit (ESCF =
−14.573 023 168 316 399 582 Eh) comes from SCF(11, 7)
calculations with fixed exponents, {ak} = {1/2, 1, 2, . . . , 10},
and we believe it to be accurate to more than 20 significant
digits.

The nonlinear parameters of the Hylleraas basis set (1)
were not optimized in subsequent explicitly correlated cal-
culations. Instead, they are fixed as all possible combi-
nations of nonlinear parameters from a given SCF(na, ω)
wave function (subject to the conditions detailed earlier in
the text).

Three-electron integrals that appear in some terms of
Eqs. (6)–(9) have the following general form:

∫
dr1

4π

∫
dr2

4π

∫
dr3

4π
r

n1
1 r

n2
2 r

n3
3 r

n4
12 r

n5
13 r

n6
23 e−a r1−b r2−c r3 .

(14)

In the present work they were calculated with help of the
method developed by Pachucki and collaborators [52] based
on a family of recursive relations. However, let us mention
that some combinations of the powers ni are not required in
the FCCD computations. In fact, in all terms of Eqs. (6)–(9),
at least one of n4, n5, or n6 is always either −1 or zero.
This is advantageous, as it eliminates a significant portion
of the integrals and reduces the size of the integral files.
Calculations of the integral files were performed within the
quad-double arithmetic precision (QD library [55], approxi-
mately 64 significant digits), while the explicitly correlated
computations were accomplished in the standard FORTRAN

quadruple arithmetic precision (approximately 32 significant
digits).

B. Orbital calculations

For the purposes of this paper we separate the total energy
of an atom into several contributions,

Etot = ESCF + EFCCD + δS + δNF + δFCI, (15)
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TABLE II. Dependence of the calculated total FCCD correlation energy on the parameter η for selected values of �. The SCF basis set is
SCF(3, 7), and S measures the deviation from the strong-orthogonality condition, see Eq. (18). The energies are given in mEh.

τ s
αβ qB τ s

αβ q2 τ s
αβ

η E log10 S E log10 S E

� = 2
106 −90.625 341 531 −6.1 −90.625 313 732 −6.1 −90.625 379 201
104 −92.021 944 336 −5.3 −92.018 869 225 −5.3 −92.020 366 249
102 −92.603 864 518 −3.9 −92.432 844 678 −5.1 −92.435 575 222
100 −94.168 577 256 −0.5 −92.463 225 833 −5.1 −92.464 729 391
10−2 −91.743 645 183 −0.1 −92.486 653 218 −4.9 −92.487 865 631
0 7256.282 371 921 +0.3 −92.541 588 807 −4.9 −92.541 519 617

� = 6
106 −92.988 784 177 −11.8 −92.988 766 087 −12.9 −92.988 766 089
104 −92.990 573 333 −7.8 −92.988 766 697 −11.9 −92.988 766 695
102 −93.151 221 033 −3.8 −92.988 766 726 −11.9 −92.988 766 717
100 −94.133 618 742 −0.4 −92.988 766 718 −11.9 −92.988 766 721
10−2 −91.012 330 964 −0.1 −92.988 766 665 −11.8 −92.988 766 741
0 300619.748 845 206 +0.3 −92.988 766 961 −11.6 −92.988 766 607

� = 10
106 −92.988 789 564 −11.8 −92.988 771 476 −17.6 −92.988 771 476
104 −92.990 578 115 −7.8 −92.988 771 476 −15.2 −92.988 771 476
102 −93.151 225 803 −3.8 −92.988 771 477 −14.0 −92.988 771 476
100 −94.133 624 138 −0.4 −92.988 771 477 −13.9 −92.988 771 476
10−2 −91.012 337 221 −0.1 −92.988 771 477 −13.9 −92.988 771 476
0 359.724 711 204 +0.3 −92.988 771 477 −13.9 −92.988 771 476

where ESCF is the reference Hartree-Fock energy, EFCCD is the
FCCD energy as described in the previous section, and

δS = ECCSD − ECCD, (16)

δNF = ECCD − EFCCD, (17)

where ECCD denotes the energy of the coupled cluster method
with double excitations, and ECCSD—with single and dou-
ble excitations [27]. Furthermore, δFCI denotes the remain-
ing correlation energy due to triply and quadruply excited
configurations. The rearrangements in Eq. (15) are formally
exact and provide a convenient basis for a composite method.
In fact, the first two terms (ESCF and EFCCD) are by far
dominating in Eq. (15) and thus must be computed to very
high absolute accuracy. The remaining terms are orders of
magnitude smaller and can be calculated with the standard
methods based on the algebraic approximation.

The orbital calculations of δS, δNF, and δFCI were per-
formed in the basis set of the Slater-type orbitals (STOs)
optimized specifically for the purpose of this work. Overall,
their composition and preparation are similar to those of
Refs. [56–58] but involve functions with the highest angular
momentum ranging from L = 2 to L = 7. (Further details can
be obtained from the authors upon request.)

The orbital coupled cluster calculations were performed
with the GAMESS program package [59,60]. The CCD program
of Piecuch and collaborators [61] was modified to exclude
the nonfactorizable CCD terms and thus make the orbital
calculations directly comparable with the explicitly correlated
FCCD method described earlier. Full CI (FCI) calculations

were performed with the general FCI program HECTOR [62],
written by one of us (M.P.).

III. NUMERICAL RESULTS

A. Explicitly correlated calculations

The remaining problem in calculation of the FCCD energy
is the choice of the strong-orthogonality forcing parameter
η [see Eqs. (9) and (10)]. In Table II we show results of
FCCD calculations with a representative reference function
SCF(3, 7). We consider three methods of calculating the final
FCCD energy, where the pair energies are given by Eq. (7)
with the following function in ket:

(1) τ s
αβ – no projection,

(2) qBτ s
αβ – the approximate projection restricted to the

given geminal basis, Ref. [39],
(3) q2 τ s

αβ – the exact strong-orthogonality projection.
According to Eq. (3), all three approaches should give the

same value for exact pair functions in the complete basis set.
Additionally, the deviations from the strong orthogonality are
measured with help of the following quantity:

S = max
α,β,s

〈
τ s
αβ

∣∣p(1) + p(2)
∣∣τ s

αβ

〉
〈
τ s
αβ

∣∣τ s
αβ

〉 , (18)

which is obviously zero when τ s
αβ is replaced by q2 τ s

αβ .
From Table II one can see that the approach without any

projection yields useful results only when very large η is used
in the iterative procedure. However, even under this condition
the stability of the method is poor and the results depend
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TABLE III. Convergence of the MP2 and FCCD correlation energies with � for different SCF(na, ω) basis sets. Unless stated otherwise,
the energies were obtained with η = 0. All values are given in mEh.

� SCF(2, 7) SCF(3, 3) SCF(3, 5) SCF(3, 7) SCF(4, 5)

MP2
4 −76.312 058 331 −76.354 429 971 −76.353 733 011 −76.354 112 775 −76.355 826 310
5 −76.353 482 469 −76.357 871 937 −76.357 822 897 −76.357 873 524 −76.358 023 944
6 −76.357 716 463 −76.358 208 177 −76.358 205 564 −76.358 209 133 −76.358 229 597
7 −76.358 163 297 −76.358 244 644 −76.358 244 549 −76.358 244 486 −76.358 247 719
8 −76.358 231 147 −76.358 248 823 −76.358 248 708 −76.358 248 682 −76.358 249 173
9 −76.358 242 659 −76.358 249 369 −76.358 249 184 −76.358 249 204 −76.358 249 279

10 −76.358 246 439 −76.358 249 473 −76.358 249 255 −76.358 249 272 −76.358 249 287
11 −76.358 247 892 −76.358 249 507 −76.358 249 272 −76.358 249 282 −76.358 249 287
12 −76.358 248 568 −76.358 249 521 −76.358 249 279 −76.358 249 285 −76.358 249 287
13 −76.358 248 915 −76.358 249 529 −76.358 249 283 −76.358 249 286 −76.358 249 287
14 −76.358 249 104 −76.358 249 533 −76.358 249 285 −76.358 249 287 −76.358 249 287
15 −76.358 249 212 −76.358 249 535 −76.358 249 286 −76.358 249 287 −76.358 249 287

FCCD
4 −92.963 174 714 −92.987 900 387 −92.987 651 796 −92.987 688 596 −92.988 687 929
5 −92.986 550 626 −92.988 732 196 −92.988 705 338 −92.988 697 147 −92.988 767 531
6 −92.988 565 205 −92.988 76 8763 −92.988 767 304a −92.988 766 607 −92.988 771 278
7 −92.988 740 066 −92.988 771 250 −92.988 771 050 −92.988 771 149 −92.988 771 468
8 −92.988 760 589a −92.988 771 646 −92.988 771 371 −92.988 771 438 −92.988 771 480
9 −92.988 766 686 −92.988 771 771 −92.988 771 435 −92.988 771 467 −92.988 771 481

10 −92.988 769 260 −92.988 771 822 −92.988 771 460 −92.988 771 476 −92.988 771 482b

aCalculated with η = 10−2.
bCalculated with η = 106.

heavily on the adopted value of η. Therefore, this approach
is not recommended even in large basis sets.

On the other hand, the approximate and exact projections
give very similar results, with the difference diminishing with
increasing �. Even more importantly, for larger � the results
depend very weakly on the adopted η and it is reasonable to
set η = 0. This confirms the earlier recommendations from
Ref. [38].

In Table III we present results of MP2 and FCCD cal-
culations with several SCF basis sets and with a systematic
increase of �. This allows us to investigate the convergence
of the results towards the complete basis set limit. In general,
the convergence rate depends significantly on the value of na

in the reference SCF wave function. The number of ai, aj

pairs in the basis set (1), which is used to expand the pair
functions, scales quadratically with na . This means that the
flexibility of the trial wave function increases quickly with
na , as illustrated in Table III. With the SCF(2, 7) reference
wave function the results are not converged even with � as
large as 15. If we employ na = 3, the convergence of the MP2
energy to 1 pEh is achieved with � = 15, and with na = 4 it is
sufficient to use � = 10 in order to reach the same level. In the
latter case the convergence rate is close to exponential, e.g.,
an increase of � by one unit allows recovery of one additional
significant digit. Taking this into account, we assume that the
values obtained with the SCF(4, 5) basis set and the largest �

available are accurate to within all digits shown in Table III.
This gives −76.358 249 287 mEh and −92.988 771 482 mEh

as our best estimates of the MP2 and FCCD total pair-
correlation energies in the beryllium atom. We believe that
the error of both these values is no larger than 1 pEh

(10−12 Eh).

It is also important to consider the adequacy of the SCF
reference function when accessing the accuracy of the final
results. In fact, the Hylleraas functional utilized in the present
work is variational only with the exact reference function. As
illustrated in Table III, smaller SCF basis sets tend to give pair-
correlation energies which are below the exact limit. This can
lead to a spurious overestimation of the final results. To avoid
this we follow a general rule of thumb that the error in the
SCF energy (which is much easier to control) must be at least
an order of magnitude smaller than the desired accuracy in the
pair energies. For example, the SCF(3, 3) energy is accurate
to 0.9 nEh, which causes the corresponding FCCD energy to
overshoot by about 0.3 nEh below the estimated exact limit.

Finally, the convergence of the MP2 and FCCD correlation
energies to the complete basis set limit is illustrated in Fig. 1.
One can see that the convergence rate of the FCCD energy is
slightly faster than of MP2. Another interesting phenomena
is the pronounced change in the slope of the curve at around
� = 8 − 10. We do not have a well-justified explanation of
this behavior, but it is probably due to the fact that the same
nonlinear parameters were used in the SCF and Hylleraas
pair functions (without reoptimization). Another possible con-
tributing factor is the importance of the three-particle cusp
condition (at the coalescence point of two electrons and the
nucleus), which introduces logarithmic singularities [63,64]
in the exact pair functions.

The final results of our explicitly correlated calculations
are summarized in Table IV. The corresponding results for
the helium atom and the lithium cation and anion are also
provided, together with data from Refs. [65–67], which used
to be the most accurate results available in the literature.
The uncertainty of the present data (∼1 pEh) constitutes an
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FIG. 1. Convergence of the MP2 (red pluses) and FCCD (blue
crosses) correlation energy with � for the SCF(3, 7) basis set.

improvement of roughly 5 orders of magnitude compared
with previous works. The only exception is the lithium an-
ion, where the straightforward iteration procedure converges
only for small values of �. For larger basis sets it becomes
oscillatory and finally diverges. This change in the behavior
usually occurred for na and � for which the number of basis
functions exceeded 400 and prevented us from reducing the
uncertainty below 0.01 μEh.

B. Orbital calculations

In Table V we present results of the calculations of the
δS, δNF, and δFCI corrections using Slater-type orbitals basis
sets. The results were extrapolated to the complete basis set
limit with help of the following three-point formula:

A + B

(L + 1)3
+ C

(L + 1)5
, (19)

TABLE IV. Correlation energies (in mEh) at different levels of
theory for two- and four-electron atomic systems. The present results
are shown in the first line while the best GTG results are collected in
the second line.

MP2 FCCD CCDa

He −37.377 474 518 9 −42.017 882 917
−37.377 474 52b −42.017 71c

Li+ −40.216 410 043 5 −43.490 592 055
−40.216 32c −43.490 46c

Li− −60.473 978 826 7 −71.293 08
−60.473 971d −71.293 022e −71.266 072e

Be −76.358 249 287 3 −92.988 771 482
−76.358 245d −92.988 754f −92.961 031f

aCCD and FCCD are equivalent for two-electron systems.
b600-term GTG expansion, Ref. [66].
c150-term GTG expansion, Ref. [65].
d400-term GTG expansion (optimized for MP2), Ref. [67].
eReoptimized 400-term GTG expansion (infinite-order functional),
Ref. [67].
f400-term GTG expansion (infinite-order functional), Ref. [67].

TABLE V. Corrections to the total correlation energy of the
beryllium atom calculated within the STOs basis sets. The maximal
angular momentum in each basis set is provided in the first column.
All values are given in mEh.

L δS δNF δFCI

3 −0.680 857 0.028 117 −0.619 981
4 −0.692 823 0.027 932 −0.651 325
5 −0.693 542 0.027 843 −0.659 907
6 −0.695 871 0.027 793 −0.663 636
7 −0.697 089 0.027 768 −0.665 259

∞ −0.699 299 0.027 726 −0.667 195

which was found to perform best for the FCCD pair energies
(in comparison with the corresponding explicitly correlated
results). The quality of the extrapolation is illustrated in
Fig. 2. One can see that the extrapolation formulas fit the
results from L = 4 − 7 basis sets quite faithfully. The only
exception is the basis set L = 4 for δS, which shows a
considerable discrepancy, making the extrapolated result less
reliable.

The extrapolated values of all corrections are given in
Table V. In Table VI we provide a short summary of the results
of the present paper and give the final estimation of the total
energy of the beryllium atom. The errors of the respective
components are estimated as twice the difference between the
extrapolated results and the values in the largest basis set. The
total error is about 5 μEh (∼1 cm−1) compared with the result
of Puchalski et al. [68], which can be treated as a reference.
This signifies that the present composite method is capable
of reaching an accuracy comparable to many spectroscopic
measurements. Further in the text we discuss the error in
each component given in Table VI and attempt to isolate the
dominant source of the discrepancy. As argued in the previous
sections, the uncertainties in the SCF and FCCD energies are
essentially negligible at this stage, as indicated in Table VI.
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FIG. 2. Convergence of the δS, δNF, and δFCI corrections to the
complete basis set limit. The correction δNF was multiplied by −26
to match the scale of the plot.
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TABLE VI. Final prediction of the total energy of the beryllium
atom. See the main text for details of the uncertainty estimation
(shown in parentheses). The values without uncertainty estimation
are accurate up to all digits quoted. The reference value is taken from
Ref. [68]. All values are given in atomic units.

Contribution Value

SCF − 14.573 023
FCCD − 0.092 989
δNF +0.000 028
δS − 0.000 699(4)
Total CCSD − 0.093 660(4)
δFCI − 0.000 667(4)
Total energy − 14.667 351(6)
Reference − 14.667 356

The extrapolated value of the nonfactorizable doubles
correction (δNF) agrees very well with the result from
Table IV obtained independently with GTG expansions
(δNF = 0.027 723 mEh). The difference between these values
is only about 3 nEh, suggesting that both results are accurate to
at least four significant digits. Moreover, as shown in Table V,
the δNF correction stabilizes quickly with increasing basis set
size. Therefore, we expect that in all practical applications it
is sufficient to evaluate δNF with one-electron basis sets of a
decent quality. In the present context, the uncertainty of δNF

does not contribute significantly to the overall error, which is
indicated in Table VI.

Unfortunately, the same cannot be said about the singles
correction, δS. As mentioned earlier, the convergence of δS

towards the complete basis set limit is less regular than for δNF

or δFCI, and thus the related extrapolation is not as reliable.
Therefore, we expect the extrapolated δS correction given
in Table V to be accurate only to two significant digits. In
fact, the present result differs by as much as 5 μEh from a
more accurate value obtained in Ref. [65] using an explicitly
correlated variant of the CCSD theory. We believe that this
discrepancy dominates the error in the total energy of the
beryllium atom given in Table VI. To confirm this we replace
δS in Table VI by the value from Ref. [65] (−0.705 mEh).
The total error then drops to about ∼ 0.1 cm−1, which is an
improvement by an order of magnitude. This shows clearly
that the dominant error to the total result given in Table VI
comes from inaccuracies in δS.

Finally, the correction for the higher-order excitations
(δFCI) is of a similar magnitude as δS but exhibits a more
regular convergence pattern towards the complete basis set
limit. While we do not have any reliable result in the literature
to compare with directly, a comparison with δNF allows us to
claim that δFCI given in Table VI is accurate to three significant
digits. In other words, the error in δFCI is of secondary concern
in the present context.

IV. CONCLUSIONS

In this work we have reported the implementation and
tests of a new composite method for accurate calculation of
energies of many-electron atoms. The dominant contribution
to the correlation energy has been calculated by using the

explicitly correlated factorizable coupled cluster theory. To
expand the pair functions we have employed the Hylleraas
basis set and thus eliminated the need for optimization of
the nonlinear parameters at the correlated level. This made it
possible to compute pair-correlation energies of the beryllium
atom with error smaller than 1 pEh—an improvement of
several orders of magnitude in comparison with the previous
works—effectively removing the basis set incompleteness
error in this component of the energy. The remaining con-
tributions to the total energy have been calculated within the
algebraic approximation employing large basis sets composed
of Slater-type orbitals.

It is a natural and interesting question of how the present
method can be used for heavier atoms, retaining or improving
the current level of accuracy. In principle, the application
of the theory to other closed-shell many-electron atoms is
straightforward. However, the implementation is marred by
difficulties related to proper treatment of angular factors orig-
inating from p, d, . . . reference orbitals. Nonetheless, the
Hylleraas basis set has been successfully applied to (high-l)
excited states of the helium atom (see Ref. [69] and references
therein), and we believe that similar extensions are feasible
here.

The second problem is the extension of the present ap-
proach to open-shell reference states. The present state of the
coupled cluster theory does not allow for routine treatment of
all open-shell atoms, especially when quasidegenerate energy
levels and partially occupied d or f shells are involved. Nev-
ertheless, several possibilities have already been discussed in
the literature and can be applied to s- and p-block atoms. The
simplest solution is to build the wave function based on the
restricted open-shell Hartree-Fock reference (ROHF) [70–74]
whenever applicable. In some of the other cases various vari-
ants of the ionized or electron-attached equation-of-motion
coupled cluster theories (IP-EOM or EA-EOM) can be em-
ployed [75–79]. Coupled cluster approaches of EOM or Fock-
space [27] type are particularly attractive for applications in
atomic spectroscopy as they enable simultaneous calculation
of several electronic states with different characters (ionized,
electron-attached, excited, etc.) [78,79]. Extension to open-
shell cases requires solving technical questions specific for
each open-shell formulation and will be reported in separate
publications.

The present level of accuracy can be considerably im-
proved if the correction due to single excitations (δS) is
computed with smaller uncertainty. First-quantized expres-
sions for the explicitly correlated CCSD model (where δS is
included by construction) are well known [65]. Unfortunately,
their implementation requires four-electron integrals which
are, in general, not available in the Hylleraas basis set. There-
fore, it is a considerable challenge to propose an approximate
explicitly correlated CCSD model where the most problematic
four-electron integrals can be eliminated. This is similar to the
idea of Bukowski et al. [65], who proposed the factorizable
quadratic CCSD model.

Another problem encountered for heavier atoms is calcula-
tion of energy contributions due to higher excitations from the
reference determinant (pentuple, sextuple, etc.). With increas-
ing number of electrons, the cost of the FCI method becomes
prohibitively large. The most pragmatic approach to overcome
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this problem is to employ a hierarchy of high-level orbital cou-
pled cluster calculations [80]. With the aforementioned im-
provements we believe it will be possible to reach an accuracy
of 0.1 cm−1 in calculation of the atomic energy differences.
This will also require inclusion of the relativistic and quantum
electrodynamics corrections, but as long as the atoms are not
too heavy, these effects can be accounted for perturbatively. In
this case the conventional calculations based on the algebraic
approximation are probably sufficient to deliver the desired
accuracy. This opens up a window for applications such as
precision tests of the quantum electrodynamics [81]. Another

possible application is calculation of atomic properties such
as polarizability (either by finite differences or analytically)
which are used, e.g., in determination of the pressure and
temperature standards [82].
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[33] G. Chałasiński, B. Jeziorski, J. Andzelm, and K. Szalewicz,

Mol. Phys. 33, 971 (1977).
[34] K. Szalewicz and B. Jeziorski, Mol. Phys. 38, 191 (1979).
[35] K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G.

Zabolitzky, Chem. Phys. Lett. 91, 169 (1982).
[36] K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G.

Zabolitzky, J. Chem. Phys. 78, 1420 (1983).
[37] K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G.

Zabolitzky, J. Chem. Phys. 79, 5543 (1983).
[38] B. Jeziorski, H. J. Monkhorst, K. Szalewicz, and J. G.

Zabolitzky, J. Chem. Phys. 81, 368 (1984).
[39] K. Szalewicz, J. G. Zabolitzky, B. Jeziorski, and H. J.

Monkhorst, J. Chem. Phys. 81, 2723 (1984).
[40] L. Adamowicz and A. J. Sadlej, J. Chem. Phys. 67, 4298

(1977).
[41] L. Adamowicz and A. J. Sadlej, J. Chem. Phys. 69, 3992 (1978).
[42] L. Adamowicz, Int. J. Quantum Chem. 13, 265 (1978).
[43] W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
[44] W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17

(1987).
[45] J. Noga, W. Kutzelnigg, and W. Klopper, Chem. Phys. Lett. 199,

497 (1992).
[46] C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev.

112, 4 (2012).
[47] L. Kong, F. A. Bischoff, and E. F. Valeev, Chem. Rev. 112, 75

(2012).
[48] S. Ten-no, Theor. Chem. Acc. 131, 1070 (2012).
[49] D. M. Fromm and R. N. Hill, Phys. Rev. A 36, 1013 (1987).
[50] E. Remiddi, Phys. Rev. A 44, 5492 (1991).
[51] F. E. Harris, Phys. Rev. A 55, 1820 (1997).
[52] K. Pachucki, M. Puchalski, and E. Remiddi, Phys. Rev. A 70,

032502 (2004).
[53] R. Bukowski, B. Jeziorski, and K. Szalewicz, in Explicitly

Correlated Wave Functions in Chemistry and Physics, Theory
and Applications, edited by J. Rychlewski (Kluwer, Dordrecht,
2003), pp. 185–248.

[54] K. B. Wenzel, J. G. Zabolitzky, K. Szalewicz, B. Jeziorski, and
H. J. Monkhorst, J. Chem. Phys. 85, 3964 (1986).

[55] Y. Hida, X. S. Li, and D. H. Bailey, “libqd: quad-
double / double-double computation package”, http://crd-
legacy.lbl.gov/∼dhbailey/mpdist/ (2012), version 2.3.20.

[56] M. Lesiuk and R. Moszynski, Phys. Rev. E 90, 063318 (2014).

062507-8

https://doi.org/10.1146/annurev-nucl-102014-022331
https://doi.org/10.1146/annurev-nucl-102014-022331
https://doi.org/10.1146/annurev-nucl-102014-022331
https://doi.org/10.1146/annurev-nucl-102014-022331
https://doi.org/10.1126/science.1154622
https://doi.org/10.1126/science.1154622
https://doi.org/10.1126/science.1154622
https://doi.org/10.1126/science.1154622
https://doi.org/10.1103/PhysRevLett.113.210801
https://doi.org/10.1103/PhysRevLett.113.210801
https://doi.org/10.1103/PhysRevLett.113.210801
https://doi.org/10.1103/PhysRevLett.113.210801
https://doi.org/10.1103/PhysRevLett.113.210802
https://doi.org/10.1103/PhysRevLett.113.210802
https://doi.org/10.1103/PhysRevLett.113.210802
https://doi.org/10.1103/PhysRevLett.113.210802
https://doi.org/10.1103/PhysRevA.55.1866
https://doi.org/10.1103/PhysRevA.55.1866
https://doi.org/10.1103/PhysRevA.55.1866
https://doi.org/10.1103/PhysRevA.55.1866
https://doi.org/10.1103/PhysRevLett.87.193003
https://doi.org/10.1103/PhysRevLett.87.193003
https://doi.org/10.1103/PhysRevLett.87.193003
https://doi.org/10.1103/PhysRevLett.87.193003
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.97.030802
https://doi.org/10.1103/PhysRevLett.97.030802
https://doi.org/10.1103/PhysRevLett.97.030802
https://doi.org/10.1103/PhysRevLett.97.030802
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1007/BF01340013
https://doi.org/10.1007/BF01340013
https://doi.org/10.1007/BF01340013
https://doi.org/10.1007/BF01340013
https://doi.org/10.1007/BF01375457
https://doi.org/10.1007/BF01375457
https://doi.org/10.1007/BF01375457
https://doi.org/10.1007/BF01375457
https://doi.org/10.1016/0009-2614(94)01085-4
https://doi.org/10.1016/0009-2614(94)01085-4
https://doi.org/10.1016/0009-2614(94)01085-4
https://doi.org/10.1016/0009-2614(94)01085-4
https://doi.org/10.1103/PhysRevA.73.022503
https://doi.org/10.1103/PhysRevA.73.022503
https://doi.org/10.1103/PhysRevA.73.022503
https://doi.org/10.1103/PhysRevA.73.022503
https://doi.org/10.1080/00268976.2010.522206
https://doi.org/10.1080/00268976.2010.522206
https://doi.org/10.1080/00268976.2010.522206
https://doi.org/10.1080/00268976.2010.522206
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/10.1063/1.1675567
https://doi.org/10.1063/1.1675567
https://doi.org/10.1063/1.1675567
https://doi.org/10.1063/1.1675567
https://doi.org/10.1088/0953-4075/37/7/012
https://doi.org/10.1088/0953-4075/37/7/012
https://doi.org/10.1088/0953-4075/37/7/012
https://doi.org/10.1088/0953-4075/37/7/012
https://doi.org/10.1063/1.466160
https://doi.org/10.1063/1.466160
https://doi.org/10.1063/1.466160
https://doi.org/10.1063/1.466160
https://doi.org/10.1103/PhysRevA.15.1
https://doi.org/10.1103/PhysRevA.15.1
https://doi.org/10.1103/PhysRevA.15.1
https://doi.org/10.1103/PhysRevA.15.1
https://doi.org/10.1088/0953-4075/28/14/001
https://doi.org/10.1088/0953-4075/28/14/001
https://doi.org/10.1088/0953-4075/28/14/001
https://doi.org/10.1088/0953-4075/28/14/001
https://doi.org/10.1103/PhysRevA.66.024501
https://doi.org/10.1103/PhysRevA.66.024501
https://doi.org/10.1103/PhysRevA.66.024501
https://doi.org/10.1103/PhysRevA.66.024501
https://doi.org/10.1103/PhysRevA.81.052505
https://doi.org/10.1103/PhysRevA.81.052505
https://doi.org/10.1103/PhysRevA.81.052505
https://doi.org/10.1103/PhysRevA.81.052505
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1063/1.449481
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1103/PhysRev.146.1
https://doi.org/10.1103/PhysRev.146.1
https://doi.org/10.1103/PhysRev.146.1
https://doi.org/10.1103/PhysRev.146.1
https://doi.org/10.1063/1.1673955
https://doi.org/10.1063/1.1673955
https://doi.org/10.1063/1.1673955
https://doi.org/10.1063/1.1673955
https://doi.org/10.1063/1.1677918
https://doi.org/10.1063/1.1677918
https://doi.org/10.1063/1.1677918
https://doi.org/10.1063/1.1677918
https://doi.org/10.1080/00268977700100881
https://doi.org/10.1080/00268977700100881
https://doi.org/10.1080/00268977700100881
https://doi.org/10.1080/00268977700100881
https://doi.org/10.1080/00268977900101601
https://doi.org/10.1080/00268977900101601
https://doi.org/10.1080/00268977900101601
https://doi.org/10.1080/00268977900101601
https://doi.org/10.1016/0009-2614(82)83634-8
https://doi.org/10.1016/0009-2614(82)83634-8
https://doi.org/10.1016/0009-2614(82)83634-8
https://doi.org/10.1016/0009-2614(82)83634-8
https://doi.org/10.1063/1.444884
https://doi.org/10.1063/1.444884
https://doi.org/10.1063/1.444884
https://doi.org/10.1063/1.444884
https://doi.org/10.1063/1.445672
https://doi.org/10.1063/1.445672
https://doi.org/10.1063/1.445672
https://doi.org/10.1063/1.445672
https://doi.org/10.1063/1.447315
https://doi.org/10.1063/1.447315
https://doi.org/10.1063/1.447315
https://doi.org/10.1063/1.447315
https://doi.org/10.1063/1.447984
https://doi.org/10.1063/1.447984
https://doi.org/10.1063/1.447984
https://doi.org/10.1063/1.447984
https://doi.org/10.1063/1.435370
https://doi.org/10.1063/1.435370
https://doi.org/10.1063/1.435370
https://doi.org/10.1063/1.435370
https://doi.org/10.1063/1.437120
https://doi.org/10.1063/1.437120
https://doi.org/10.1063/1.437120
https://doi.org/10.1063/1.437120
https://doi.org/10.1002/qua.560130302
https://doi.org/10.1002/qua.560130302
https://doi.org/10.1002/qua.560130302
https://doi.org/10.1002/qua.560130302
https://doi.org/10.1007/BF00527669
https://doi.org/10.1007/BF00527669
https://doi.org/10.1007/BF00527669
https://doi.org/10.1007/BF00527669
https://doi.org/10.1016/0009-2614(87)80005-2
https://doi.org/10.1016/0009-2614(87)80005-2
https://doi.org/10.1016/0009-2614(87)80005-2
https://doi.org/10.1016/0009-2614(87)80005-2
https://doi.org/10.1016/0009-2614(92)87034-M
https://doi.org/10.1016/0009-2614(92)87034-M
https://doi.org/10.1016/0009-2614(92)87034-M
https://doi.org/10.1016/0009-2614(92)87034-M
https://doi.org/10.1021/cr200168z
https://doi.org/10.1021/cr200168z
https://doi.org/10.1021/cr200168z
https://doi.org/10.1021/cr200168z
https://doi.org/10.1021/cr200204r
https://doi.org/10.1021/cr200204r
https://doi.org/10.1021/cr200204r
https://doi.org/10.1021/cr200204r
https://doi.org/10.1007/s00214-011-1070-1
https://doi.org/10.1007/s00214-011-1070-1
https://doi.org/10.1007/s00214-011-1070-1
https://doi.org/10.1007/s00214-011-1070-1
https://doi.org/10.1103/PhysRevA.36.1013
https://doi.org/10.1103/PhysRevA.36.1013
https://doi.org/10.1103/PhysRevA.36.1013
https://doi.org/10.1103/PhysRevA.36.1013
https://doi.org/10.1103/PhysRevA.44.5492
https://doi.org/10.1103/PhysRevA.44.5492
https://doi.org/10.1103/PhysRevA.44.5492
https://doi.org/10.1103/PhysRevA.44.5492
https://doi.org/10.1103/PhysRevA.55.1820
https://doi.org/10.1103/PhysRevA.55.1820
https://doi.org/10.1103/PhysRevA.55.1820
https://doi.org/10.1103/PhysRevA.55.1820
https://doi.org/10.1103/PhysRevA.70.032502
https://doi.org/10.1103/PhysRevA.70.032502
https://doi.org/10.1103/PhysRevA.70.032502
https://doi.org/10.1103/PhysRevA.70.032502
https://doi.org/10.1063/1.450918
https://doi.org/10.1063/1.450918
https://doi.org/10.1063/1.450918
https://doi.org/10.1063/1.450918
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
https://doi.org/10.1103/PhysRevE.90.063318
https://doi.org/10.1103/PhysRevE.90.063318
https://doi.org/10.1103/PhysRevE.90.063318
https://doi.org/10.1103/PhysRevE.90.063318


CORRELATION ENERGIES FOR MANY-ELECTRON ATOMS … PHYSICAL REVIEW A 98, 062507 (2018)

[57] M. Lesiuk and R. Moszynski, Phys. Rev. E 90, 063319
(2014).

[58] M. Lesiuk, M. Przybytek, M. Musiał, B. Jeziorski, and R.
Moszynski, Phys. Rev. A 91, 012510 (2015).

[59] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen,
S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery,
J. Comput. Chem. 14, 1347 (1993).

[60] M. S. Gordon and M. W. Schmidt, in Theory and Applications of
Computational Chemistry. The First Forty Years, edited by C. E.
Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier,
Amsterdam, 2005), pp. 1167–1189.

[61] P. Piecuch, S. A. Kucharski, K. Kowalski, and M. Musiał,
Comput. Phys. Commun. 149, 71 (2002).

[62] M. Przybytek, FCI program HECTOR (unpublished).
[63] V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).
[64] J. D. Morgan III, Theor. Chim. Acta 69, 181 (1986).
[65] R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys.

110, 4165 (1999).
[66] K. Patkowski, W. Cencek, M. Jeziorska, B. Jeziorski, and

K. Szalewicz, J. Phys. Chem. A 111, 7611
(2007).

[67] M. Przybytek, B. Jeziorski, and K. Szalewicz, Int. J. Quantum
Chem. 109, 2872 (2009).

[68] M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 87,
030502 (2013).

[69] G. W. F. Drake, in Springer Handbook of Atomic, Molecular,
and Optical Physics, edited by G. W. F. Drake (Springer,
New York, 2006), pp. 199–219.

[70] M. Rittby and R. J. Bartlett, J. Phys. Chem. 92, 3033 (1988).
[71] C. L. Janssen and H. F. Schaefer, Theor. Chem. Acc. 79, 1

(1991).
[72] W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J.

Bartlett, J. Chem. Phys. 97, 6606 (1992).
[73] P. J. Knowles, C. Hampel, and H. Werner, J. Chem. Phys. 99,

5219 (1993).
[74] B. Jeziorski, J. Paldus, and P. Jankowski, Int. J. Quantum Chem.

56, 129 (1995).
[75] J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
[76] M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
[77] A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
[78] M. Musiał, A. Perera, and R. J. Bartlett, J. Chem. Phys. 134,

114108 (2011).
[79] M. Musiał, M. Olszówka, D. I. Lyakh, and R. J. Bartlett,

J. Chem. Phys. 137, 174102 (2012).
[80] M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001).
[81] K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
[82] C. Gaiser and B. Fellmuth, Phys. Rev. Lett. 120, 123203 (2018).

062507-9

https://doi.org/10.1103/PhysRevE.90.063319
https://doi.org/10.1103/PhysRevE.90.063319
https://doi.org/10.1103/PhysRevE.90.063319
https://doi.org/10.1103/PhysRevE.90.063319
https://doi.org/10.1103/PhysRevA.91.012510
https://doi.org/10.1103/PhysRevA.91.012510
https://doi.org/10.1103/PhysRevA.91.012510
https://doi.org/10.1103/PhysRevA.91.012510
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1016/S0010-4655(02)00598-2
https://doi.org/10.1007/BF00526420
https://doi.org/10.1007/BF00526420
https://doi.org/10.1007/BF00526420
https://doi.org/10.1007/BF00526420
https://doi.org/10.1063/1.479109
https://doi.org/10.1063/1.479109
https://doi.org/10.1063/1.479109
https://doi.org/10.1063/1.479109
https://doi.org/10.1021/jp071437x
https://doi.org/10.1021/jp071437x
https://doi.org/10.1021/jp071437x
https://doi.org/10.1021/jp071437x
https://doi.org/10.1002/qua.22214
https://doi.org/10.1002/qua.22214
https://doi.org/10.1002/qua.22214
https://doi.org/10.1002/qua.22214
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1103/PhysRevA.87.030502
https://doi.org/10.1021/j100322a004
https://doi.org/10.1021/j100322a004
https://doi.org/10.1021/j100322a004
https://doi.org/10.1021/j100322a004
https://doi.org/10.1007/BF01113327
https://doi.org/10.1007/BF01113327
https://doi.org/10.1007/BF01113327
https://doi.org/10.1007/BF01113327
https://doi.org/10.1063/1.463664
https://doi.org/10.1063/1.463664
https://doi.org/10.1063/1.463664
https://doi.org/10.1063/1.463664
https://doi.org/10.1063/1.465990
https://doi.org/10.1063/1.465990
https://doi.org/10.1063/1.465990
https://doi.org/10.1063/1.465990
https://doi.org/10.1002/qua.560560302
https://doi.org/10.1002/qua.560560302
https://doi.org/10.1002/qua.560560302
https://doi.org/10.1002/qua.560560302
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.468592
https://doi.org/10.1063/1.468592
https://doi.org/10.1063/1.468592
https://doi.org/10.1063/1.468592
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1063/1.3567115
https://doi.org/10.1063/1.3567115
https://doi.org/10.1063/1.3567115
https://doi.org/10.1063/1.3567115
https://doi.org/10.1063/1.4763354
https://doi.org/10.1063/1.4763354
https://doi.org/10.1063/1.4763354
https://doi.org/10.1063/1.4763354
https://doi.org/10.1063/1.1383290
https://doi.org/10.1063/1.1383290
https://doi.org/10.1063/1.1383290
https://doi.org/10.1063/1.1383290
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203



