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Optimal quantum-walk search on Kronecker graphs with dominant or fixed regular initiators
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In network science, graphs obtained by taking the Kronecker or tensor power of the adjacency matrix of an
initiator graph are used to construct complex networks. In this paper, we analytically prove sufficient conditions
under which such Kronecker graphs can be searched by a continuous-time quantum walk in optimal �(

√
N )

time. First, if the initiator is regular and its adjacency matrix has a dominant principal eigenvalue, meaning
its unique largest eigenvalue asymptotically dominates the other eigenvalues in magnitude, then the Kronecker
graphs generated by this initiator can be quantum searched with probability 1 in π

√
N/2 time, asymptotically,

and we give the critical jumping rate of the walk that enables this. Second, for any fixed initiator that is regular,
nonbipartite, and connected, the Kronecker graphs generated by it are quantum searched in �(

√
N ) time. This

greatly extends the number of Kronecker graphs on which quantum walks are known to optimally search. If the
fixed, regular, connected initiator is bipartite, however, then search on its Kronecker powers is not optimal, but
is still better than a classical computer’s O(N ) runtime if the initiator has more than two vertices.

DOI: 10.1103/PhysRevA.98.062334

I. INTRODUCTION

Many real-world networks, despite occurring in vastly dif-
ferent physical systems ranging from molecular interactions
in cells [1] to computer networks [2], share similar properties.
For example, networks tend to be small-world [3], meaning
the number of hops to reach any node from another is small.
Real networks are also often scale-free [4], meaning the distri-
bution of the number of neighbors of each node is heavy-tailed
or follows a power law. Several models have been proposed
to generate networks possessing such properties [4–6]. One
model is to use Kronecker graphs [7], and they have been
used to generate graphs that mimic the network of citations
of arXiv preprints and U.S. patents, and the trust network of
the Epinions social network [8].

In the deterministic model of Kronecker graphs, one begins
with an “initiator” graph of M vertices whose adjacency
matrix A is an M × M matrix, where Aij = 1 if vertices i

and j are adjacent and 0 otherwise. The j th order Kronecker
graph is the graph whose adjacency matrix is

A⊗j = A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
j times

, (1)

where ⊗ denotes the Kronecker or tensor product. The result-
ing Kronecker graph has N = Mj vertices. For example, the
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adjacency matrix of the complete graph of three vertices is

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠.

Then the second-order Kronecker graph generated by this has
32 = 9 vertices, and its adjacency matrix is

A⊗2 = A ⊗ A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 0 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The resulting graph is shown in Fig. 1.
Recently, Wong et al. [9] proposed investigating how

quickly a quantum computer searches Kronecker graphs for
a marked node using a quantum walk. Quantum walks are
a model of universal quantum computation [10] that have
been used to develop quantum algorithms for searching [11],
element distinctness [12], triangle finding [13], and evaluating
boolean formulas [14]. Searching the complete graph of N

vertices is equivalent to searching an unordered database of
N items, and a quantum walk accomplishes this in O(

√
N )

time [15,16], the same as Grover’s algorithm [17]. If the graph
is incomplete, however, it is generally unknown under what
conditions a graph supports optimal quantum search [18], i.e.,

2469-9926/2018/98(6)/062334(10) 062334-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.062334&domain=pdf&date_stamp=2018-12-27
https://doi.org/10.1103/PhysRevA.98.062334


ADAM GLOS AND THOMAS G. WONG PHYSICAL REVIEW A 98, 062334 (2018)

1

2

3

K3

1 2 3
K3

1 2 3

4 5 6

7 8 9

K3 ⊗ K3

FIG. 1. The complete graph of three vertices K3 and its second-
order Kronecker power K3 ⊗ K3.

in O(
√

N ) time, although global symmetry [19], connectivity
[20], and regularity [21] are some properties that have been
explored.

In this paper, we consider search on Kronecker graphs us-
ing a continuous-time quantum walk [16], where the quantum
walk is effected by the adjacency matrix. For a regular graph,
this is equivalent to a quantum walk effected by the graph
Laplacian [16], but if the graph is irregular, the two quantum
walks can differ [22]. The system |ψ (t )〉 begins in a uniform
superposition |s〉 over all N vertices

|ψ (0)〉 = |s〉 = 1√
N

N∑
i=1

|i〉. (2)

In the adjacency quantum walk, this evolves by Schrödinger’s
equation with Hamiltonian

H = −γA⊗j − |w〉〈w|, (3)

where γ is a positive, real parameter corresponding to the
jumping rate (amplitude per unit time) of the quantum walk,
and |w〉 is the marked vertex to search for. Computationally,
the first term effects the quantum walk, and the second term
is a Hamiltonian oracle [23]. The jumping rate must be
judiciously chosen to take some “critical value” γc in order
for the system to evolve beyond a trivial phase [16].

Mathematically, one can instead consider a Hamiltonian
with positive terms

H+ = γA⊗j + |w〉〈w|. (4)

Although evolving by H and H+ for time t results in different
quantum states, the probability of getting |w〉 when measuring
the position of the walker (i.e., the success probability) is
identical in both cases. Physically, evolving by H+ for time
t is equivalent to evolving by H for time −t , i.e., backward in
time.

Wong et al. [9] explored this search algorithm on Kro-
necker graphs where the initiator was the complete graph of M

vertices. They completely solved it for Kronecker powers 1, 2,
and 3, giving the critical jumping rate γc and proving that the
success probability reaches 1 at time π

√
N/2, asymptotically.

They also conjectured from numerical simulations that higher-
order Kronecker graphs with the complete initiator are also
searched in the same time, but their analytical method of

degenerate perturbation theory was not conducive to proving
it analytically.

In this paper, we generalize this by considering Kronecker
graphs where the initiator is regular and has the property
that its adjacency matrix A has a unique principal eigen-
value λA,1 that dominates in magnitude the other eigen-
values λA,2, . . . , λA,M , asymptotically for large M . That is,
using little-o notation [24], for every i = 2, 3, . . . , M we
have λA,i = o(λA,1). This includes the complete graph of
M vertices as a special case since its adjacency eigenvalues
are

λA,1 = M − 1 and λA,i�2 = −1, (5)

with respective multiplicities 1 and M − 1, so the principal
eigenvalue is unique and dominates all the others in magnitude
for large M . So when we say an initiator has a dominant prin-
cipal eigenvalue, we mean a sequence of initiators where λA,1

is increasingly dominant as M increases. Note that possessing
a dominant principal eigenvalue is stronger than possessing
a spectral gap since a spectral graph only assumes that the
principal eigenvalue dominates the second eigenvalue. For
example, as we will discuss in Sec. III, the regular complete
bipartite graph has a spectral gap, but its principal eigenvalue
does not dominate all the other eigenvalues.

In Sec. II, we prove that all Kronecker graphs generated by
such regular, dominant-eigenvalue initiators asymptotically
support optimal quantum search, reaching a success proba-
bility of 1 at time π

√
N/2, and we give the critical jumping

rate γc that enables this. We prove this using properties of
Kronecker products, a Lemma by Chakraborty et al. [25], and
an extension by Glos et al. [26]. This general result proves
Wong et al.’s conjecture with the complete initiator [9] as a
special case. Then in Sec. III, we explore graph connectivity
and optimal quantum search, showing that shifting and rescal-
ing the quantum walk term of the Hamiltonian is necessary
in some situations for proving the optimality of quantum
search, and we give optimal parameters that maximize the
lower bound on the success probability. Finally, in Sec. IV,
we explore fixed initiators (where M is constant) and prove
that if they are regular, nonbipartite, and connected, then the
Kronecker graphs generated by such initiators are optimally
searched in �(

√
N ) time. On the other hand, if the fixed,

regular, and connected initiator is bipartite, then optimal quan-
tum search is not achieved. In this bipartite case, although the
runtime is slower than O(

√
N ), it is still better than a classical

computer’s O(N ) runtime if M > 2.
In relation to prior results, our work is a generalization of

[9], which focused on the complete graph as the initiator since
the complete graph is an initiator with a dominant principal
eigenvalue. While our results are based on a Lemma by [25],
their work applies it to Erdős-Rényi random graphs, whereas
we focus on Kronecker graphs. Both Erdős-Rényi random
graphs and Kronecker graphs are important in the study of
complex networks, but the types of networks they generate
have stark differences. Finally, our results differ from [27],
which used search Hamiltonian related to an interpolating
Markov chain; our search Hamiltonian follows the original
proposal of Childs and Goldstone [16].
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II. DOMINANT EIGENVALUE INITIATORS

First, let us prove that if the initiator has a dominant prin-
cipal eigenvalue, then the Kronecker graphs generated by it
also have a dominant principal eigenvalue. We label and order
the eigenvalues of the initiator graph’s adjacency matrix A as
λA,1 � λA,2 � · · · � λA,M with corresponding eigenvectors
|vA,1〉, |vA,2〉, . . . , |vA,M〉. Then, the eigenvalues of A⊗j , the
adjacency matrix of the j th order Kronecker graph, are scalar
products of the eigenvalues of A, and the eigenvectors of A⊗j

are the Kronecker products of the eigenvectors of A. As a
proof

A⊗j (|vA,i〉 ⊗ · · · ⊗ |vA,k〉)

= (A ⊗ · · · ⊗ A)(|vA,i〉 ⊗ · · · ⊗ |vA,k〉)

= A|vA,i〉 ⊗ · · · ⊗ A|vA,k〉
= λA,i |vA,i〉 ⊗ · · · ⊗ λA,k|vA,k〉
= (λA,i . . . λA,k )(|vA,i〉 ⊗ · · · ⊗ |vA,k〉).

Using this property of Kronecker products, it follows that
the principal eigenvalue of A⊗j is (λA,1)j . Similarly, the
eigenvalue(s) of A⊗j with the second-largest magnitude takes
the form (λA,1)j−1λA,i for some i ∈ {2, . . . , M}. For example,
if the initiator is the complete graph of M vertices, whose
eigenvalues are given in (5), then the j th order Kronecker
graph has principal eigenvalue (M − 1)j , the second-largest
eigenvalues in magnitude are −(M − 1)j−1 with multiplicity
M , the third-largest eigenvalues in magnitude are (M − 1)j−2

with multiplicity M (M − 1)/2, and so on. In general, the
principal eigenvalue of A⊗j asymptotically dominates all the
other eigenvalues in magnitude since it contains at least one
more factor of λA,1 than the other eigenvalues, and λA,1

dominates the other λA,i�2. Therefore, if an initiator has
a dominant principal eigenvalue, its Kronecker powers also
have a dominant principal eigenvalue.

Now we prove that quantum search is fast on all Kronecker
graphs whose initiators have a dominant principal eigenvalue.
To do this, we utilize the following Lemma by Chakraborty
et al. [25], which we quote verbatim.

Lemma [25]. Let H1 be a Hamiltonian with eigenvalues
λ1 � λ2 � · · · � λk (satisfying λ1 = 1 and |λi | � c < 1 for
all i > 1) and eigenvectors |v1〉 = |s〉, |v2〉, . . . , |vk〉 and let
H2 = |w〉〈w| with |〈w|s〉| = ε. For an appropriate choice of
r = O(1), applying the Hamiltonian (1 + r )H1 + H2 to the
starting state |v1〉 = |s〉 for time �(1/ε) results in a state |f 〉
with |〈w|f 〉| � (1 − c)/(1 + c) − o(1).

Note this Lemma uses a Hamiltonian that runs backward
in time, c.f., (4). As explained by Chakraborty et al. [25], a
quantum walk effected by the adjacency matrix can be con-
nected to this Lemma by letting H1 equal the adjacency matrix
divided by its principal eigenvalue. For Kronecker graphs,
if the eigenvalues of A⊗j are labeled and ordered λA⊗j ,1 �
λA⊗j ,2 � · · · � λA⊗j ,N , we identify H1 = A⊗j /λA⊗j ,1. Then
H1 has eigenvalues λ1 = 1, λ2 = λA⊗j ,2/λA⊗j ,1, and so on.
Since λA⊗j ,1 dominates the other eigenvalues λA⊗j ,i�2, each
of the nonprincipal eigenvalues of H1 limit to 0, asymptot-
ically. So they are trivially bounded above in magnitude by
a constant c < 1, satisfying the conditions of the Lemma.
Then utilizing the Lemma, the system evolves to a state

|f 〉 that, upon measurement, yields the marked vertex with
asymptotically constant probability, i.e., using big-� notation
[24], |〈w|f 〉|2 = �(1).

For the runtime, note a regular graph of N vertices has
the uniform state (2) as its principal eigenvector, which is
the initial state of the system [28]. Then in the Lemma, ε =
〈w|s〉 = 1/

√
N , so the runtime of the algorithm is �(1/ε) =

�(
√

N ). Since the system reaches a constant success prob-
ability in time scaling as the square root of the number of
vertices, Kronecker graphs with regular, dominant eigenvalue
initiators are therefore optimally searched by a continuous-
time quantum walk in �(

√
N ) time.

More specifically, the precise runtime of a single iteration
of the algorithm can be deduced from Chakraborty et al.’s
[25] supplemental material. Combining (14) from their sup-
plemental material with the sentence after their (19), the
runtime is

t∗ = π

2〈v1|w〉

√√√√∑
i�2

〈vi |w〉2

(1 − λi )2
, (6)

where the phases of the |vi〉′s are chosen so that their inner
products with the marked vertex |w〉, i.e., 〈vi |w〉, are real and
nonnegative.

Of course, this optimal search only occurs when the jump-
ing rate γ is chosen to take some critical value. To determine
it, we can relate it to r by comparing the search Hamiltonian
in the Lemma with the typical backward-time search Hamil-
tonian (4). Doing so, we identify

γ = 1 + r

λA⊗j ,1
. (7)

So the critical γ can be determined from the critical r .
Chakraborty et al. [25] did not give an explicit closed-form
solution for the critical r , but it can be deduced by combining
(3) and (6) from their supplemental material, yielding

rc =
∑

i�2
〈vi |w〉2

1−λi∑
i�2 〈vi |w〉2 − 1. (8)

During the preparation of this paper, a similar, independent
observation of rc was made by [27]. The inner products 〈vi |w〉
may be complicated to determine, so instead, we use a simpler
approach given by Glos et al. [26] for when c scales less
than a constant. Recall from the Lemma that c is an upper
bound on the magnitudes of the nonprincipal eigenvalues of
H1. Glos et al. [26] noted that the supplemental material of
[25] gives an explicit bound on r between −c/(1 + c) and
c/(1 − c), inclusive. So if c = o(1), then r = o(1). This is
true for Kronecker graphs with dominant eigenvalue initiators
since

c = maxi=2,...,N |λA⊗j ,i |
λA⊗j ,1

= (λA,1)j−1 maxi=2,...,M |λA,i |
(λA,1)j

= maxi=2,...,M |λA,i |
λA,1

= o(1),
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where the last equality is because the initiator’s principal
eigenvalue dominates the others in magnitude. For example, if
the initiator is the complete graph (5), then H1 = A⊗j /λA⊗j ,1

has eigenvalues 1, −1/(M − 1), 1/(M − 1)2, and so on, so
the nonprincipal eigenvalues of H1 are bounded above in
magnitude by c = 1/(M − 1). Using r = o(1) and (7), the
asymptotic critical jumping rate for a j th order Kronecker
graph with a dominant eigenvalue initiator is

γc = 1

λA⊗j ,1
= 1

(λA,1)j
. (9)

For example, if the initiator is the complete graph (5), then
γc = 1/(M − 1)j , which is consistent with Wong et al.’s [9]
results when j = 1, 2, 3.

Glos et al. [26] also noted that if c = o(1), then the success
probability is not just any constant, but is asymptotically
1. Similarly, the runtime is not just �(

√
N ), but is asymp-

totically π
√

N/2. Since Kronecker graphs with dominant
eigenvalue initiators satisfy c = o(1), the success probability
and runtime are

p∗ = 1, (10)

t∗ = π
√

N

2
. (11)

Thus, we proved that Kronecker graphs with dominant eigen-
value initiators are optimally searched by a continuous-time
quantum walk, reaching a success probability of 1 at time
π

√
N/2, with the jumping rate chosen according to (9), for

large M and independently of j . Note j = 1 is the initiator
graph itself, so any graph with a dominant eigenvalue, and
its Kronecker powers, are optimally quantum searched. Since
this result only depends on M , the Kronecker power j can
either be fixed or vary: its value is not important.

As a check of this analytical result, let us numerically
simulate search on Kronecker graphs generated by Paley
graphs. A Paley graph of M vertices is defined when M

is a prime power congruent to 1 (mod 4), and vertices are
adjacent if their distance is a square in the finite field GF(M )
[29]. The Paley graphs with M = 5, 9, and 13 vertices are
shown in Fig. 2. The adjacency matrix of the Paley graph of M

vertices has a unique principal eigenvalue (M − 1)/2, and the
remaining eigenvalues are (−√

M − 1)/2 and (
√

M − 1)/2
and are degenerate (see the supplemental material of [20] for
more details). Thus, Paley graphs have a dominant principal
eigenvalue, so our analytical results apply. We expect that
for large M , the search algorithm (3) with γ chosen accord-
ing to (9) should reach a success probability of 1 (10) at
time π

√
N/2 (11). Numerically, this asymptotic behavior is

confirmed in Fig. 2 for third-order Kronecker graphs. When
M = 5, the Paley graph is too small for the asymptotic
behavior to occur, but M = 9 is better, and M = 13 gives
strong agreement, approaching a success probability of 1 at
time π

√
133/2 ≈ 73.627.

The main results from this section can be summarized by
the following theorem.

Theorem 1. Let A be an M × M adjacency matrix of a
regular graph with principal eigenvalue λA,1, and j a positive
integer. If λA,1 dominates the other eigenvalues of A for

large M , then a quantum walk on A⊗j with Hamiltonian
γA⊗j + |w〉〈w| and proper choice of jumping rate satisfying
γ = [1 + o(1)]/λj

A1
evolves from the starting state |s〉 to a

final state |f 〉 with |〈f |w〉|2 = 1 − o(1) in time π
√

Mj/2 +
o(

√
Mj ).

Note that the Lemma by Chakraborty et al. [25] only
includes one marked vertex, as does our result. With multiple
marked vertices, there may be many different spatial arrange-
ment of the marked vertices, which could affect the jumping
rate and runtime [30]. For example, for the complete graph,
the arrangement of multiple marked vertices does not affect
the behavior of the algorithm. But the Kronecker power of the
complete graph is no longer complete, and two marked ver-
tices could be adjacent or nonadjacent to each other, and this
constitutes different cases that may require separate analysis.
Hence, we leave multiple marked vertices as an open question.

III. OPTIMAL SHIFTING AND RESCALING
OF THE QUANTUM WALK HAMILTONIAN

Chakraborty et al. [25] noted that their Lemma implies
that any regular graph with constant normalized algebraic
connectivity supports optimal quantum search. Normalized
algebraic connectivity is a measure of how connected a graph
is, and a constant value indicates a relatively high level of
connectedness. Their proof was limited to a footnote in their
paper, however, so in this section, we provide a more thorough
proof. In doing so, we show that any regular, nonbipartite
graph with adjacency matrix A and constant normalized al-
gebraic connectivity has the property that the nonprincipal
eigenvalues of H1 = A/λA,1 are bounded in magnitude from
1 by at least a constant. That is,

cA = max
i�2

|λA,i |
λA,1

< 1. (12)

We then show that this is also true for regular, bipartite graphs,
but it requires shifting and rescaling H1. We derive optimal
choices for the shifting and rescaling which minimize the
upper bound c in the Lemma, hence maximizing the lower
bound on the success probability.

The algebraic connectivity of a graph is defined as the
difference between the two smallest eigenvalues of the com-
binatorial Laplacian L = D − A, where Dii = deg (i) is the
diagonal degree matrix [28]. For a regular graph, each vertex
has the same number of neighbors, so D is a multiple of
the identity matrix. Then D does not change the difference
between any eigenvalues, it only shifts all of them by a
constant. Thus, for a regular graph, D can be ignored, and
the algebraic connectivity is the difference between the two
smallest eigenvalues of −A, which is equal to the difference
between the two largest eigenvalues of A, so it is λA,1 − λA,2.

For a regular graph, the normalized algebraic connectivity
is a rescaling of this difference; it is the algebraic connectivity
divided by the degree of the graph [28]. Since the degree
of a regular, connected graph is equal to its principal adja-
cency eigenvalue λA,1, the normalized algebraic connectivity
is (λA,1 − λA,2)/λA,1 = 1 − λA,2/λA,1. This is precisely the
difference between the first two eigenvalues of H1 = A/λA,1,
i.e., λ1 − λ2 = 1 − λ2. Furthermore, assuming the graph is
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FIG. 2. Success probability as a function of time for search on the j = 3 order Kronecker graph generated by the Paley graph of (a) M = 5
vertices, (b) M = 9 vertices, and (c) M = 13 vertices with γ = [2/(M − 1)]3.

connected, λ2 must be less than 1, so if the normalized
algebraic connectivity is constant, then λ2 is a constant less
than 1.

The normalized algebraic connectivity is also defined as
the difference between the two smallest eigenvalues of the
normalized combinatorial Laplacian L, which for a regular
graph is the combinatorial Laplacian L divided by the degree
of the graph. That is, L = L/λA,1 = I − A/λA,1 = I − H1.
Then since the eigenvalues of the normalized Laplacian L
are between 0 and 2, inclusive [28], the eigenvalues of H1

are between −1 and 1, inclusive. Thus, if the normalized
algebraic connectivity is constant, then all λi�2 are bounded
from λ1 = 1 by at least a constant.

Even though this proves that the nonprincipal eigenvalues
are bounded away from 1, it does not prove that they are
bounded away from −1, which the Lemma requires. For
example, for the regular complete bipartite graph Kn,n (which
has 2n vertices, n in each partite set), its adjacency matrix
has eigenvalues n, 0, and −n with respective multiplicities

1, 2n − 2, and 1. Dividing by the principal eigenvalue n, H1

has eigenvalues 1, 0, and −1 with respective multiplicities 1,
2n − 2, and 1. Taking the difference between the two largest
eigenvalues of H1, the normalized algebraic connectivity is
1, a constant. Yet the eigenvalue −1 has magnitude 1, so the
nonprincipal eigenvalues are upper-bounded in magnitude by
c = 1, but the Lemma requires c < 1.

Although such a situation occurs if and only if the initiator
is a bipartite graph, we can overcome this obstacle and prove
that optimal quantum search still exists. For Kn,n, rather than
using H1 = A/n to effect the quantum walk, consider instead
H ′

1 = (H1 + 0.25I )/1.25, for example. Other numbers can be
used, but with these particular numbers, H ′

1 has eigenvalues
1, 0.2, and −0.6 with respective multiplicities 1, 2n − 2,
and 1. Thus, the nonprincipal eigenvalues are upper-bounded
in magnitude by c = 0.6, and the Lemma implies optimal
quantum search in �(

√
N ) time. Furthermore, since 0.25I

is a multiple of the identity matrix, it can be dropped, so
H ′

1 = H1/1.25. Since this is simply H1 rescaled by a constant,
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if there exists optimal quantum search using H ′
1 with some

r ′, then there exists optimal quantum search using H1 with
r = (r ′ − 0.25)/1.25. Note shifting and rescaling only affects
the global phase and jumping rate.

We can always perform such a shift and rescaling if the
normalized algebraic connectivity is constant because the
eigenvalues of H1 are between −1 and 1, inclusive. So a con-
stant normalized algebraic connectivity does imply optimal
quantum search, as Chakraborty et al. [25] claimed.

We take this further by optimizing the shifting and rescal-
ing of H1 to maximize the success probability by minimize
the upper bound c. If we consider H ′

1 = (H1 + aI )/b, then as
proved in the Appendix, the optimal choice of a and b are

a = −λ2 + λN

2
,

b = 2 − λ2 − λN

2
.

With these values, the eigenvalues of H ′
1 are

λ′
1 = 1,

λ′
2 = λ2 − λN

2 − λ2 − λN

,

λ′
N = −λ′

2 = λN − λ2

2 − λ2 − λN

.

Note that for H ′
1, we have c = λ′

2 < 1, which satisfies the
condition of the Lemma.

Finally, note we can apply this same shifting and rescaling
when the graph is nonbipartite to improve the lower bound c.

The main result from this section can be summarized by
the following theorem.

Theorem 2. Let A be the adjacency matrix of a regu-
lar, connected graph of N vertices with eigenvalues λA,1 >

λA,2 � · · · � λA,N . Then

a = −λHN,2 + λHN,N

2
,

b = 2 − λHN,2 − λHN,N

2
,

maximize Chakraborty et al.’s [25] lower bound on the success
probability for quantum spatial search, where the quantum
walk is effected by H = (H1 + aI )/b + |w〉〈w| with H1 =
A/λA,1.

IV. FIXED REGULAR, CONNECTED INITIATORS

In Sec. II, we explored search where M , the number of
vertices in the initiator, was large. Here, we instead consider
fixed initiators with constant M and explore quantum search
as the Kronecker power j increases. We assume that the
initiator is regular so that its principal eigenvector is the
uniform superposition (2), and we also assume the initiator
is connected so its principal eigenvalue is unique. Now let
us consider separately when the initiator is nonbipartite or
bipartite.

If the fixed regular, connected initiator is nonbipartite, we
can prove that optimal �(

√
N ) quantum search occurs. First,

since the j th Kronecker power of a regular initiator is regular,
its principal eigenvector is the initial uniform superposition

|s〉. Then in the Lemma, ε = 〈w|s〉 = 1/
√

N , so the runtime
of a single instance of the algorithm is �(1/ε) = �(

√
N ).

Second, since the initiator graph is fixed, connected, and
nonbipartite, it has constant normalized algebraic connectiv-
ity, and its adjacency eigenvalues satisfy (12) from the last
section. Then for the j th order Kronecker graph generated
by such an initiator, the nonprincipal eigenvalues of H1 =
A⊗j /λA⊗j ,1 are upper bounded in magnitude by

c = maxi=2,...,N |λA⊗j ,i |
λA⊗j ,1

= (λA,1)j−1 maxi=2,...,M |λA,i |
(λA,1)j

= maxi=2,...,M |λA,i |
λA,1

= cA < 1,

where the last line comes from (12). Since this bound does
not depend on j , the inequality holds for arbitrary, and hence
large, j . Then from the Lemma, the success probability is
�(1), and quantum search occurs in optimal �(

√
N ) time,

for a fixed initiator and for large j . Of course, we can always
lower the upper bound c, and hence increase the lower bound
on the success probability, using the shifting and rescaling
from the last section, but it will only change the constant
factor, not the scaling of the algorithm. This result can be
summarized by the following theorem.

Theorem 3. Let A be an M × M adjacency matrix for
a connected, regular, nonbipartite graph. Then there exists
jumping rate γ = �(1/λ

j

A), such that walking by Hamiltonian
γA⊗j + |w〉〈w| for time O(

√
Mj ) evolves the starting state

|s〉 to a state |f 〉 with |〈f |w〉|2 = �(1).
As a numerical check of this analytical result, consider

the Paley graph of M = 5 vertices from Fig. 2(a), which
is simply the cycle of 5 vertices, as the initiator. The suc-
cess probability as the system evolves with time is shown
for the first eight Kronecker powers in Fig. 3, and γ was
chosen according to (7) and (8). On these plots, we also
identified the success probability at time π

√
N/2 as a red

circle, and as j increases, it converges to a maximum success
probability of 1. This is in agreement with our analytical
results that the runtime is �(

√
N ) with a success probability

of �(1). It is known that cycles are quantum searched in
classical O(N ) time [16], yet Kronecker powers of a fixed
cycle are quantum searched in optimal O(

√
N ) time. Note

for the cycle graph of five vertices, we have c = 1/
√

5, and
so the success probability is asymptotically lower bounded
by (1 − c)/(1 + c) = (3 − √

5)/2 ≈ 0.382. In this example,
the optimal success probability is much larger than its lower
bound. The subfigures also include a blue square showing the
success probability at time t∗ (6) that was derived from the
Lemma, and it converges to π

√
N/2 for large N .

The situation differs if the initiator graph is bipartite. In
this case, we have λA,M = −λA,1, and hence the second-order
Kronecker graph always consists of at least two principal
eigenvalues equal to (λA,1)2. This prevents direct use of
the Lemma, which requires that the principal eigenvalue be
unique. Still, we can construct a graph with optimal quantum
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FIG. 3. Success probability as a function of time for search on the j th order Kronecker graph generated by the Paley graph of M = 5
vertices with γ was chosen according to (7) and (8). (a) is j = 1, (b) is j = 2, (c) is j = 3, (d) is j = 4, (e) is j = 5, (f) is j = 6, (g) is
j = 7, and (h) is j = 8. For each of these, the success probability at time π

√
N/2 = π

√
5j /2 is indicated by a red circle, and as j increases,

it converges to a maximum success probability of 1. Similarly, for each subfigure, the success probability at time t∗ (6) is indicated by a blue
square, and as j increases, it converges to π

√
N/2.

search if we allow shifting and rescaling the initiator’s adja-
cency matrix. For example, for the complete bipartite graph,
we can instead use A′ = (A + 0.25I )/1.25. In this way, we
reduce the problem to the previously considered, nonbipartite
scenario. Since the shifting and rescaling introduces self-loops
and weighted edges, this is not quite the same graph, however,
and its Kronecker powers also differ from the unshifted graph.

A natural alternative would be to shift A⊗j instead of A.
This does not yield optimal quantum search, however, as we
now prove. First, note that if a bipartite graph is d-regular with
partite sets V1 and V2, then the number of vertices in each
set must be the same, i.e., |V1| = |V2|. This comes from the
fact that the sums of the degrees of each partite set must be
equal since edges only exist between the sets. For a d-regular
bipartite graph, this implies d|V1| = d|V2| or |V1| = |V2|.

Then, if the initiator is bipartite and regular, each of its partite
sets contains M/2 vertices.

Next, the Kronecker graphs generated by a bipartite ini-
tiator consist of bipartite graphs that are disconnected from
each other. An example is shown in Fig. 4, where the ini-
tiator is the path graph of two vertices, which is bipartite,
and its second- and third-order Kronecker powers consist
of two and four separate bipartite graphs, respectively. In
general, if V1 and V2 are the partite sets of the initiator,
then the second-order Kronecker graph consists of two com-
ponents with respective vertex sets (V1 × V2) ∪ (V2 × V1)
and (V1 × V1) ∪ (V2 × V2), where × denotes the Cartesian
product of sets. Since |V1| = |V2| = M/2, |V1 × V1| = |V1 ×
V2| = |V2 × V1| = |V2 × V2| = (M/2)2, so each component
has 2(M/2)2 vertices. Generalizing this, since the Kronecker
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FIG. 4. (a) The path graph of two vertices P2, (b) its second-order
Kronecker graph P2 ⊗ P2, and (c) its third-order Kronecker graph
P2 ⊗ P2 ⊗ P2.

product acts on disconnected components independently, the
j th Kronecker power of a regular bipartite graph results in
2j−1 regular, bipartite graphs that are disconnected from each
other, each with Mj/2j−1 = 2(M/2)j vertices, for a total of
N = Mj vertices.

To determine the runtime of the quantum walk search algo-
rithm with bipartite initiators, we again start with the M = 2
case in Fig. 4 to build intuition. Then we will generalize
to arbitrary M . If the initiator has M = 2 vertices, then it
is the path graph of order 2, and the Kronecker power is a
collection of path graphs of the same order, see again Fig. 4.
Since the evolution of quantum spatial search on disconnected
components is independent, the success probability can grow
no larger than 2/N , so the total runtime with classical rep-
etitions is �(N ). Thus, we do not achieve optimal quantum
search. Furthermore, it is the same complexity as classically,
randomly guessing for a marked vertex.

Now for general M , which must be even since |V1| =
|V2| = M/2 implies there is no regular, connected, bipartite
graph of odd vertices, we similarly prove that optimal quan-
tum search is not obtained because the Kronecker product
produces multiple components that are disconnected from
each other, restricting the total success probability. To elu-
cidate the proof, we begin with the j = 2 case, and then
we generalize it to arbitrary j . Since the eigenvalues of the
adjacency matrix of a bipartite graph are symmetric [31] (i.e.,
λA,1 = −λA,M , λA,2 = −λA,M−1, and so forth), the largest,
second largest, and smallest eigenvalues of A⊗2 take the form
λ2

A,1, λA,1λA,2, and −λ2
A,1, with respective multiplicities 2, at

least 4 (since λA,2 may not be unique), and 2. Since there
are two largest eigenvalues, two disconnected components,
and each component has a unique largest eigenvalue, each
must correspond to a different component. Since the compo-
nents are both bipartite, each component must have unique
λ2

A,1 and −λ2
A,1 eigenvalues. Hence, the eigenvalue gap is

λ2
A,1 − λA,2λA,1, and after dividing by λ2

A,1, the normalized
algebraic connectivity is equal to the j = 1 case, and is hence
constant.

Now for arbitrary j , the j th order Kronecker power has
principal eigenvalue λ

j

A,1 with multiplicity 2j−1. Since we
have 2j−1 bipartite graphs, each with Mj/2j−1 vertices, that
are disconnected from each other, each λ

j

A,1 corresponds to
one bipartite graph. Furthermore, the second-largest eigen-
value for each component is at most λ

j−1
A,1 λA,2. So each bipar-

tite graph has an eigenvalue gap of at least λ
j

A,1 − λ
j−1
A,1 λA,2.

Dividing by λ
j

A,1, the algebraic connectivity of each bipartite
component is 1 − λA,2/λA,1, which is constant (independent
of j ) for fixed M . Utilizing the shift and rescaling from
Sec. III, the time it takes for the success probability to build
up at the marked vertex is O(

√
Mj/2j−1). Hence, if we start

the evolution in a state equally spanned by vertices from the
component with the marked element, thanks to the Lemma
and the shifting and rescaling from Sec. III, after time t∗ =
�(

√
Mj/2j−1) we can find the marked element with prob-

ability �(1). The initial amplitude, however, is distributed
evenly between all connected components, so the actual suc-
cess probability is p∗ = 1/2j−1. Overall, the expected total
runtime with classical repetitions is t∗/p∗, which scales as√

Mj

2j−1

1
2j−1

= π√
2

√
2jMj = �

(
N

1
2 + 1

2 log2 M
)
,

where the last equality comes from N = Mj , which implies
j = log2 N/ log2 M , and in turn 2j = N1/ log2 M . Note for
large j and arbitrary, constant M , this total runtime is greater
than �(

√
N ), so optimal quantum walk search is not achieved.

It is better, however, than a classical computer’s runtime of
�(N ) when M > 2. When M = 2, this formula yields our
previous result of a runtime of �(N ). Finally, note these
results depend on M alone and not the specific form of the
initiator, other than it being regular, connected, and bipartite.

These results concerning connected, regular, bipartite ini-
tiators can be summarized in the following theorem.

Theorem 4. Let A be an M × M adjacency matrix for
a connected, regular, bipartite graph. Then there exists
jumping rate γ = �(1/λ

j

A), such that walking by Hamil-
tonian γA⊗j + |w〉〈w| for time t = O(

√
Mj/2j−1) evolves

the starting state |s〉 to a state |f 〉 with p = |〈f |w〉|2 =
�(1/2j−1). Then the expected runtime with classical repeti-
tions is

t/p = �
(
N

1
2 + 1

2 log2 M
)
.

V. CONCLUSION

Kronecker graphs are used in network science to gener-
ate complex networks with the characteristics of real-world
networks. We proved that any Kronecker power of a regular
graph that has a unique principal eigenvalue that asymp-
totically dominates the other eigenvalues can be optimally
searched by a continuous-time quantum walk, reaching a
success probability of 1 at time π

√
N/2, asymptotically,

with the jumping rate chosen according to (9). For example,
the complete graph, Paley graph, and others have dominant

062334-8



OPTIMAL QUANTUM-WALK SEARCH ON KRONECKER … PHYSICAL REVIEW A 98, 062334 (2018)

principal eigenvalues. Not only do they asypmotically support
optimal O(

√
N ) quantum search, but any Kronecker power of

them also supports optimal quantum search.
Furthermore, if the initiator is fixed, then we proved that

taking successive Kronecker powers of the initiator yields
graphs that are optimally searched if the initiator is regular,
connected, and nonbipartite. For example, cycles by them-
selves are quantum searched in classical O(N ) time, but the
Kronecker graphs generated by a cycle do support optimal
quantum search in O(

√
N ) time.

If the fixed, regular initiator is bipartite, however, then the
quantum walk does search more quickly than a classical com-
puter when the initiator has more than two vertices, although
optimal quantum search is not achieved. When the initiator
has two vertices, then it searches with the same scaling as a
classical computer.

Altogether, these results greatly expand our knowledge of
how quantum computers search Kronecker graphs.
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APPENDIX: OPTIMAL SHIFTING AND RESCALING

As shown in Sec. IV, the quantum walk Hamiltonian H1

can be shifted and rescaled to H ′
1 = (H1 + aI )/b to maximize

the lower bound on the success probability in the limit. Here
we will show that the values of a and b proposed in Sec. IV
are the optimal ones.

First, recall that in the Lemma, the success amplitude is
lower bounded in magnitude by (1 − c)/(1 + c). The deriva-
tive of this is −2/(1 + c)2, which means the bound is a
decreasing function on c ∈ [0, 1]. Hence the maximization of
the success amplitude or success probability is equivalent to
minimizing c on [0,1].

Let us consider H ′
1 = (H1 + aI )/b for some a and b.

Recall H1 has eigenvalues λ1 = 1 � λ2 � · · · � λN � −1.
Assuming the graph is connected, λ2 < 1. Furthermore, since
the sum of the eigenvalues of A is tr(A) = 0 [31], the sum
of the eigenvalues of H1 = A/λA,1 is also 0, so we also have
λN < 0. Similarly, recall H ′

1 has eigenvalues λ′
1 = 1 � λ′

2 �
· · · � λ′

N . Then the upper bound on the magnitudes of the
nonprincipal eigenvalues is given by

c = max(|λ′
2|, |λ′

N |).
We consider a and b such that λ′

1 = 1, which is a require-
ment for the Lemma. This implies

λ′
1 = λ1 + a

b
= 1 + a

b
= 1,

and so b = 1 + a. Substituting this, we have H ′
1 = (H ′

1 +
aI )/(1 + a). Then,

λ′
2 = λ2 + a

1 + a
,

λ′
N = λN + a

1 + a
.

Note that |λ′
2| < 1 and |λ′

N | < 1 need to be satisfied for
the Lemma, otherwise the upper bound on their magnitude
would be c = 1. Focusing on |λ′

2| < 1, this implies a >

−(1 + λ2)/2, and since λ2 � 1, we have a > −1.
Now substituting our expressions for λ′

2 and λ′
N into the

upper bound c, we get

c(a) = 1

|1 + a| max(|λ2 + a|, |λN + a|).

The task is to find the value of a > −1 that minimizes c. We
do this by considering three cases, when |λ2 + a| dominates
the maximum, when |λN + a| dominates the maximum, and
when they are equal.

First, when a is greater than the threshold value

athr = −λ2 + λN

2
,

then |λ2 + a| is dominant. Hence,

c(a) =
∣∣∣∣
λ2 + a

1 + a

∣∣∣∣.
Since a > athr > −λ2 > −1, where the last inequality comes
from λ2 < 1 by assuming the graph is connected, we can drop
the absolute value and write

c(a) = λ2 + a

1 + a
= 1 + λ2 − 1

1 + a
.

For a > −1, this function increases as a increases. Thus, the
minimum of c occurs when a � athr.

Next, when a is less than the threshold athr, then |λN + a|
is dominant, and we have

c(a) =
∣∣∣∣
λN + a

1 + a

∣∣∣∣.
Since a < athr, we have λN + a < λN − λ2+λN

2 = λN−λ2
2 � 0,

where the last inequality comes from λ2 � λN . Thus,

c(a) = −λN + a

1 + a
= −1 + 1 − λN

1 + a
.

For a > −1, this function decreases as a increases. Thus, the
minimum of c occurs when a � athr.

Combining these results proves that c is minimized when
a equals its threshold value, at which c is

cmin = |λ2 − λN |
|2 − λ2 − λN | .

Using a = athr, with b = 1 + a, λ′
2 = (λ2 + a)/(1 + a), and

λ′
N = (λN + a)/(1 + a), we get the values stated in Sec. III.
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