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Quantum process tomography via completely positive and trace-preserving projection
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We present an algorithm for projecting superoperators onto the set of completely positive, trace-preserving
maps. When combined with gradient descent of a cost function, the procedure results in an algorithm for quantum
process tomography: finding the quantum process that best fits a set of sufficient observations. We compare the
performance of our algorithm to the diluted iterative algorithm as well as second-order solvers interfaced with
the popular CVX package for MATLAB, and find it to be significantly faster and more accurate while guaranteeing
a physical estimate.
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I. INTRODUCTION

As experimental quantum information science progresses,
researchers are increasingly turning to the characterization of
quantum processes [see Fig. 1(a)] rather than the quantum
states which they act upon. For example, the fault-tolerance
theorem [1] (which underpins the feasibility of large-scale
quantum computers) places a requirement on the accuracy of
operations performed on quantum bits. In fact, the theorem
relies on a worst-case analysis with respect to state prepara-
tion (before the operation) and with respect to measurement
(after the operation) in judging their accuracy. Fortunately, to
evaluate such metrics one does not need to actually prepare
and measure the worst case: a complete description of the
process can be inferred from a suitable set of preparations
and measurements and subsequently any property of interest
may then be calculated. Such inference is known as quantum
process tomography (QPT). QPT has been performed in many
different physical settings [2–5]: the challenge is producing
an estimate of the process in a reasonable amount of time
which matches the data as closely as possible and is consistent
with a quantum-mechanical model of the experiment. We
present algorithms for reconstructing the process subject to
appropriate constraints, via a subroutine that implements a
composite projection onto the set of quantum channels [see
Fig. 1(b)].

In Sec. II, we describe the maximum-likelihood approach
to process tomography, along with the Choi representation of
processes and individual projections onto important constraint
sets. In Sec. III we describe our main results, including the
composite projection onto quantum channels, and two algo-
rithms that exploit it to estimate a quantum process from data.
Our algorithms are benchmarked against existing approaches
in Sec. IV, and conclusions are drawn in Sec V. Further details
are given in the Appendices.
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FIG. 1. (a) An unknown process E maps a known input state
ρi into an unknown output state ρ ′

i . When measured with a set
of positive operators {Ej }, ρ ′

i produces a measurement histogram
nij , leading to a cost (e.g., negative likelihood) for each possible
estimate for E . (b) Finding the best fit to the data is a constrained
optimization problem that we solve with projected gradient descent.
The desired solution set is CPTP: the set of completely positive and
trace-preserving maps (the intersection of a cone with a hyperplane).
Gradient descent can cause an iterate to exit this set, but it is
repeatedly projected back. The schematic shows a single iteration
of the algorithm: an unphysical candidate (�) is iteratively moved
to, e.g., the average (pink) of the projection onto CP (cyan) and TP
(yellow arrows). (c) The overall procedure reduces the cost function
while ensuring iterates are in CPTP.
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II. PROCESS TOMOGRAPHY

A quantum process is a linear “superoperator” which acts
on an input density operator ρ to produce an output density
operator ρ ′:

E (ρ) = ρ ′. (1)

Here ρ and ρ ′ are order-2 tensors (i.e., operators), which
we assume (for simplicity) to act on Hilbert spaces of equal
dimension d. E is an order-4 tensor specified by d4 − d2

parameters, where d is itself exponential in the number of
subsystems. Assumption-free QPT is therefore necessarily
very expensive: cheaper alternatives are made possible by
relying on prior knowledge (e.g., compressive sensing [6]) or
by estimating a single summary statistic (as in randomized
benchmarking [7]), but such alternatives may be insufficient
to decide whether E meets fault-tolerance requirements [8,9].
It is therefore important to reduce the costs associated with
assumption-free QPT while maintaining accuracy.

A. Estimation of processes

The probability of observing an outcome corresponding
to Ej (a positive measurement operator), when the quantum
process has transformed some input state ρi , is

pij = Tr[E (ρi )Ej ]. (2)

For each input state, Ni samples are drawn and the number of
outcomes, nij , that correspond to each outcome j are recorded
so that

∑
j nij = Ni . In order to produce an estimate for

a quantum process from such a set of observations, a cost
function (or measure of “un-fitness”) f (E ) is chosen and then
minimized over a set of candidate processes. The minimiza-
tion is handled by, for example, gradient descent steps of
the cost function. Maximum-likelihood (ML) estimation is a
principled and prominent choice, and one that we make here
in order to showcase our general method. The likelihood of
E given the “data” nij is L = ∏

ij p
nij

ij up to an irrelevant
constant. According to the principle of ML, we seek E∗, the
quantum process that maximizes L. This approach is justified
heuristically by considering L as a measure of agreement be-
tween the model pij and the data nij , assuming a multinomial
statistical model. ML enjoys the key property of asymptotic
efficiency: as the number of trials, Ni , becomes large, under
mild conditions [10] the variance of the ML estimator is lower
than any unbiased estimator, saturating the Cramér-Rao bound
[11]. Alternative estimators may be preferable for finite Ni

[12] but will generally perform worse asymptotically in terms
of their precision and accuracy. In the limit where nij are
all large, the likelihood may be approximated by a Gaussian
function and the problem reduces to minimizing the cost
function f (E ) → ∑

ij (pij − nij )2 [13], which may be solved
by linear inversion [14]. This is an unjustified simplification
in general, but may be transformed into an effective heuristic,
as we show below. Regardless of the choice of cost function,
our approach is flexible in that it is not tied (as some other
methods are [13,15]) to a particular choice of (preparation
and/or) measurement operators. Proceeding with the (convex)

cost function

f (E ) = − lnL = −
∑
ij

nij ln pij , (3)

we introduce below an algorithm minimizing f subject to
appropriate constraints. The minimizer of f is also the maxi-
mizer of L due to the monotonicity of the logarithm. Uncon-
strained tomographic procedures usually produce unphysical
quantum states or processes [14], often due to an implicit and
idealized assumption of zero noise. A physical estimate is
paramount if one is to use it in any further theoretical analysis,
such as calculating purity, fidelity, entanglement, expectation
values, and so on. We now introduce the constraints on E
and our approach to enforcing them, which uses a certain
representation of E .

B. Choi representation

It is well known that quantum processes, considered as
superoperators with dimension d × d × d × d, may be repre-
sented as (d2 × d2)-dimensional operators on a Hilbert space
Hin ⊗ Hout. For example Choi operators, defined as

CE =
∑
ij

|i〉〈j | ⊗ E (|i〉〈j |) (4)

for an orthonormal set of kets {|i〉} which form a basis
of both the input and output Hilbert spaces. This relation
implies that E may be inferred by applying it to one part
of a d2-dimensional system prepared in a single maximally
entangled state, and performing quantum state tomography
on the output, a technique known as ancilla-assisted QPT
[16,17]. Here we continue with the standard approach which
uses multiple input states in d dimensions and considers the
complete data set as a whole (rather than simply performing
state tomography on each output state independently [15]).
One can easily verify that E (ρ) = TrHin [(ρT ⊗ I)CE ] which
implies that the forward model can be rewritten as

pij = Tr
([

ρT
i ⊗ Ej

]
CE

)
. (5)

Now the cost function has a new argument f (E ) → f (CE ).
The gradient of f with respect to this new argument follows
from operator calculus:

∇f (CE ) = ∂f (CE )

∂CE
= −

∑
ij

nij

pij

ρi ⊗ ET
j . (6)

These expressions can be vectorized to enable faster evalua-
tion on a computer (see Appendix A).

C. Constraints and projections

Just as some d × d operators fail to qualify as proper
density matrices (quantum states), E must satisfy certain
constraints in order for it to represent a proper quantum
process. First, it should be completely positive (CP). This
means that it must preserve the positive semidefiniteness of
an arbitrary input state when acting on only a part of a
larger space of arbitrary dimension: ρ � 0 ⇒ [E ⊗ Id ′ ](ρ) �
0 ∀d ′. A theorem due to Choi [18] states that the complete
positivity of E is equivalent to the positive semidefiniteness
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of CE [19]:

E ∈ CP ⇔ CE � 0. (7)

Since CP is a convex set, we can find the closest CP map to
any given Hermitian superoperator by using a projection of
its Choi matrix onto the set of positive-semidefinite operators.
This is achieved via

CP (CE ) = V max(D, 0) V † (8)

with CE = V DV †, i.e., through removing negative terms in
the eigendecomposition of CE . CP is then a projection orthog-
onal under the Frobenius norm [20]. Second, it is common to
assume the process satisfies the property of trace preservation
(TP): Tr(E (ρ)) = Tr(ρ) ∀ρ. In the Choi operator picture, this
is equivalent to the condition

TrHout (CE ) = I, (9)

and the TP set is therefore defined by an affine constraint
[21]. In Appendices B and C, we (respectively) explain
why the TP constraint makes QPT a nontrivial extension of
state tomography, and discuss relaxing the constraint to trace
nonincreasing processes (which are probabilistic). We recast
Eq. (9) as Mvec[CE ] = vec[I], defining

M =
∑

k

I ⊗ 〈k| ⊗ I ⊗ 〈k|. (10)

The vec[·] operation reshapes its argument into a vector, and
we denote the inverse operation by vec−1[·]. The orthogonal
projection onto TP is the solution to

min
C

1
2‖vec[C] − vec[CE ]‖2 such that

Mvec[C] = vec[I] (11)

given by

T P (CE ) = vec−1[vec[CE ] − M†(MM†)−1

× (Mvec[CE ] − vec[I])]

= vec−1[vec[CE ] − 1

d
M†Mvec[CE ]

+ 1

d
M†vec[I]]. (12)

In the second line, we used MM† = dI ⊗ I; it is useful to note
that M†M = ∑

ij I ⊗ |j 〉〈i| ⊗ I ⊗ |j 〉〈i|.

III. COMPOSITE PROJECTION

It is not obvious that the ability to separately project into
the CP and TP sets of superoperators enables projection into
the intersection set CPTP. While CP and T P are separately
projections, their sequential action will not generally result in
a matrix belonging to CPTP (unlike the equivalent sequential
actions for projection onto quantum states [22]). This may be
intuited with the help of the geometrical picture in Fig. 1(b).
Repeated averaged projections, however, defined (at iteration
k of the outer loop of our algorithm) by

H 0 = Ck
E , H l+1 = 1

2 (T P (Hl ) + CP (Hl )), (13)

will converge (in linear time [23]) to a point in CPTP [see
Fig. 1(b)]. Dykstra’s alternating projection algorithm is a

superior alternative, which we choose because it achieves pro-
jection CPT P (CE ) onto the closest point in the intersection of
the sets [24]. A similar method was used in Ref. [25] to solve
a feasibility problem where input and output states are given
and an exact but nonunique solution is sought. By contrast the
ML approach (which we adopt) finds the best possible fit to
some given, noisy data and treats the more realistic situation
where an exact solution cannot be expected. Pseudocode for
this subroutine (showing our use of a robust stopping criterion
due to Birgin and Raydan [24]) is given below.

Algorithm 1 CPT P projection subroutine

1: Input: C

2: Output: C⊥ ∈ CPTP such that
‖C − C⊥‖2

2 � ‖C − B‖2
2 ∀B ∈ CPTP

3: Set: p0 = q0 = y0 = 0, k = 0, x0 = vec[C]
4: while ‖pk−1 − pk‖2 + ‖qk−1 − qk‖2 + |2p

†
k−1(xk − xk−1)| +

|2q
†
k−1(yk − yk−1)| > 10−4 do

5: yk = vec[T P[vec−1[xk + pk]]]
6: pk+1 = xk + pk − yk

7: xk+1 = vec[CP[vec−1[yk + qk]]]
8: qk+1 = yk + qk − xk+1

9: k = k + 1;
10: Return C⊥ = vec−1[xk+1]

A. Proposed algorithm: pgdB

Returning to the main problem of QPT, we are now ready
to apply the principle of projected gradient descent. Such
an approach has recently been shown to offer speed benefits
when applied to quantum state tomography [22,26,27]. Ap-
plying it to QPT implies taking a single gradient descent step
before running an alternating projection [28] under CP and
T P until this “inner loop” converges, before taking another
gradient descent step and repeating. Formally the ML-QPT
problem is written

minimize
CE∈Cd2×d2

f = −
∑
ij

nij ln
(
Tr

([
ρT

i ⊗ Ej

]
CE

))
subject to CE� 0 (CP constraint),

TrHout (CE )= Id×d (TP constraint), (14)

which our proposed algorithm solves via the iterative update
rule:

C0
E = Id2×d2/d,

Ck+1
E = CPT P

(
Ck
E − 1

μ
∇f

(
Ck
E
))

. (15)

Here μ is a step-size metaparameter. At each iteration a
step is taken in the locally downhill direction of f , with
the aim of increasing the likelihood, before a projection
ensures that the constraints are satisfied (up to any desired
tolerance) [see Fig. 1(c)]. Pseudocode of the full algorithm
pgdB is given below and shows our implementation of
backtracking (Armijo line search) to improve convergence
times [20,29,30].
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Algorithm 2 pgdB

1: k = 0
2: Initial estimate: C0

E = Id2×d2/d

3: Set metaparameters: μ = 3/(2d2), γ = 0.3
4: while f (Ck

E ) − f (Ck+1
E ) > 1 × 10−10 do

5: Dk = CPT P[Ck
E − 1

μ
∇f (Ck

E )] − Ck
E

6: α = 1
7: while f (Ck

E + αDk ) > f (Ck
E ) + γα〈Dk, ∇f (Ck

E )〉 do
8: α = 0.5α

9: Ck+1
E = Ck

E + αDk

10: k = k + 1
11: Return CEest = Ck+1

E

It is important to point out that, although by our choice of f

the considered problem is convex (meaning there are no local
optima which are not global optima), there may nevertheless
be regions (where pij = 0 for some i, j ) where f has an
undefined gradient and where the likelihood is stationary
[31]. These subspaces correspond to those processes which
take ρi to a state orthogonal to Ej . The probability of a
randomly chosen process lying within these subdimensional
regions is low. However, an iteration of our algorithm might
encounter such a region, causing the algorithm to stall: this
is especially the case since projections tend to result in rank
deficient matrices. Our solution to this issue is presented in
Appendix D.

Note that our approach can be adapted to solve other
constrained optimization problems over quantum processes:
whenever the cost function f is convex and continuously
differentiable the projected gradient descent procedure is
guaranteed to converge to an optimal solution [32].

B. Linear inversion with a final projection (LIFP)

To show that our CPTP projection has applications in
QPT other than for ML, we present a further algorithm
based on linear inversion of a vectorized form of Eq. (5),
vec[pij ] = Avec[CE ], where the rows of A are composed of
vec[ρi ⊗ ET

j ]T . To allow for a comparison with the manifestly
physical approach of the ML methods, we upgrade naïve
linear inversion so as to force it to also produce physical
estimates—simply by applying our composite CPTP projec-
tion just once. We call the resultant estimator linear inversion
with a final projection (LIFP):

CLIFP
E := CPT P (vec−1[A+n]), (16)

where A+ = A†(AA†)−1 is the pseudoinverse of A [14] and
n = vec[nij ]. This approach is in the same spirit as the “quick
and dirty” state tomography approach used by Kaznady and
James [33], suggested as an alternative to full-blown optimiza-
tion. For full details, see Appendix E.

IV. NUMERICAL BENCHMARKING

Unlike other approaches that require an orthonormal op-
erator basis [13], ours is flexible enough to deal with any
informationally complete set of preparations and measure-
ments. To test the performance of our proposed algorithm, we
considered the reconstruction of qudit processes, with the d2

preparations ρi = |ψi〉〈ψi | projecting onto the following pure
states:

|ψi〉 =

⎧⎪⎨
⎪⎩

|j 〉, j = 1, . . . , d
|j〉+|k〉√

2
, j = 1, . . . , d, k > j

|j〉+√−1|k〉√
2

, j = 1, . . . , d, k > j,

(17)

and a positive operator valued measure (POVM) formed with
the 2d2 elements

Ej =
{
ρi/d

2, i = 1, . . . , d2

I/d2 − ρi/d
2, i = 1, . . . , d2,

(18)

which resolve to the identity
∑

j Ej = I. This choice of
preparations and measurements is a very practical one, when
compared with the use of symmetric informationally com-
plete POVMs (SIC-POVMs) [34] or ancillas [16,17] which
require much greater experimental effort. Appendix F shows
how the choice of measurement and preparation operators
affects the conditioning of the optimization problem. We
ignore systematic errors in state preparation and measurement
(so-called SPAM errors): gate set tomography [9,35,36] is a
recently proposed solution for a self-consistent characteriza-
tion in the presence of such imperfections.

We generated random, purity >90% CPTP maps CEtrue

in d = 2, . . . , 8, simulating multinomial random data with
sample size Ni = N ranging from 10 to 109 (see Appendix H).
Throughout our simulations we normalize the data such that∑

j nij = 1. Although this of little consequence for ML and
other optimization approaches (the cost function is merely
scaled), it is an important step for linear inversion and LIFP,
since the latter approach is based on treating the data as
probabilities—hence the need to normalize them into frequen-
cies rather than raw counts.

We also simulated the infinite-data case by setting the
frequencies equal to the theoretical probabilities N → ∞ ⇒
nij = pij . Although not a realistic situation this is a useful
device to compare various iterative QPT algorithms as the
limit of many observations is approached, where the recon-
struction error is dominated by numerical errors rather than
noise in the data. We then ran our algorithm (as well as
benchmark algorithms) to find Cest. We recorded running
times and accuracies for each. The figure of merit for accuracy
was taken to be the J distance, defined as

J (Eest, Etrue) = ∥∥CEest − CEtrue

∥∥
tr/2d. (19)

Here ‖ · ‖tr is the trace norm, or sum of singular values, and
J (Eest, Etrue) ∈ [0, 1] is related to the average probability of
distinguishing the two processes [37]. Simulations were run
using MATLAB R2017a and CVX v2.1 on an Intel Core i7-4790
3.6 GHz with 8 MB L3 cache.

A. Benchmark 1: Diluted iterations

The state-of-the-art algorithm for ML-QPT is the technique
of diluted iterations (DIA), devised by Fiurasek and Hradil
in 2001 [38], who adapted an algorithm for quantum state
tomography known as diluted RρR [39]. The main idea is to
exploit an extremal equation obeyed by the ML-CPTP map:

CE = �−1(CE )∇f (CE )CE∇f (CE )�−1(CE ), (20)
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where �(CE ) = (TrHout (CE ))1/2 ⊗ I is derived by incorporat-
ing the TP constraint through a Lagrange multiplier. This
equation is treated as an iterative update rule. The algorithm
has been been applied to real data, mostly with Fock-space
truncated optical (i.e., continuous variable) systems, accord-
ing to the formulation by Anis and Lvovsky [40]. Cooper
et al. reported that the algorithm ran for 6.5 h (with a machine
precision stopping rule) to reconstruct a d = 6 conditional
state engineering process [41]. Fedorov et al. performed QPT
of a beam splitter, revealing the Hong-Ou-Mandel effect [42].
The algorithm typically requires diluting with a parameter
0 < ε � 1 to prevent f from oscillating:

Rk = ε∇f
(
Ck
E
) + (1 − ε)I,

�k = (
TrHout

(
RkCk

ER
k
))1/2 ⊗ I,

Ck+1
E = (�k )−1RkCk

ER
k (�k )−1. (21)

In our application of DIA, we used a crude optimization of ε

at each iteration to prevent overshoots. Pseudocode is shown
below:

Algorithm 3 DIA

1: k = 0
2: Initial estimate: C0 = Id2×d2/d

3: while f (Ck
E ) − f (Ck+1

E ) > 1 × 10−10 do
4: ε = 1
5: Rk = ε∇f (Ck

E ) + (1 − ε)I
6: �k = (TrHout (R

kCk
ER

k ))1/2 ⊗ I

7: while f ((�k )−1RkCk
ER

k (�k )−1) > f (CE ) do
8: ε = ε/2;
9: Rk = ε∇f (Ck

E ) + (1 − ε)I
10: �k = (TrHout (R

kCk
ER

k ))1/2 ⊗ I

11: Ck+1 = (�k )−1RkCk
ER

k (�k )−1

12: k = k + 1
13: Return Cest = Ck+1

B. Benchmark 2: MOSEK

The problem (14) is straightforward to enter into the CVX

modeling environment [43], which can then call one of a num-
ber of general-purpose solvers. CVX solves problems featuring
logarithmic cost functions with a successive approximation
method. We found SEDUMI failed to find a solution and that
SDPT3 succeeded but was slow. We therefore settled on the
commercial solver MOSEK: it usually produced good results
but sometimes failed in higher dimensions. We estimate the
failure probability to be as high as 15% (see Appendix G).

V. RESULTS AND CONCLUSIONS

Our results are summarized in Fig. 2: the CPTP-projection-
based algorithms are not only faster than existing approaches,
but significantly more accurate. This is especially the case
as d increases but is true even for d = 4 (corresponding, for
example, to a two-qubit gate such as the controlled-NOT).

We confirmed that due to the iterative nature of pgdB,
higher accuracies can be achieved by adjusting the stopping
criterion and other metaparameters, at the expense of a longer
algorithm runtime. LIFP is a quick and effective method

suited to situations with low noise and low d, and sacrificing
a small amount of accuracy, typically less than an order of
magnitude, with respect to the iterative methods. Appendix H
includes results corresponding to reconstruction of full rank
processes, which show qualitatively similar trends.

Our results indicate that CPTP projection is a valuable and
versatile tool for QPT, holding great promise for applications
where time and accuracy are both important [44].
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APPENDIX A: VECTORIZING THE PROBLEM

Our forward model may be vectorized as p := vec[pij ] =
Avec[CE ] upon defining

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

vec[ρ∗
1 ⊗ E

†
1]†

...
vec[ρ∗

1 ⊗ E
†
N ]†

...
vec[ρ∗

N ⊗ E
†
N ]†

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vec
[
ρ1 ⊗ ET

1

]T

...
vec

[
ρ1 ⊗ ET

N

]T

...
vec

[
ρN ⊗ ET

N

]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

Now f (CE ) = −nT ln(p) and ∇f (CE ) = −A†η with ηij =
nij /pij and η = vec[ηij ] and so on. These facts follow from
elementary matrix calculus along with the identity Tr(A†B ) ≡
vec[A]†vec[B]. Shang et al. present a method to speed up
calculation of the gradient when A has a tensor product
structure [27]: unfortunately this does not help in our case
because we have only a single tensor product ρT

i ⊗ Ej and
multiple tensor products are needed to show an advantage.

In a slight abuse of notation, above we have denoted the
vectorization of a matrix M by vec[Mij ]. where Mij are the
matrix elements of M .

APPENDIX B: TRACE PRESERVATION CONSTRAINT

Counter to a common misconception, the celebrated
“Choi-Jamiolokowski isomorphism” [45] does not imply a 1:1
correspondence between CPTP maps and density operators
CE/Tr(CE ) in a higher-dimensional space. As discussed in the
main paper, some such density operators do not correspond
to CPTP maps [45] (see, for example, Refs [46,47]). As an
example of why a stronger condition is important, consider
the Choi matrix C� = diag(0.1, 0.1, 0.1, 1.7). This is pro-
portional to a perfectly valid, classically correlated two-qubit
state. It is manifestly positive, and has trace equal to 2. Note,
however, that Tr2(C�) = diag(0.2, 1.8) �= I. This means that
it does not represent a trace-preserving map. Note that the
given example actually increases the trace of some states and
decreases the trace of others so it is neither in TP nor in the
set of trace nonincreasing processes (TNI, discussed below).
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FIG. 2. (a) Our proposed algorithm pgdB (p, dark red) is significantly faster than the state-of-the-art ML-QPT algorithm DIA (D, light
orange) when N � 103. Our other proposed algorithm LIFP (L, dark blue) is faster still, due to its noniterative nature. (b) Reconstruction error
(J distance) decreases as the number of observations, N , increases. All of the iterative ML algorithms produce the same quality estimate until
N � 106: as statistical noise is made smaller the accuracy of the algorithms deviates, with our proposed algorithms producing much better
estimates. We could not simulate arbitrarily high N multinomial noise, but can effectively consider the N → ∞ case by setting nij = pij

(d = 4 case shown). LIFP does not find the ML solution and, therefore, sacrifices accuracy in all but the highly idealized case of infinite
counts. (c) Real and imaginary parts of a typical, purity >90%, d = 4 Choi matrix returned by our algorithm. (d) Accuracy and run time for
all iterative ML algorithms as d increases, with negligible statistical noise: pgdB is faster and more accurate.

APPENDIX C: PROJECTION ONTO THE SET OF TRACE
NONINCREASING PROCESSES

It will be possible to relax our algorithmic projections
in such a way as to search in larger spaces, i.e., supersets
of TP. This may be important for certain applications: in
fact, whenever there is loss or some other nondeterministic
process such as a measurement, CPTP maps (or “channels”)
are replaced by CPTNI maps (or “operations”) which are
trace nonincreasing. The trace of the output density matrix
corresponds to the probability of success of the map. CP maps
admit a Kraus representation [18]:

E (ρ) =
∑

i

KiρK
†
i . (C1)

The difference in trace between an input and an output state is
given by

Tr(E (ρ)) − Tr(ρ) = Tr

(∑
i

KiρK
†
i

)
− Tr(ρ)

= Tr([Y − I]ρ), (C2)

where we used the cyclic property of the trace and defined
Y = ∑

i K
†
i Ki . Since ρ is an arbitrary positive operator, it is

clear that trace preservation is equivalent to

Y = I (TP). (C3)

In fact, it is always possible to diagonalize Y with a similarity
transformation V . Let λi be the eigenvalues of Y [48]. Then

Tr(E (ρ)) − Tr(ρ) = Tr(diag[λ1 − 1, λ2 − 1, . . .]V†ρV ).
(C4)

So a general CP map will change the trace of an input state
depending on the eigenvalues of Y , and on the projection of
the state onto the eigenvectors of Y . We can consider the
case where the process has a uniform and known success
probability p:

Y = pI (USp ). (C5)

The projection onto this set is easy: simply alter the TP
projection given in Eq. (12) by taking vec[I] → pvec[I]. If
we demand that the trace is nonincreasing for an arbitrary
input state, we have

Y � I (TNI). (C6)

A commonly used approach to reconstruct TNI operations
involves introducing of a fictitious “shelving” state (thereby
extending the space d → d + 1 [40]). One then performs
a TP reconstruction in the larger space before projecting
out the fictitious state. We present an alternative here that
avoids (the possibly very expensive downside of) having to
increase the size of the Hilbert space. By the definition of the
Choi matrix,

TrHout (CE ) = Y . (C7)

It is straightforward to project onto TNI (which is a convex
superset of TP). The correlations χ in the Choi matrix are
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FIG. 3. Our conditioning step means the pgdB algorithm is robust to reconstruction of rank-deficient processes, even with a multinomial
likelihood function. The algorithm never stalls but in rare cases the accuracy is adversely affected. Here d = 2 and ε = 1 × 10−16.

implicitly defined through

CE = TrHout (CE ) ⊗ I + I ⊗ TrHin (CE ) + χ. (C8)

We can achieve the TNI projection via

T NI(CE ) = CE + 1

d

[
G
(
TrHout (CE )

) − TrHout (CE )
] ⊗ I,

(C9)

where we introduced G, defined and computed via

G(X) = arg min
TrHout (B )�I

∥∥TrHout (B ) ⊗ I − X ⊗ I
∥∥ (C10)

= arg min
TrHout (B )�I

∥∥TrHout (B ) − X
∥∥ · ‖I‖ (C11)

= arg min
TrHout (B )�I

∥∥TrHout (B ) − X
∥∥ (C12)

= arg min
E�I

‖E − X‖ (C13)

= V min(D, 1) V † (C14)

with X = V DV † [49]. To see that we have the orthogonal
projection, consider that for any B ∈ TNI we may write B =
TrHout (B ) ⊗ I + I ⊗ TrHin (B ) + χB . Now

‖B − E‖ = ∥∥TrHout (B − CE ) ⊗ I

+ I ⊗ TrHin (B − CE ) + χB − χ
∥∥ (C15)

�
∥∥TrHout (B − CE ) ⊗ I

∥∥
+ ∥∥I ⊗ TrHin (B − CE )

∥∥ + ‖χB − χ‖ (C16)

�
∥∥TrHout (B − CE ) ⊗ I

∥∥
� min

TrHout (B )�I

∥∥TrHout (B ) ⊗ I − TrHout (CE ) ⊗ I
∥∥

(C17)

= min
TrHout (B )�I

∥∥TrHout (B ) − TrHout (CE )
∥∥ · ‖I‖

= min
TrHout (B )�I

1

d

∥∥TrHout (B ) − TrHout (CE )
∥∥ (C18)

= ‖T NI (CE ) − CE‖, (C19)

and therefore T NI (CE ) is the closest element in TNI to CE .
We verified this numerically using CVX. Using the techniques
shown in the main text, this result enables tomography of

quantum operations belonging to CPTNI without expanding
the reconstruction space.

APPENDIX D: STALLING

As mentioned in the main text, it is possible for pgdB to
stall if a situation with pij = 0 is encountered, and in this
section we discuss a simple solution allowing the algorithm
to continue. Importantly, our proposed solution alerts the user
to when the stalling fix has been applied, turning such a
rare occurrence into a heralded event. It is important to note
that other potential solutions also exist, but a comprehensive
study of their merits and drawbacks (including bounding any
systemic inaccuracies that arise) are beyond the scope of the
present work.

One straightforward solution to keeping the algorithm
running when a pij = 0 situation arises is to modify the
cost function and gradient at each iteration with the heralded
conditioning step:

pij = max(pij , ε) (D1)

for ε some small parameter. It is clearly possible that the
algorithm never encounters pij < ε; in that case our condi-
tional modification does not occur and we proceed toward the
ML solution. In the case that the modification is triggered,
the algorithm is capable of raising a flag, warning the user
to interpret the resultant solution accordingly; it would also
be possible for the flag to trigger a restart of the algorithm
with a random initial guess. In theory, the ML solution cannot
have any pij = 0 (since that is a zero of the likelihood, which
is positive semidefinite). The exception is when pij=nij=0,
trivial cases excluded by taking the convention 00 = 1. There-
fore,

pij =
{
pij , pij > 0
ε, pij = 0 (D2)

is sufficient to keep the algorithm going without altering the
turning points of the objective function. In practice, machines
with finite precision cannot calculate the logarithm of very
small numbers, necessitating the stronger conditioning step
given in Eq. (D1). The implication is that, while the ML
solution cannot be at pij = 0, it can have pij < ε. Therefore,
with low probability the conditioning step can affect the
accuracy of the reconstructed solution (but this possibility is
heralded). The probability of this occurring is related to the
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(a) (b)

FIG. 4. Distribution of (a) the smallest eigenvalue of CLI
E and (b) distance ‖Tr2(CLI

E ) − I‖2 to the TP set under various degrees of
multinomial shot noise in d = 4 with an ensemble of full-rank CPTP maps. As the number of clicks, N , increases, the typical magnitude
of the smallest eigenvalue decreases, as does the distance to TP. Unphysical estimates (e.g., where the smallest eigenvalue is negative) occur
in almost all cases (1000 sampled for each value of N ).

Kraus rank of the process (see Fig. 3, which shows that the
conditioning step prevents the stalling problem with no impact
on the reconstruction error in most cases).

APPENDIX E: LINEAR INVERSION WITH A
FINAL PROJECTION ONTO CPTP

The most straightforward approach to inverting the forward
model is arguably the approach of linear inversion. Here, the
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FIG. 5. Performance (in terms of (a) time and (b) accuracy)
of linear inversion with a final projection (LIFP) compared to the
ML techniques, for d = 7 quasipure processes. When there is no
noise whatsoever N → ∞, the final projection is not necessary, and
the error is very low (consistent with the product of the machine
precision with the condition number of A). In all other cases shown,
a significant drop in precision may be seen.

estimate is

CLI
E := vec−1[A+n], (E1)

where A+ = A†(AA†)−1 is the pseudoinverse of A [14], and
A is defined in Eq. (A1). This estimator minimizes the dis-
tance in Frobenius norm between the data and the forward
model—a familiar notion of “least-squares” fitting. This no-
tion of discrepancy is distinct from the negative likelihood
used in the main paper. Note, however, that in the special case
where the likelihood is a Gaussian function, or indeed when
there is no noise at all, the two notions of discrepancy coincide
[13]. Linear inversion is a noniterative approach so it is likely
to be fast in low dimensions, although the number of floating
point operations will be O(d12) and will therefore not scale
as well as pgdB [which is O(d8)]. Furthermore, without the
explicit expression of the CP and TP constraints, there is no
guarantee of a physical estimate.

We implemented this estimator using the MATLAB back-
slash operator \, which avoids explicit calculation of the
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FIG. 6. Condition number of A as a function of d for our chosen
“minimal” set of preparations and measurements (blue) and for a
set constructed from all eigenvectors of the generalized Gell-Mann
matrices (GGM, red).
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FIG. 7. Failure frequency of CVX and the MOSEK solver, de-
pending on multinomial statistical noise log10 N and Hilbert-space
dimension d . There were 1000 points sampled for each combination
of N and d .

pseudoinverse and instead uses a method of Gaussian elimi-
nation. We projected the estimate onto the space of Hermitian
matrices CLI

E → (CLI
E + (CLI

E )†)/2 in order to investigate
their subsequently real eigenspectrum. We found that esti-
mates were unphysical with overwhelming probability (see
Fig. 4). The severity of the problem increases with shot noise.
It is therefore not possible to use the standard analytical
tools of infidelity or J distance to meaningfully compare the

accuracy of linear inversion with ML. It is worth noting that
the ML approach provides estimates with smallest eigenvalue
no less than some negative quantity which can be set arbitrar-
ily small.

To allow for a comparison with the manifestly physical
approach of ML, we upgraded linear inversion to force it to
also produce physical estimates—simply by reapplying the
composite CPTP projection derived in the main paper just
once. We call the resultant estimator linear inversion with a
final projection:

CLIFP
E := CPT P (vec−1[A+n]), (E2)

once more forgoing explicit calculation of A+ in favor of the
MATLAB backslash operator \. This approach is very much
in the same spirit as the “quick and dirty” state tomography
approach used by Kaznady and James [33]. We supplement
the results in the main paper with an investigation in d = 7,
shown in Fig. 5. The results confirm the idea that linear in-
version with a final projection is a quick and effective method
when the number of trials is taken to infinity, but that the loss
in accuracy for finite N is exacerbated in higher dimensions.
In fact, the projection is not necessary when there is zero
noise. When noise is negligible, linear inversion provides a
very high-precision estimate due to its noniterative nature, but
our results suggest that ML approaches this situation faster as
multinomial noise is decreased. Otherwise, in the physically
relevant scenario of finite N a significant loss in precision is
clear to see. The running time of linear inversion with a final

FIG. 8. Reconstruction of full-rank processes (a) Our proposed algorithm pgdB (p, dark red) is significantly faster than the state-of-the-art
ML-QPT algorithm DIA (D, light orange) when N � 103. LIFP (L, dark blue) is faster still, due to its noniterative nature. (b) Reconstruction
error (J distance) decreases as the number of observations, N , increases. All algorithms produce approximately the same quality estimate.
We could not simulate arbitrarily high N multinomial noise, but can effectively consider the N → ∞ case by setting nij = pij , where pgdB
becomes the most accurate ML algorithm (d = 4 case shown). LIFP does not find the ML solution, and therefore sacrifices accuracy in all but
the highly idealized case of infinite counts. (c) Real and imaginary parts of a typical, full-rank, d = 4 Choi matrix returned by our algorithm.
(d) Accuracy and run time for all iterative ML algorithms as d increases, with negligible statistical noise: pgdB is faster and more accurate.
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projection can be favorable in low dimensions but will become
much slower than the other methods as d increases.

APPENDIX F: CONDITION NUMBER OF A

Figure 6 shows the condition number of A rising with d, for
the “minimal” choice of preparations and measurements made
in the main text. A high condition number means a slower
run time and a less accurate result in general. The condition
number might be brought down by considering overcomplete
preparations and measurements, or SIC-POVMs [34]. The
density of A is typically around 10% or less, meaning effi-
ciency savings for sparse operations with MATLAB.

The computational complexity of the gradient-based algo-
rithms is dominated by the matrix-vector product required to
calculate the gradient. The complexity is O(d4ncombs), where
ncombs is the number of combinations of preparations and
measurement outcomes. Our choice above implies ncombs =
2d4. An overcomplete set would impact running time: for
example, choosing the eigenvectors of the generalized Gell-
Mann matrices [50] implies ncombs = (d3 − d )2, and raises the
complexity from O(d8) to O(d10).

APPENDIX G: FAILURE OF CVX

Depending on dimensionality and statistical noise, we
found the experimental method of successive approximation
used by CVX [43] to be unreliable. This is a known issue
and to be expected due to the heuristic nature of the method.

Figure 7 shows the failure rate to be as high as 15%. The data
for MOSEK used in Figs. 2, 5, and 8 are postselected on the
algorithm succeeding.

APPENDIX H: GENERATION OF FULL-RANK
AND QUASIPURE RANDOM CPTP MAPS

Random CPTP maps may be uniformly randomly gener-
ated according to a prescription by Bruzda et al. [51]:

Y = (
TrHout [XX†]

)1/2
, (H1)

B = (I ⊗ Y−1/2)XX†(I ⊗ Y−1/2), (H2)

where X is a d2 × M complex random matrix with entries
distributed normally. The Kraus rank of the CPTP map is M .
We generated d2 rank-1 matrices Bi and formed their convex
combination CEtrue = ∑

i PiBi with an exponentially decaying
probability distribution Pi with

∑
i P

2
i = 0.9. The resulting

ensemble is CPTP (by convexity) and has purity Tr[C2
E ]/d2

no less than 90%. We call this the “quasipure” ensemble.
Using the first part of the above procedure we generated

an alternative data set corresponding to full-rank processes.
The results are shown in Fig. 8, where the lower purity of this
ensemble (compared to the quasipure ensemble of Fig. 2) is
apparent from the relative closeness of a typical Choi matrix
to diag(1, 1, . . . 1)/d. Our proposed algorithm is still superior
to existing methods, although less dramatically so.
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