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Experimental test of the trade-off relation for quantum coherence
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As one of the most essential properties of quantum mechanics, quantum coherence is also considered a key
physical resource which can be used to accomplish certain tasks of quantum information processing. Significant
efforts are involved in the quantification of quantum coherence using measures such as the l1-norm and the
relative entropy of coherence. The quantum coherence as a physical resource is usually defined with respect to a
given basis, which also arouses an issue of interest concerning the variation of quantum coherence for a quantum
state in different reference bases. In this paper, using an all optical setup, we experimentally investigate a trade-off
relation between the coherence measures quantified by relative entropy of coherence in two noncommuting
reference bases. Our result shows that the sum of quantum coherence under these bases is bounded in a region
defined by its lower bound and upper bound.
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I. INTRODUCTION

Originating from the superposition principle of quantum
states, quantum coherence, like the uncertainty principle,
is one of the most fundamental features of quantum me-
chanics that distinguishes it from the classical realm. There
are increasing research efforts leading quantum coherence
to be considered a fundamental resource in the applications
of quantum information processing [1–7], quantum ther-
modynamics [8–10], and quantum metrology [11–15], as a
“a measure of the strength of quantum correlations [16].”
Although the studies of quantum coherence have a long-
standing history [5,17–21], the coherence in the framework of
resource theories has been rigorously characterized only re-
cently [22,23], resulting in quantifications of coherence such
as the l1-norm, relative entropy, and skew information that are
related to both the quantum states and the corresponding ref-
erence bases. Since the measurements of coherence are basis
dependent, the relationship between the amounts of coherence
for a quantum state in different bases is an issue of interest.

Recently, a trade-off relation for the coherence of a bipar-
tite state ρAB defined in two different reference bases was
derived by Singh et al. [24]; it can be termed an uncertainty
relation in which the uncertainty is quantified by the relative
entropy of coherence in the given bases. The uncertainty
relation for the quantum coherence is given by

C (rμ)(ρAB ) + C (sμ)(ρAB )

� log2
1

c
− S(A|B ) + max{0,D − J }, (1)
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where A and B represent the subsystems of the bipartite state
ρAB respectively, and C (xμ)(ρAB ) = S(ρXU ) − S(ρAB ) is
the relative entropy of coherence. ρXU = ∑

x,μ px,μ|x〉〈x| ⊗
|μ〉〈μ| denotes the state that can be considered as the diagonal
part of the density matrix ρAB represented in the bases {|x〉 ⊗
|μ〉}, with px,μ = 〈x, μ|ρAB |x, μ〉, {|μ〉} are the eigenvectors
of the reduced density matrix ρB of the system state ρAB ,
{|x〉} are the eigenvectors of the observable X, and {|r〉} and
{|s〉} are also the eigenvectors of the observable X as X = R

and X = S, respectively. For right-hand side of inequality
(1), c = maxri ,sj

|〈ri | sj 〉|2, the conditional entropy S(A|B ) =
S(ρAB ) − S(ρB ), and the lower bound can be tighten when
D − J > 0, where D is the quantum discord across the AB

partition and J is the classical correlation [25–28], which is
defined by J = max{|u〉〈u|}[S(ρU ) + S(ρB ) − S(ρUB )], with
ρUB = ∑

u |u〉〈u| ⊗ TrA[(|u〉〈u| ⊗ I )ρAB], and the optimiza-
tion takes over all the positive-operator valued measures
(POVMs) {|u〉〈u|} acting on the subsystem A.

Besides, the left-hand side of inequality (1) is also upper
bounded by

C (rμ)(ρAB ) + C (sμ)(ρAB ) � 2 log2 dA − 2S(A|B ), (2)

where dA is the dimension of the subsystem A of ρAB .
In this paper, we report an all-optical experimental in-

vestigation of the trade-off relation between the coherence
measures in two different reference bases. Our experimen-
tal results show that the quantum coherence measures of a
bipartite quantum system in two incompatible bases are not
reciprocally independent, which means that if the coherence
of the state measured in one basis shows a larger value, it
would not give the same value in another base. What is more,
we find an interesting phenomenon that the lower bound in
inequality (1), that is restricted by the uncertainty relation
for coherence, would not be tightened with the presence of
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entanglement, which behaves in the opposite way compared
to the entropic uncertainty relation [29–32].

II. EXPERIMENT

In the following, we report our experimental results from
studying the trade-off relation for quantum coherence, where
the experimental setup is shown in Fig. 1. To investigate
inequalities (1) and (2), in principle one should check through
all possible bipartite quantum states, which is not practical for
real experiments. So we choose to adopt the most popularly
used class of bipartite quantum state here. In our experiment,
the Werner states are considered to be the most suitable can-
didate states [33]. For our photon-polarization-qubit system,
the Werner state can be expressed as

ρW = p|ψ−〉〈ψ−| + 1 − p

4
I, (3)

State Mixing

YVO4

State Mixing

390nm
A

B C

780nm

FIG. 1. Experimental setup. A pair of polarization-entangled
photons A and B with the state 1√

2
(|HV 〉 − |V H 〉) is generated

by a spontaneous parametric down-conversion (SPDC) process, i.e.,
a 390-nm pulse, produced by a frequency doubling process of
an ultrafast pulse (780-nm central wavelength, 76-MHz repetition
rate, 140-fs duration) from a mode-locked Ti:sapphire laser, passes
through a sandwich-like BBO crystal to create the polarization-
entangled photons A and B. The blue dotted box represents the
mixing process in which the two entangled photons A and B, through
the two beam splitters (BSs), are combined with the strongly atten-
uated and completely depolarized photons C, which are generated
via a decoherence process shown in the inset (black line box); i.e.,
a 780-nm pulse is attenuated to a weak coherent state with only
a very small probability (∼0.005) of containing a single photon in
each pulse by using an attenuator (ATT), a polarization beam splitter
(PBS), and a half-wave plate (HWP) with its angle set to 22.5◦,
and then the attenuated pulse passes through a 1.21-mm yttrium
orthovanadate (YVO4) crystal and 400λ (780-nm) quartz plate (QP)
to be completely decohered before being split into two spatial modes.
Using the ATT to change the intensity of photon C, the desired
Werner states can be prepared by controlling the ratio between the
entangled photons and decohered photons. For state measurement,
the photons A and B are sent to the polarization analysis measure-
ment device which contains a quarter-wave plate (QWP), a HWP,
and PBS before passing through the 3-nm interference filter (IF). By
changing the angles of the QWPs and HWPs, the density matrix of
the characterized target state can be reconstructed.

FIG. 2. Tomographic reconstructed matrices of the prepared
maximally entangled state |ψ−〉 and the identity state I . (a) Re(ρE )
and Im(ρE ) represent the real and imaginary parts of |ψ−〉 respec-
tively. (b) Re(ρI ) and Im(ρI ) represent the real and imaginary parts
of I respectively.

where 0 � p � 1 and |ψ−〉 = 1√
2
(|HV 〉 − |V H 〉), with H

and V representing the polarization of entangled photons.
I = diag[1, 1, 1, 1] denotes the identity state. On the one
hand, it has a certain degree of universality that can vary from
maximally mixed state to maximally entangled state, which
motivates many efforts numerically and experimentally on the
research of quantum correlation [34–37]. On the other hand,
for Werner states, {|μ〉} are always the eigenvectors of the
observable σz that make it possible to readily measure the state
ρXU , which originates from the Werner states ρAB = ρW after
the projective measurements by {|x〉〈x| ⊗ |μ〉〈μ|}.

According to Eq. (3), the preparation of the Werner states
requires the mixture of the entangled state |ψ−〉 with the
identity state I , which can be seen in Fig. 1. The entan-
gled state |ψ−〉 is prepared via the spontaneous parametric
down-conversion (SPDC) process that generates a pair of
polarization-entangled photons, A and B, with maximally
entangled state 1√

2
(|HV 〉 − |V H 〉) [38]. The identity state I

is prepared via a decoherence process, in which the strongly
attenuated 780-nm pulse, in polarization state 1√

2
(|H 〉 + |V 〉),

is completely depolarized by using a 1.21-mm yttrium or-
thovanadate (YVO4) crystal (corresponding to about 340λ

quartz plate) and 400λ (780-nm) quartz plate (QP), which
amounts to about a 740λ (780-nm) quartz plate, to entangle
the polarization and frequency degree of the photons; then
the latter will be traced out in the measurement setup, such
that it equals an identity state in the polarization degree of
freedom. The entangled state |ψ−〉 and the identity state I
were both prepared with rather high fidelity, F = 0.9946 ±
0.0004 and F = 0.9996 ± 0.0001, respectively, and the error
bars are estimated according to the Monte Carlo method [39].
Figure 2 shows the real and imaginary parts of |ψ−〉 and
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FIG. 3. Experimental results and theoretical predictions for the
input Werner states ρW : The x axis represents the different Werner
states, which are determined by the parameter p. The y axis repre-
sent the values of the corresponding terms of interest, and CTotal =
C (rμ)(ρW ) + C (sμ)(ρW ) denotes the coherence measured in two dif-
ferent bases. The blue circles represent the experimental results for
CTotal, and the green solid line represents its theoretical prediction,
while the purple and orange solid lines represent the theoretical
predictions of the lower bound log2

1
c

− S(A|B ) + max{0,D − J }
and the upper bound 2 log2 dA − 2S(A|B ), respectively. (a) shows
the experimental results and theoretical predictions of the coherence,
lower bound, and upper bound in a general case where the observ-
ables R = X( π

6 , 0), S = X( π

3 , π

2 ). (b)–(d) show the special cases
where R = σx , S = σz; R = σx , S = X( π

6 , 0); and R = σx , S = σy ,
respectively.

I . Distinguishing from the time-mixing technique [35,36,40],
we spatially combine these two modes with the two entangled-
photon modes of A and B respectively. In this way, a series of
Werner states with different p can be prepared by controlling
the ratio between the entangled state |ψ−〉 and the identity
state I .

Next, to evaluate the left-hand sides of inequalities (1)
and (2), the two photons prepared in the Werner state are
both sent to the polarization analysis measurement device
before passing through 3-nm bandwith interference filters
(IFs). By changing the angles of the QWPs and HWPs, one
can reconstruct not only the density matrix ρW of the prepared
states [41] but also that of the state ρXU , which can be mea-
sured directly. To achieve this, we measure photon B in the
eigenbasis of the observable σz, and simultaneously measure
photon A in the observable X’s eigenbasis. After normaliza-
tion, the measured coincidence counts correspond to the ele-
ments in ρXU directly. Therefore, the coherence C (xμ)(ρW ) =
S(ρXU ) − S(ρW ) in the reference basis {|x〉〈x| ⊗ |μ〉〈μ|} can
be obtained with the reconstructed density matrix ρW and the
measured ρXU . At last, the right-hand sides of inequalities
(1) and (2) can be evaluated by theoretically calculating
the conditional entropy S(A|B ), the corresponding quantum
discord D, and classical correlation D using the density matrix
of the ideal target Werner state [42,43].

The experimental results and theoretical predictions for
the coherence C (rμ)(ρW ) + C (sμ)(ρW ), the lower bound
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FIG. 4. Experimental results and theoretical predictions for the
input Werner states ρW in the case where R = X( π

6 , 0) and S is a
function of the parameters θ and φ (θ and φ are in units of radians):
The blue circles represent the experimental results for C (rμ)(ρW ) +
C (sμ)(ρW ) and the green surface represents its theoretical prediction,
while the purple and orange surfaces represent the theoretical pre-
dictions of the lower bound log2

1
c

− S(A|B ) + max{0,D − J } and
the upper bound 2 log2 dA − 2S(A|B ), respectively. (a)–(f) show the
experimental results and theoretical predictions of the coherence,
lower bound, and upper bound for Werner states with different
parameters p, respectively.

log2
1
c

− S(A|B ) + max{0,D − J }, and the upper bound
2 log2 dA − 2S(A|B ) are shown in Fig. 3. C (rμ)(ρW ) is
the coherence characterized in the basis {|r〉〈r| ⊗ |μ〉〈μ|},
where {|r〉} is the eigenvector of the observable X = R

and C (sμ)(ρW ) is similar for X = S, with X = n̂ · �σ , n̂ =
{sin θ cos φ, sin θ sin φ, cos θ}, and �σ = {σx, σy, σz} are the
Pauli matrices. With the increase of the parameter p in the
x axis, the Werner state changes from the maximally mixed
state I to the maximally entangled state |ψ−〉. Figure 3(a)
shows the experimental results and theoretical predictions
in the case where the observables R = X( π

6 , 0) and S =
X( π

3 , π
2 ). A more general case with R = X( π

6 , 0), and the
observable S being the function of θ and φ, can be seen in
the Appendix. Figures 3(b)–3(d) correspond to the special
cases where the observable R = σx , and S varies from σz to
σy , which results in the coherence approaching to the upper
bound. Panel (d) shows that the theoretical predictions of
coherence overlap with its upper bound completely, and our
experimental data points all coincide with the solid line of
the upper bound, which also confirms that for the inequality
(2) the equality holds when R = σx and S = σy . Otherwise,
the equality would hold only at a point where the parameter
p = 0, which means the system state is a maximally mixed
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state. It can be seen that our experimental results coincide with
the theoretical predictions very well, which shows that the
coherence measured in two different bases is always restricted
in a region defined by the lower bound and the upper bound.

III. CONCLUSIONS

In the paper, with high fidelity of preparation of the Werner
states, we have performed an experiment to investigate the
trade-off relation between the coherence measures in the two
noncommuting reference bases, which shows the quantum
coherence characterized in one base is not independent of
the other. The upper bound can fairly estimate the capacity
of a quantum state as a quantum source in different bases,
which can be used to accomplish the tasks that are otherwise
impossible in classical physics. The lower bound respects the
uncertainty relation (1), with the uncertainty quantified by
quantum coherence, showing that the uncertainty measured
in a basis is equivalent to the coherence measured in the
same basis [44,45]. And when the quantum discord of the
state is larger than its classical correlation, the lower bound
uncertainty relation can be tighter.

Furthermore, we also find an interesting phenomenon that
the gap between the uncertainty quantified by the coherence in
two noncommuting bases and the lower bound would be larger
with the increase of entanglement of the state. The origin
of the uncertainty characterized in terms of entropy can be
divided into two parts, the classical noise and quantum effect,
and the former can be reduced by introducing entanglement
with an ancillary system, such as quantum memory, while

the quantum effect cannot [44–46]. The uncertainty quantified
by coherence only originates from the quantum effect, which
would not be reduced with the increase of the correlation of
the states. We consider that it is the reason why the uncer-
tainty relation (1) shows contrary behavior compared with the
entropic uncertainty relation. Our work may be helpful for
further understanding and study of the uncertainty principle
and quantum coherence.
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APPENDIX

Figure 4 shows the experimental results and theoretical
predictions for the coherence C (rμ)(ρW ) + C (sμ)(ρW ), the
lower bound log2

1
c

− S(A|B ) + max{0,D − J }, and the up-
per bound 2 log2 dA − 2S(A|B ), in a more general case with
the observables R being fixed, and S varying.
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