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We propose a mechanism of unconventional Rydberg pumping (URP) via simultaneously driving each
Rydberg atom by two classical fields with different strengths of Rabi frequencies. This mechanism differs
from the general Rydberg blockade or Rydberg antiblockade since it is closely related to the ground states
of atoms, i.e., two atoms in the same ground state are stable while two atoms in different ground states
are resonantly excited. Furthermore, we find the URP can be employed to simplify some special quantum
information processing tasks, such as implementation of a three-qubit controlled-PHASE gate with only a single
Rabi oscillation, preparation of two- and three-dimensional steady-state entanglement with two identical atoms,
and realization of the autonomous quantum error correction in a Rydberg-atom-cavity system. The feasibility of
the above applications is discussed explicitly by the state-of-the-art technology.
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I. INTRODUCTION

The features of the interatomic Rydberg interactions open
many possibilities to explore neutral atoms in the research
of few- and many-body physics and quantum information
applications [1]. One of the critical effects is the Rydberg
blockade: In a small volume, once a Rydberg atom is excited
to the Rydberg state, the strong, long-range interactions be-
tween Rydberg atoms will significantly suppress the excita-
tion of other Rydberg atoms. After the first scheme to perform
fast gate operations by the Rydberg blockade was proposed
by Jaksch et al. [2], a variety of proposals were designed
theoretically and experimentally for quantum computation
[3–9], entanglement generation [10–15], quantum algorithms
[16], quantum simulators [17], and quantum repeaters [18].
Another dramatic effect making use of the interatomic Ryd-
berg interactions is the Rydberg dressing, which results from
the adiabatical dressing between the ground state and the
excited Rydberg state [19–21]. It enables tunable, anisotropic
interactions and provides the possibility to study the novel
exotic many-body physics [22–26]

In addition, the combination of interatomic Rydberg in-
teractions and two-photon detuning leads to an opposite
effect, the Rydberg antiblockade, which was theoretically
predicted by Ates et al. [27] and was experimentally ob-
served by Amthor et al. [28]. The Rydberg antiblockade can
achieve the simultaneous excitations of two Rydberg atoms
and can restrain the Rydberg blockade. The corresponding
exploration is of particular interest, not only for two-qubit
or multiqubit logic gates [29–31], but also for preparations
of quantum entanglement [32–37], e.g., Carr and Saffman
analyzed an approach to obtain high-fidelity entanglement and
antiferromagnetic states by Rydberg antiblockade [32]. Quite
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recently, our group made use of the cooperation between
Rydberg antiblockade, quantum Zeno dynamics, and atomic
spontaneous emission to prepare the tripartite Greenberger-
Horne-Zeilinger (GHZ) state and W state, respectively
[36,37]. Moreover, by virtue of the Rydberg-antiblockade
effect and the Raman transition, we have devised a mech-
anism of ground-state blockade to generate high-fidelity
entanglement [38].

In this paper, we propose an unconventional Rydberg
pumping (URP) scheme, which is different from all the above
effects. This effect is closely related to the ground states of
atoms, i.e., two atoms in the same ground state are stable
while two atoms in different ground states are resonantly
excited. Taking the case of two atoms as an example, the cor-
responding atomic levels are shown in Fig. 1(a). Both atoms
consist of two ground states |0〉 and |1〉, and one Rydberg
state |r〉. For each atom, the Rydberg state is dispersively
coupled with the ground state |1〉 via a classical field of
Rabi frequency �1, detuning −�, and another classical field
resonantly drives the transition |1〉 ↔ |r〉 with Rabi frequency
�2. Exploiting the URP, we can freeze the evolution of state
|11〉, and only the states |10〉 and |01〉 can be excited into
|r0〉 and |0r〉, respectively. In contrast, it is impossible for
the Rydberg blockade and Rydberg antiblockade to inhibit
the transitions |11〉 ↔ (|1r〉 + |r1〉)/

√
2 or |11〉 ↔ |rr〉 and

realize |10(01)〉 ↔ |r0(0r )〉 simultaneously. We will illustrate
the mechanism in detail in the next section and discuss its
applications in three-qubit controlled-PHASE gate, steady-state
entanglement, and autonomous quantum error correction in
succession.

The remainder of the paper is organized as follows: In
Sec. II, we illustrate the mechanism of the URP in detail with
two three-level atoms. In Sec. III, we apply the technique to
achieve a three-qubit controlled-PHASE gate. In Sec. IV, we
discuss the possibility to dissipatively prepare the two- and
three-dimensional entangled states by the URP. In Sec. V, we
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FIG. 1. Two-atomic-level configuration for the URP. The Ryd-
berg state is dispersively coupled with the ground state |1〉 via a
classical field of Rabi frequency �1, detuning −�, and another
classical field resonantly driving the transition |1〉 ↔ |r〉 with Rabi
frequency �2.

make use of the URP to realize the autonomous quantum error
correction in a Rydberg-atom-cavity system. We summarize
our works in Sec. VI.

II. MECHANISM OF THE URP BETWEEN TWO ATOMS

The effectiveness of the URP is not limited to the two-atom
case, but it is instrumental enough for us to interpret the
mechanism of the URP clearly with a bipartite system. The
system includes two �-type three-level Rydberg atoms, which
are shown in Fig. 1(a). The quantum information is encoded
into the subspace {|00〉, |01〉, |10〉, |11〉}. In the interaction
picture, the Hamiltonian of the system can be written as

HI =
2∑

j=1

�1e
−i�t |r〉jj 〈1| + �2|r〉jj 〈1| + H.c.

+Urr |rr〉〈rr|, (1)

where the subscript j means the j th atom and Urr denotes
the Rydberg-mediated interaction. After choosing Urr = �

(the condition will constrain the geometry of the atomic
system because Urr is dependent on the interatomic distance),
we can utilize the formula iU̇

†
0U0 + U

†
0HIU0 to reformulate

the Hamiltonian in a rotating frame with respect to U0 =
exp {−itUrr |rr〉〈rr|},

HI = H
(1)
I + H

(2)
I + H

(3)
I , (2)

where

H
(1)
I = �2(|r0〉〈10| + |0r〉〈01|) + H.c.,

H
(2)
I =

√
2(�1|D〉〈rr| + �2|D〉〈11|) + H.c.,

H
(3)
I =

√
2e−i�t (�1|D〉〈11| + �2|D〉〈rr|)

+�1e
−i�t (|r0〉〈10| + |0r〉〈01|) + H.c.,

and |D〉 = (|1r〉 + |r1〉)/
√

2. For the sake of clarity, accord-
ing to Eq. (2) we show the corresponding diagram of collec-
tive two-atom energy levels and transitions in Fig. 2. The three
ground states |10〉, |11〉, and |01〉 are pumped to the single
excited states |r0〉, |D〉, and |0r〉, respectively. Furthermore,
only the state |D〉 can be driven into the biexcitation state
|rr〉, respectively. In the limit of � � �1 � �2, H

(3)
I can be

FIG. 2. The diagram of collective two-atom energy levels and
transitions to illustrate Eq. (2).

reduced as the Stark-shift terms,

H
(3)
I = 2�2

1

�
|11〉〈11| + �2

1

�
|10〉〈10| + �2

1

�
|01〉〈01|

−�2
1

�
|r0〉〈r0| − �2

1

�
|0r〉〈0r|, (3)

and it can be further canceled out via introducing
other ancillary levels. (Terms of 2�1�2|rr〉〈11|/� + H.c. +
2�2

2|rr〉〈rr|/� have been ignored since �1 � �2.) Then
we expand H

(2)
I in terms of the basis of {|11〉, |+〉, |−〉},

where |±〉 = (|rr〉 ± |D〉)/
√

2 are the eigenvectors of√
2�1|D〉〈rr| + H.c. with respect to the eigenvalues ±√

2�1,
i.e.,

H
(2)
I =

√
2�1(|+〉〈+| − |−〉〈−|) + �2(|+〉〈11|

−|−〉〈11| + H.c.). (4)

From the above equation, we can find that the effective form
of H

(2)
I is equal to 0 as �1 � �2. In other words, a quantum

state initialized in |11〉 will not evolve into others, since the
corresponding detunings are ±√

2�1. Therefore the Hamilto-
nian H

(2)
I of Eq. (2) can be also neglected further. Finally, the

total Hamiltonian has been simplified as

HI � Heff = H
(1)
I = �2(|r0〉〈10| + |0r〉〈01|) + H.c., (5)

which signifies that in the limiting condition of URP, i.e.,
Urr = � � �1 � �2, the qubits system will not evolve ex-
cept for the subspace spanned by {|01〉, |10〉}.

For explicitly determining the suitable values to satisfy
the limiting condition of URP, we plot the evolutions of
populations of states |00〉 (dash-dotted line), |11〉 (middle
solid line), |01〉 (empty triangles), |10〉 (dashed line), |0r〉
(empty circles), |r0〉 (dotted line), |r1〉 (lower green solid
line), |1r〉 (lower red solid line), and |rr〉 (lower black solid
line) with different values of �/�1 and �1/�2 in Fig. 3. We
can find that the larger the values of �/�1 and �1/�2, the
more stable the states {|11〉, |1r〉, |r1〉, |rr〉}, and the more
identical to the unitary evolution of Eq. (5) the behaviors
of states {|10〉, |01〉, |r0〉, |0r〉}. Furthermore, � = 50�1 and
�2 = 0.05�1 are good enough to excellently execute the URP
as shown in Fig. 3(d), where the states {|1r〉, |r1〉, |rr〉} are
almost vanished.
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FIG. 3. The populations as functions of �1t governed by the Liouville equation ρ̇(t ) = −i[HI , ρ(t )] with different �/�1 and �1/�2,
where the population of state |ψ〉 is defined as P = 〈ψ |ρ(t )|ψ〉 and the initial states are all chosen as a random mixed state ρ0 = 0.2|11〉〈11| +
0.3|00〉〈00| + 0.25|10〉〈10| + 0.25|01〉〈01|.

III. THREE-QUBIT CONTROLLED-PHASE GATE

It is universally acknowledged that the n-qubit controlled-
PHASE gate is an essential ingredient for quantum algorithms
[39–41] and quantum Fourier transform [42]. Here we imple-
ment a three-qubit controlled-PHASE gate by the URP, which
can be finished with a single Rabi oscillation of a single atom
in a short time. The atomic level of each atom remains the
same as Fig. 1(a), and the Hamiltonian reads

HI =
3∑

j=1

�1e
−i�t |r〉jj 〈1| + �2|r〉jj 〈1| + H.c.

+
∑
k>j

Urr |rr〉jk〈rr|, (6)

where we have considered that the interactions between differ-
ent atoms are identical to Urr . In the limiting condition Urr =
� � �1 � �2, on the basis of the analysis in Sec. II, it is ev-
ident that the system initialized in {|000〉, |110〉, |101〉, |011〉}
will be stable. What makes the tripartite system different from
the bipartite system is that for the system initialized in |111〉,
the Rydberg antiblockade will result in an effective Hamilto-
nian 6�3

1(|111〉〈rrr| + |rrr〉〈111|)/�2. Although these terms
are adverse for our purpose, they can be ignored because
the contribution of 6�3

1/�
2 is much smaller than �2 in the

limiting condition � � �1. Thus the total effective Hamilto-
nian of the three-qubit controlled gate can be written as

Heff = �2(|r00〉〈100| + |0r0〉〈010|
+ |00r〉〈001|) + H.c. (7)

In Fig. 4, we show the effective transitions of the
three-qubit controlled-PHASE gate according to Eq. (7).
In our system, only the states with one atom in |1〉

FIG. 4. The effective transitions of three-qubit controlled-PHASE

gate. Only the states with one atom in |1〉 will undergo a Rabi
oscillation with Rabi frequency �2 while the other states are stable.
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FIG. 5. The evolutions of corresponding fidelity governed by the
HI of Eq. (6) (solid line) and the Heff of Eq. (7) (empty circles),
respectively. The initial state is |ψ0〉, and the parameters are chosen
as �2 = 0.05�1 and � = 58�1.

will undergo a Rabi oscillation with Rabi frequency �2,
while the other states are stable. Consequently, we carry
out the three-qubit controlled-PHASE gate after the interaction
time T = π/�2, which maps the direct product state of
three atoms |ψ0〉 = (|0〉 + |1〉)1(|0〉 + |1〉)2(|0〉 + |1〉)3/2

√
2

into the three-atom entanglement |ψs〉 = (|000〉 + |011〉 +
|101〉 + |110〉 + |111〉 − |100〉 − |010〉 − |001〉)/2

√
2. To

demonstrate the feasibility of our scheme, we compare
the evolutions of corresponding fidelity governed by
HI of Eq. (6) (solid line) and Heff of Eq. (7) (empty
circles) in Fig. 5, respectively. The fidelity is defined as
F = |〈ψs | exp(−iHI t )|ψ0〉|. In Fig. 5, the two curves are
in good agreement with each other and the corresponding
fidelity can reach 99.94%, which adequately illuminates the
validity of the effective system and the feasibility of the
mechanism.

In experiment, the Rydberg atoms with a suitable principal
quantum number can achieve the long radiative lifetimes [43],
which can inhibit the detrimental effects of atom spontaneous
emission for the three-qubit controlled-PHASE gate, e.g., the
97d5/2 Rydberg state with the decay rate γ � 2π × 1 kHz
[44]. When we consider the Rydberg state |r〉 decays to the
ground state with the same rate γ /2 = 2π × 1/2 kHz, the
decay of the j th atom can be described as Lindblad operators
L

0(1)
j = √

γ /2|0(1)〉jj 〈r| and the evolution of system will be
governed by the master equation

ρ̇ = −i[HI , ρ] + Lρ, (8)

where

Lρ =
3∑

j=1

1∑
k=0

Lk
jρL

k†
j − 1

2

(
L

k†
j Lk

jρ + ρL
k†
j Lk

j

)
. (9)

Meanwhile, the Rabi laser frequency �1 and �2 can be
tuned continuously between 2π × (0, 100) MHz in ex-
periment [36,44]. Thus, the other parameters are set as

FIG. 6. (a) The atomic level configuration of the scheme to
dissipatively prepare bipartite entanglement. (b) The corresponding
effective transitions.

(�1,�2,�) = 2π × (1, 0.05, 58) MHz and a high fidelity of
F = √〈ψs |ρ(π/�2)|ψs〉 = 99.37% can be achieved.

IV. DISSIPATIVE GENERATION OF ENTANGLEMENT

A. Two-dimensional entangled state

With the rapid development of quantum information, more
and more interest has been devoted to preparing quantum en-
tanglement with the quantum noise, which can be regarded as
a resource [45–47]. Combining the URP with the spontaneous
emission of two Rydberg atoms, we propose a dissipative way
to generate the Bell state |φ−〉 = (|00〉 − |11〉)/

√
2, which is

independent of the initial state. As shown in Fig. 6(a), in
addition to the classical fields driving the transitions between
|r〉 and |1〉 dispersively and resonantly, we add the microwave
fields to resonantly drive |1〉 ↔ |0〉 with Rabi frequency ω.
The branching ratios of spontaneous emission for the j th
atom from |r〉 downwards to |0〉 and |1〉 are both assumed
to be γ /2, described by the Lindblad operators L

0(1)
j =√

γ /2|0(1)〉jj 〈r|. The corresponding Hamiltonian and full
master equation can be respectively indicated as

HI = HL + HMW,

HL =
2∑

j=1

�1e
−i�t |r〉jj 〈1| + �2|r〉jj 〈1| + H.c.

+Urr |rr〉〈rr|,

HMW =
2∑

i=1

ω|1〉jj 〈0| + H.c., (10)

and

ρ̇ = −i[HI , ρ] + Lρ,

Lρ =
2∑

j=1

1∑
k=0

Lk
jρL

k†
j − 1

2

(
L

k†
j Lk

jρ + ρL
k†
j Lk

j

)
. (11)

According to the principle of the URP, HL can be simplified
as HL = �2(|01〉〈0r| + |10〉〈r0|) + H.c. Then, expanding the
HMW with the basis of {|11〉, |01〉, |10〉, |00〉}, we can refor-
mulate the Hamiltonian as follows:

Heff = �2(|10〉〈r0| + |01〉〈0r|) + ω(|11〉 + |00〉)

⊗(〈01| + 〈10|) + H.c., (12)
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FIG. 7. The evolutions of fidelity for the Bell states gov-
erned by the full and effective master equations. The ini-
tial state is ρ0 = 0.25|00〉〈00| + 0.25|10〉〈10| + 0.25|01〉〈01| +
0.25|11〉〈11|. The relevant parameters are chosen as �2 =
0.02�1, ω = 0.01�1, � = 100�1, and γ = 0.05�1.

with the corresponding effective master equation,

ρ̇ = −i[Heff , ρ] + Leffρ,

Leffρ =
4∑

k=1

Lk
effρL

k†
eff − 1

2

(
L

k†
effL

k
effρ + ρL

k†
effL

k
eff

)
, (13)

where

L1
eff =

√
γ

2
|01〉〈0r|, L2

eff =
√

γ

2
|00〉〈0r|,

L3
eff =

√
γ

2
|10〉〈r0|, L4

eff =
√

γ

2
|00〉〈r0|.

In Fig. 6(b), we illustrate the effective transitions to intu-
itively explain the operational principle. The interconversion
between four ground states |11〉, |01〉, |10〉 and |00〉 is realized
by the microwave fields, and the ground states |10〉 and |01〉
are also coupled with the excited states |r0〉 and |0r〉, which
will then spontaneously decay to the ground states |01〉, |10〉
and |00〉. The total transitions construct a cyclic evolution
of system, and we can find that the Bell state |φ−〉 is the
unique steady-state solution of Eq. (13) because of Heff |φ−〉 =
Lk

eff |φ−〉 = 0. Therefore, the system will be stabilized at the
state |φ−〉 ultimately.

In Fig. 7, we compare the time evolutions of the fidelity
for the target state |φ−〉 governed by the full master equation
(solid line) and the effective master equation (empty circles) to
confirm the validity of the above derivations. The tendencies
of the two curves are identical, which implies that the reduced
system is accurate and we can forecast the behavior of the
realistic system by the reduced system. On the other hand, we
find that the fidelity of the target state can arrive at 99.35% and
the fidelities of states |φ+〉 = (|00〉 + |11〉)/

√
2 (dash-dotted

line), |ψ+〉 = (|01〉 + |10〉)/
√

2 (dashed line), and |ψ−〉 =
(|01〉 − |10〉)/

√
2 (dotted line) all tend to vanish, which

demonstrates the behavior of the dissipative scheme. When we
choose the experimental parameters as (�1,�2, ω,�, γ ) =

FIG. 8. The atomic level configuration of the scheme to prepare
the three-dimensional entangled state with dissipation.

2π × (1, 0.02, 0.01, 100, 0.03) MHz [48], the fidelity of the
target state can be above 99.48%.

B. Three-dimensional entangled state

As is well known, the high-dimensional entanglement can
not only violate the local realism more strongly than the two-
dimensional entanglement [49], but also enhance the security
of quantum key distribution [50,51]. Compared with the previ-
ous methods to generate the three-dimensional entanglement,
such as those of Refs. [33] and [46], we can acquire the three-
dimensional entanglement with two identical atoms and fewer
driving fields. Once we adjust the dissipative scheme of two-
dimensional entanglement slightly, the three-dimensional en-
tanglement |T1〉 = (|00〉 − |11〉 + |22〉)/

√
3 can be prepared

via URP and atomic spontaneous emission without a specific
initial state.

The scheme of three-dimensional entanglement includes
two four-level Rydberg atoms, both consisting of three ground
states |0〉, |1〉, |2〉 and one Rydberg state |r〉, which has been
plotted in Fig. 8. For the first Rydberg atom, the ground state
|1〉 is driven to the Rydberg state |r〉 by two independent laser
fields with Rabi frequencies �1 and �2, detuning −� − δ

and −δ, respectively. Meanwhile, it is coupled with the other
ground states |0〉 and |2〉 with a resonant microwave field
(Rabi frequency ω1) and a dispersive microwave field (Rabi
frequency ω2, detuning −δ), respectively. For the second Ryd-
berg atom, the transition |1〉 ↔ |r〉 is achieved by a dispersive
laser field with Rabi frequencies �1, detuning −�, and a
resonant laser field with Rabi frequencies �2, respectively.
The transitions between ground states |0〉 ↔ |1〉 and |1〉 ↔
|2〉 are resonantly and dispersively coupled by two microwave
fields with Rabi frequencies ω1 and ω2, respectively. The
detuning of the latter is δ. The Hamiltonian of the total system
can be written as

HI = HR + HMW,

HR =
2∑

j=1

(�1e
−i�t + �2)|r〉jj 〈1| + H.c. + U |rr〉〈rr|,

HMW =
2∑

j=1

ω1|1〉jj 〈0| + ω2|1〉jj 〈2| + H.c. + δ(|0〉11〈0|

+ |1〉11〈1| + |2〉22〈2|). (14)

The atomic spontaneous emission of the j th atom can
be described as L0

j = √
γ /3|0〉jj 〈r|, L1

j = √
γ /3|1〉jj 〈r| and
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L2
j = √

γ /3|2〉jj 〈r|. Then the form of the full master equation
is similar to that of Eq. (11) with the new range of k = 0, 1, 2.
Utilizing the URP, we can derive the effective Hamiltonian as

Heff = HR
eff + HMW

eff ,

HR
eff = �2(|10〉〈r0| + |01〉〈0r| + |12〉〈r2| + |21〉〈2r|)

+ H.c.,

HMW
eff = ω1(|11〉 + |00〉)(〈01| + 〈10|) + ω1(|02〉〈12|

+ |20〉〈21|) + ω2(|11〉 + |22〉)(〈21| + 〈12|)
+ω2(|10〉〈20| + |01〉〈02|) + H.c.

+ δ(|00〉〈00| + |11〉〈11| + |22〉〈22| + |10〉〈10|
+ |01〉〈01| + 2|12〉〈12| + 2|02〉〈02|). (15)

The effective master equation with the corresponding Lind-
blad operators can be obtained as

ρ̇ = −i[Heff , ρ] + Leffρ,

Leffρ =
6∑

k=1

Lk
effρL

k†
eff − 1

2

(
L

k†
effL

k
effρ + ρL

k†
effL

k
eff

)
, (16)

and

L1
eff =

√
γ

3
|00〉〈0r|, L2

eff =
√

γ

3
|01〉〈0r|,

L3
eff =

√
γ

3
|02〉〈0r|, L4

eff =
√

γ

3
|00〉〈r0|,

L5
eff =

√
γ

3
|10〉〈r0|, L6

eff =
√

γ

3
|20〉〈r0|.

According to Eq. (16), we can notice that the ground states
{|00〉, |11〉, |22〉, |01〉, |10〉, |02〉, |20〉, |12〉, |21〉} are coupled
with each other by the microwave fields, among which
{|01〉, |10〉, |12〉, |21〉} can be pumped into the excited states
{|0r〉, |r0〉, |r2〉, |2r〉} by the laser fields. And these excited
states will further decay to ground states via atomic sponta-
neous emission. Hence the system will repeat the processes
of pumping and decaying. However, in the absence of δ,
there are two steady states in the system, |T1〉 and |T2〉 =
(3|20〉 + 3|02〉 − 2|11〉 − |00〉 − |22〉)/2

√
6. So we introduce

δ to filter the state |T2〉 and turn the target state |T1〉 into the
unique steady state of the system, which means the system
will be stabilized at |T1〉 without a specific initial state.

In Fig. 9, the validity of the reduced system has been
verified due to the uniform behavior of evolutions of the
fidelity respectively governed by the full (solid line) and
effective (empty circles) master equation. It is significant
that the evolution of the fidelity of |T1〉 reaches 98.8% at
t = 8000/�1 with a random initial state. The inset shows
the fidelities of the bare states, where the fidelities of states
|00〉 (solid line), |11〉 (dotted line), and |22〉 (dash-dotted line)
can all reach 0.572 (the ideal values denoted by dashed line
are 1/

√
3 � 0.577). Then, we also investigate the feasibility

to realize it experimentally. The experimental parameters are
set as (�1, γ ) = 2π × (1, 0.03) MHz, �2 = 0.02�1, ω1(2) =
0.01�1, and � = 100�1. The corresponding fidelity of the
target state can be above 99.14%. All the above results exhibit
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FIG. 9. The evolutions of fidelity of the three-dimensional state
governed by the full (solid line) and effective master equation (empty
circles). The inset shows the fidelities of the bare states. The initial
states are randomly chosen as ρ0 = 0.15|10〉〈10| + 0.35|21〉〈21| +
0.3|01〉〈01| + 0.2|12〉〈12|. The relevant parameters are chosen as
�2 = 0.02�1, ω1(2) = 0.01�1, � = 100�1, and γ = 0.05�1.

the reliability of the scheme for three-dimensional entangle-
ment.

V. AUTONOMOUS QUANTUM ERROR CORRECTION

Quantum error correction has played an important role in
the operation of quantum information processing, which is
useful to protect the quantum computations from the quan-
tum errors arising from uncontrolled interactions between the
physical qubits and their environment [52–54]. Subsequently,
the ingenious union of the quantum error correction and
quantum dissipation was put forward by considerable ideas in
theory and experiment [55–64]. Most recently, Reiter et al.
presented an autonomous quantum error correction scheme
with trapped ions [64], which inspired us to extend the URP
to produce an autonomous quantum error correction scheme
with dissipation.

A logical qubit encoded in three physical qubits has a gen-
eral form |ψ〉 = α|0〉L + β|1〉L = α|000〉P + β|111〉P with
|α|2 + |β|2 = 1, where the subscripts L and P denote logical
and physical, respectively. The states |0〉L and |1〉L are the
basis states for the code space. We can exploit the quantum
error correction to protect the qubit |ψ〉 from being converted
to the single-error state |ψj 〉 = σ

j
x |ψ〉, where σ

j
x = |0〉jj 〈1| +

|1〉jj 〈0| is the bit-flip error on the j th physical qubit. The
bit-flip noise can be described by L

j
x = √

�σ
j
x , j = 1, 2, 3

with the bit-flip rate �. The corresponding master equation
can reflect the noisy dynamics,

ρ̇ = Lnoiseρ

=
3∑

j=1

Lj
xρLj†

x − 1

2

(
Lj†

x Lj
xρ + ρLj†

x Lj
x

)
. (17)

In the following, we illustrate how to autonomously cor-
rect the bit-flip error via the URP in a Rydberg-atom-cavity
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FIG. 10. (a) The setup for the autonomous quantum error correc-
tion scheme. (b) The atomic level configuration of the scheme.

system. In Fig. 10(a), we show the setup for the autonomous
quantum error correction scheme, where three four-level Ry-
dberg atoms are trapped in three independent optical cavities
constructing an equilateral triangle to make the Rydberg in-
teractions identical. The associated atomic levels are shown
in Fig. 10(b), which consist of two ground states |0〉 and |1〉,
and two Rydberg states |p〉 and |r〉. The ground state |0(1)〉
is used as an encoded quantum bit and is coupled with the
Rydberg state |p(r )〉 by a dispersive laser field (frequency �1,
detuning �) and a resonant laser field (Rabi frequency �2).
Simultaneously, the transition between |0(1)〉 and |r (p)〉 is
driven by the quantized cavity field resonantly with coupling
strength g. In the interaction picture, the Hamiltonian reads

HI = HL + HQ (18)

and

HL =
3∑

j=1

(�1e
−i�t + �2)(|p〉jj 〈0| + |r〉jj 〈1|) + H.c.

+
∑
k>j

Ujk
rr |rr〉jk〈rr| + Ujk

pp|pp〉jk〈pp|

+Ujk
rp |rp〉jk〈rp| + Ujk

pr |pr〉jk〈pr|,

HQ =
3∑

j=1

g(|p〉jj 〈1| + |r〉jj 〈0|)aj + H.c.,

where U
jk

αβ stands for the Rydberg interaction between the
j th atom in |α〉 and the kth atom in |β〉, and aj denotes
the annihilation operator of the j th cavity. Once we select
the suitable principal quantum numbers of Rydberg atoms
[65,66], the Rydberg interactions can be considered as Urr =
U

jk
rr = U

jk
pp � U

jk
rp = U

jk
pr . Then we can simplify the HL as

Hfull =
3∑

j=1

(�1e
−i�t + �2)(|p〉jj 〈0| + |r〉jj 〈1|) + H.c.

+
∑
k>j

Urr (|rr〉jk〈rr| + |pp〉jk〈pp|). (19)

The dissipative process of the j th cavity can be described as
L

j
c = √

κaj , where κ is the decay rate of the cavity. When
we consider κ � g to adiabatically eliminate aj [67], the
interaction between the j th quantized cavity field and atom
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FIG. 11. The fidelity of state (|000〉 + i|111〉)/
√

2 as a function
of gt with Eq. (20) (solid line) and Eq. (21) (empty circles). The
initial state is chosen as a|ψ1〉〈ψ1| + b|ψ2〉〈ψ2| + c|ψ3〉〈ψ3|, where
|ψ1〉 = (|100〉 + i|011〉)/

√
2, |ψ2〉 = (|010〉 + i|101〉)/

√
2, |ψ3〉 =

(|001〉 + i|110〉)/
√

2, a = 0.5, b = 0.2, and c = 0.3. The other
parameters are �1 = 3g, �2 = 0.05g, Urr = � = 800g, and κe =
0.02g.

can be equivalent to a Lindblad operator L
j
e = √

κe(|0〉jj 〈r| +
|1〉jj 〈p|), where κe = 4g2/κ . The dynamics of the three-atom
system can be described by a master equation

ρ̇ = −i[Hfull, ρ] + Leρ,

Leρ =
3∑

j=1

Lj
eρLj†

e − 1

2

(
Lj†

e Lj
eρ + ρLj†

e Lj
e

)
. (20)

In the condition of URP, Urr = � � �1 � �2, the evolution
of the reduced system will be governed by

ρ̇ = −i[Heff , ρ] + Leρ,

Heff = �2(|100〉〈r00| + |010〉〈0r0| + |001〉〈00r|
+ |110〉〈00p| + |101〉〈0p0| + |011〉〈p00|)
+ H.c. (21)

One can find that our scheme can correct the
single-error states by pumping them to the single
excited states, which further decay to the desired stable
states |000〉 or |111〉 via leaky cavities. In order to
visually reveal the correcting process, we study how
the three-atom system evolves when the bit-flip noise
makes the state (|000〉 + i|111〉)/

√
2 into a single-error

mixed state, a|ψ1〉〈ψ1| + b|ψ2〉〈ψ2| + c|ψ3〉〈ψ3|, where
|ψ1〉 = (|100〉 + i|011〉)/

√
2, |ψ2〉 = (|010〉 + i|101〉)/

√
2,

and |ψ3〉 = (|001〉 + i|110〉)/
√

2. We show the fidelity
of the state (|000〉 + i|111〉)/

√
2 as a function of gt

with Eq. (20) (solid line) and Eq. (21) (empty circles) in
Fig. 11. The initial state is the single-error mixed state
a|ψ1〉〈ψ1| + b|ψ2〉〈ψ2| + c|ψ3〉〈ψ3|, and we choose a = 0.5,
b = 0.2, and c = 0.3 in the numerical simulation. It is clear
enough that the two curves are in good agreement with each
other and a high fidelity of up to 99.6% at gt = 1000 can
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FIG. 12. The evolution of the fidelity of state (|000〉 +
i|111〉)/

√
2 governed by the Eq. (22) with different coupling

strengths g. The initial state is |ψ (0)〉 = (|000〉 + i|111〉)/
√

2,
and the relevant parameters are �1 = 3g, �2 = 0.05g, Urr = � =
800g, and κe = 0.02g.

be obtained. The appearance affirms the feasibility of our
quantum error correction scheme and the correctness of the
reduced system. In experiment, the transition |0〉 ↔ |r〉
requires two indirect transitions to realize [12,68,69].
First, the ground state |0〉 is dispersively coupled with an
intermediate state |e〉 by an optical cavity with strength
gb, detuning −�b. Second, the intermediate state |e〉 will
be pumped to the Rydberg state |r〉 via a classical field
with Rabi frequency �b, detuning �b. In the regime of the
large detuning, |�b| � {gb,�b}, the intermediate state |e〉
can be eliminated adiabatically and an equivalent direct
transition |0〉 ↔ |r〉 can be accomplished with an effective
strength geff = gb�b/�b, which is analogous to the strength
g in our scheme. Consequently, we can experimentally
regulate the value of �b to obtain desired values of g and κe.

Then we substitute a group of experimental parameters
(�1,�2,�, γ, κe ) = 2π × (3, 0.05, 800, 0.001, 0.02) MHz
and the fidelity of state (|000〉 + i|111〉)/

√
2 can be above

97.34%.
In Fig. 12, we analyze the capability of autonomously

correcting the single-error state as the bit-flip noise contin-
uously emerges. The total process of autonomous quantum
error correction reads

ρ̇ = −i[Hfull, ρ] + Leρ + Lnoiseρ. (22)

When the error correction is absent (dotted line), the fidelity
will steeply descend to 42.77% at �t = 1. Nevertheless, as
long as the error correction arises, the bit-flip noise can be
autonomously and continuously corrected, and the decline of
fidelity will be repressed remarkably with the enhancement
of g. At �t = 1, the fidelity can reach 68.05%, 77.77%,
and 84.62% with g = 500� (dash-dotted line), g = 1000�

(dashed line), and g = 2000� (solid line), respectively.

VI. SUMMARY

In summary, we have successfully realized an unconven-
tional Rydberg pumping (URP) mechanism via the organic
combination of Rydberg interaction and two classical fields.
We can take advantage of the URP to freeze the evolution of
the states with two atoms at the same ground state and excite
the states with two atoms at different ground states. Then we
apply the URP to actualize the three-qubit controlled-PHASE

gate, the two- and three-dimensional steady-state entangle-
ment, and the autonomous quantum error correction. The
corresponding results can adequately evidence the feasibility
of all the above applications by considering the state-of-the-art
technology. We believe our scheme supplies a new prospect
with regard to quantum information processing with neutral
atoms.
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