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protocol with spatial modes of light through turbulence
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Quantum communication with structured photons is topical, owing to the multidimensional state space of
spatial modes. However, spatial modes are fragile and their quality degrades when perturbed in traditional
communication media such as free-space and optical fibers. Here, we illustrate the effects of atmospheric
turbulence on a six-state quantum-key-distribution protocol with orbital angular momentum (OAM) modes.
We experimentally characterize the fidelity decay as a function of turbulence strength, showing a concomitant
decrease with increasing perturbation, and consider the influence of both mode order and mode size, showing that
OAM modes with higher helicity are more resilient to turbulence for this protocol. We outline two approaches to
mitigate the photon information loss. In the first, we show that by postselecting on a high-dimensional subspace
at the detection side, we can recover information contained in the scattered modes. In the second, we measure
the channel operator by means of classically entangled light and mitigate errors on the quantum state through
entanglement concentration by means of one-party Procrustean filtering. The tools we provide here will be
beneficial for realizing more robust quantum communication with OAM modes of light.
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I. INTRODUCTION

Taking advantage of the fundamental principles of quan-
tum mechanics, quantum key distribution (QKD) allows a
sender and receiver to share information in order to build a
secure key that would subsequently be used to encrypt fur-
ther communication through traditional classical means [1,2].
This has been demonstrated in real-world environments over
significant distances using polarization encoding [3–8].

Controlling the spatial degree of freedom of a photon
has opened interesting avenues of research in the field of
QKD. Indeed spatial modes, unlike polarization, allow one
to pack more information per photon; the larger state space
that spatial modes span offers a larger alphabet available
for encoding [9,10]. Experimental demonstrations inside and
outside laboratories have been reported [11–14], pushing the
dimension of the protocol as high as 7 (inside the laboratory)
and the range as far as 300 m.

While spatial modes offer the promise of higher band-
width, they are adversely affected by perturbations in
free-space and optical fibers [15–19]. In the presence of
atmospheric turbulence, for example, random refractive index
fluctuations in the atmosphere degrade the beam profile and
steer the beam off axis, the combination of which results in
a measured intermodal crosstalk; that is, the state detected
is different from that which was sent, leading to (quantum)
bit errors. The probability of error naturally depends on the
strength of the perturbation and the properties of the modes,
the effects of which have been studied at both the classi-
cal [20–24] and quantum levels [25–28]. In the context of
QKD, intermodal scattering during transmission is one of the
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causes of quantum bit errors that reduce the amount of secret
information carried by each photon, eventually compromising
the viability of the link [29–33].

Here we study how turbulence affects the secret key rate
of a six-state quantum-key-distribution protocol with orbital
angular momentum (OAM) modes as the basis. Such modes
may be indexed by their helicity (topological charge), �, which
takes on any integer value. We show experimentally that
the secret key rate decreases below acceptable level as the
turbulence increases due to the decay in detection fidelity. We
consider the case of weak turbulence that can be approximated
by a single phase screen, and neglect scintillations. In light of
the above, we explore means to mitigate intermodal crosstalk
and information loss resulting from turbulence perturbations.

In particular we note that previous work on the topic of
QKD in turbulence did not account for the order-dependent
spatial mode size, whereas the second moment radius of an
OAM mode of helicity � is given by ω� = ω0

√|�| + 1, where
ω0 is the Gaussian mode radius and we assume a radial
order of p = 0. Prior studies assumed all OAM modes have
an effective scale of ω0, quoting a dimensionless turbulence
parameter of W = ω0/r0, where r0 is the Fried parameter
(an indicator of the allowable size of an aperture before
turbulence becomes pronounced). Such studies have shown
that entanglement decreases monotonically with increasing
W , suggesting that, for the same r0, larger beams are more
adversely affected than smaller beams, at least in the context
of entanglement decay [28,29]. In the context of QKD, we
show theoretically and numerically that when appropriately
scaling the size of higher OAM modes, those with higher
OAM separation are more resilient to turbulence, enabling a
more robust link. As a comparison, we simulated the decay of
fidelity in turbulence in the context of the six-state QKD pro-
tocol, using OAM modes with � = 2, 4, 6, 8, 10, and 20. We
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highlight that the demonstration here is a proof-of-principle
experiment intended to provide insights for future real-world
implementations. The choice of the six-state protocol rests
on the fact that it is easy to implement and follows previous
prepare-and-measure real-world QKD demonstrations with
spatial modes [12,14].

Next, we revisit the fact that turbulence results in the
spread of information into multiple subspaces through modal
scattering. During measurement, only a fraction of the to-
tal information content is recovered because only preagreed
subspaces are probed by the receiver, resulting in a lower
channel capacity. We show that more information can be
recovered by increasing the space of postselected modes. We
parametrize the expression of the detection fidelity in the
different subspaces as a function of OAM and turbulence
strength, and derive an expression for the limit to which the
recovery is possible.

Finally, we outline a scheme whereby errors due to turbu-
lence can be mitigated by probing the channel with a classical
beam. Error correction techniques using adaptive optics have
been proposed and demonstrated as a viable solution to miti-
gate crosstalk and allow for forward error correction [34–37].
We take a different approach, using a process tomography to
obtain the channel matrix using a bright classically entangled
light source. The resultant conjugate channel operator is then
used to implement in real time a Procrustean filter on the
quantum state, resulting in a concentration of entanglement
and a higher secure key rate in the quantum transmission.

II. SIX-STATE PROTOCOL WITH ENTANGLED PHOTONS

The appeal of QKD lies in the ability to securely exchange
information between two parties in the presence of external
perturbations, solely by exploiting the laws of physics. These
perturbations reduce the ability of the receiver, Bob, to cor-
rectly measure the states encoded by the sender, Alice. Some
common sources of perturbations include measurements from
an eavesdropper, dark counts in the detectors, or noise that
is present in the quantum channel (atmospheric turbulence for
example). The extent to which these perturbations affect Bob’s
measurements determine the secure key rate of the QKD link.

We considered a scenario where Alice generates a pair
of entangled photons through spontaneous parametric down-
conversion, retains one photon (photon A) of each pair, and
sends the other (photon B) to Bob through a turbulent channel,
as shown in Fig. 1(a). In order to generate the secret key, Alice
and Bob enact an entanglement-based variant of the 1984
Bennett and Brassard protocol (BB84) [38]. For every photon
pair, Alice and Bob perform joint projective measurements
onto states from a set of mutually unbiased bases (MUBs).
While BB84 with qubits states is traditionally performed with
two MUBs (four states in total), the six-state protocol uses
three MUBs, a total of six states, hence the name. On one
hand, the six-state protocol carries higher inherent losses
compared to the original BB84, given that, in the former, 2/3
of the photons are lost during sifting as opposed to 1/2 in
the latter. On the other hand, using more MUBs enhances
the tolerance to noise with a higher error rate threshold [39].
At the end of the transmission, Alice and Bob broadcast the
measurement bases for each of the N generated pairs. Upon

(a)

(b)

FIG. 1. (a) Alice generates a pair of entangled photons (A and
B) using a pumped nonlinear crystal (NLC) and sends one of the
photons to Bob through a turbulent channel. Alice and Bob enact
a quantum-key-distribution protocol, whereby they perform joint
measurements on the photon pair using spatial light modulators
(SLMs) in order to build the key. (b) In the experimental realization
one SLM is used to encode the spatial projections of both Alice
and Bob. Turbulence is encoded as a phase screen, superimposed on
the tomography holograms as shown on the inset. The plane of the
BBO crystal was relayed onto the SLM and then the fibers using
4f imaging systems. F = 10 nm bandpass filters; L1 = 10 mm;
L2 = 750 mm; FC is a fiber coupler with 2 mm focal length lens
integrated; SMF is a single mode fiber; DM is a dichroic mirror.

comparison, Alice and Bob discard measurement outcomes
where the encoding and decoding bases disagree to distill a
key that is further refined through error correction and privacy
amplification [40].

The secret key rate, R, is the amount of information that
can be securely exchanged between Alice and Bob in the
presence of perturbations. The exact expression of R depends
on the QKD protocol used. In the six-state protocol it is given
by [41]

R = 1 + 3

2
Q log2

(
Q

2

)
+

(
1 − 3

2
Q

)
log2

(
1 − 3

2
Q

)
,

(1)

where Q = 1 − F is the qubit error rate and F is the mea-
surement fidelity, i.e., the ability of Bob to correctly distin-
guish the states sent by Alice. The secret key rate reaches
its maximum Rmax = 1 for Q = 0 or F = 1. The QKD link
between Alice and Bob is viable so long as the secret key rate
is positive; this is satisfied for Q < 0.126 or F > 0.874. By
comparison, the secret key rate in the original BB84 protocol
is given by [41]

R = 1 + 2Q log2(Q) + 2(1 − Q) log2(1 − Q) (2)

and admits a lower error threshold of Q < 0.11 and a higher
fidelity threshold F > 0.89. We use the six-state protocol to
demonstrate the importance of mode order and size, informa-
tion retrieval, and entanglement concentration schemes, with
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OAM as the spatial mode of choice. Although we use OAM
as a topical example, the framework provided here can easily
be extended to other spatial modes.

III. DECAY OF MEASUREMENT FIDELITY
IN TURBULENCE

In the scenario depicted in Fig. 1(a), the entangled photons
are initially correlated in OAM. Ideally Alice and Bob would
like to share the following maximally entangled two-photon
state:

|�+〉AB = 1√
2

(|�1〉A|�2〉B + |−�1〉A|−�2〉B ). (3)

In the presence of turbulence, the correlations between the
two photons are weakened, resulting in a lower photon detec-
tion probability [20,21,24] and loss of entanglement and mea-
surement fidelity with respect to the initial state [27,28,42].
This is because the OAM spectrum of photon B is altered as it
propagates through the turbulent channel. From previous work
it was found that the spectral broadening arising from turbu-
lence perturbations is peaked around the initially transmitted
state [21–24,42–44]. Thus for simplicity we model the effect
of turbulence as follows:

|�〉 turbulence−−−−−→
∑
m

b|�−m||m〉, (4)

where 0 � b < 1. The spectral broadening is symmetric about
the initially transmitted OAM state |�〉. The two-photon state
in Eq. (3) is then modified due to the turbulent channel acting
on photon B, to produce

|�〉AB = 1√
N

(∑
m

b|�2−m||�1〉A|m〉B

+
∑

n

b|−�2−n||−�1〉A|n〉B
)

, (5)

where

N =
∑
m

b2|�2−m| +
∑

n

b2|−�2−n| = 2
∑
m

b2|�2−m|. (6)

In the absence of turbulence, b → 0 and the distribution
is sharply peaked around the initial OAM state. Conversely,
in very strong turbulence, the OAM spectrum flattens and
b → 1− (the negative superscript is used here to refer to b

approaching 1 from the left).
To determine the effect of turbulence on the secure key

rate of the QKD protocol, we chose to focus on the decay of
measurement fidelity as a function of the turbulence strength;
that is, the probability that, after turbulence, Alice and Bob
measure their photons in the correlated state described in
Eq. (3). Given that the target state is a pure state, the fidelity
takes the form [45]

F = 〈�+|ρ|�+〉 = |〈�+|�〉|2 = 1∑
m b2|�2−m| . (7)

In the two-dimensional case where Alice and Bob use
states | ± �1〉 and | ± �2〉, respectively, the measurement

fidelity within the postselected subspaces is given by

F� = 1∑
m=±�2

b2|�2−m| = 1

1 + b4|�2| . (8)

Note that the measurement fidelity is dependent on the tur-
bulence strength: F� decreases as b increases. However, the
fidelity is bounded below by F� = 0.5. This is logical when
one considers the overlap in Eq. (7). In the specific case
where |〈�+|�〉|2 = 1/2, the states |�〉 and |�+〉 can be said
to belong to mutually unbiased bases. Hence no information
can be extracted from the projection of |�〉 onto |�+〉, and the
mutual information between Alice and Bob, IAB , vanishes.

The decay in fidelity is experimentally demonstrated in
Fig. 2. Information is encoded into OAM modes with a
transverse electric field expressed as [46]

U�(r, φ) =
√

1

π |�|!
1

ω0

(
r
√

2

ω0

)|�|
exp

(
− r2

ω2
0

)
exp(i�φ).

(9)

For ease of notation, we will refer to the OAM state in
Eq. (9) with the ket |�〉. The projections performed by Alice
and Bob in the six-states protocol are made into the following
bases: {| − �〉, |�〉}, {(|�〉 + | − �〉)/

√
2, (|�〉 − | − �〉)/

√
2},

and {(|�〉 + i| − �〉)/
√

2, (|�〉 − i| − �〉)/
√

2}. Interestingly,
the joint measurements in the six-state protocol coincide with
those required for an overcomplete quantum state tomogra-
phy [45,47], and are shown in Fig. 2(a). Projections in the
same basis fully discriminate the states prepared by Alice,
while measurements in conjugate bases produce a uniform
probability distribution. These projective measurements can
be used to reconstruct the density matrix of the state after the
turbulence and compute the fidelity. Note that the region en-
closed with red-dashed lines highlights a set of measurements
that would be required in BB84.

We generated entangled photons through type-I sponta-
neous parametric down-conversion by pumping a 3 mm BBO
crystal with a picosecond laser with wavelength 355 nm and
average power 350 mW, as shown in Fig. 1(b). For each
down-converted pump photon, a pair of entangled photons is
emitted, each with a wavelength of 710 nm that were then
directed onto a spatial light modulator (SLM). On one half
of the SLM, we encoded the spatial projections required for
the six-state protocol. On the other half, the same projections
were superimposed with turbulence phase screens to simulate
one photon propagating through turbulence. The substitution
of a turbulent channel by a single phase screen is justified by
the fact that we have assumed a weak scintillation regime,
i.e., phase-only perturbations. The down-converted photons
were then passed through 10 nm bandpass filters and coupled
into single-mode fibers connected to single-photon detectors
(Excelitas SPCM-AQRH-13-FC) with dark count rates of 250
counts per s and a 70% photon detection efficiency. Using
holograms encoded on the SLM, we performed a state tomog-
raphy of the two-photon state as a function of turbulence.

We modeled turbulence based on Kolmogorov’s theory. We
used the Strehl ratio (SR) as our measure of the turbulence
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FIG. 2. Fidelity decay in turbulence. Alice and Bob perform joint measurements on the two-photon state for an entanglement based six-state
protocol with OAM states carrying h̄ of OAM per photon. These tomographic measurements are shown (a) in the absence of turbulence (S = 1)
and (b) in the presence of turbulence with S = 0.5 for a mode size ω0 = 800 μm. The regions enclosed by the red dashed lines (top left corner)
show the measurements required for the traditional BB84. (c) The simulation matches experimental measurements of the decay of fidelity as a
function of turbulence for OAM states with |�| = 1 and postselected beam width ω0 = 200 μm.

strength

S = 1

1 + 6.88(ω0/r0)2
, (10)

where ω0 is the beam size and r0 is Fried’s parameter, ex-
pressed in terms of the refractive index structure C2

n , wave-
length λ, and propagation distance z as

r0 = 0.185

(
λ2

C2
nz

)3/5

. (11)

The above expression in Eq. (10) was obtained by apply-
ing the quadratic structure function approximation [48] to
the general definition of SR presented in [49]. To generate
the turbulence phase screen, we multiply the Kolmogorov
power spectral density with a random complex function, then
inverse Fourier transform the product following the method
detailed in [28]. The effects of turbulence on the projective
measurements are, by means of example, graphically depicted
in Fig. 2(b) for a single turbulence phase screen with strength
S = 0.5. Note that here the Strehl ratio is defined with respect
to the Gaussian mode and only serves to define controlled
turbulence conditions.

We chose to perform the experiment using two OAM
states with � = ±1, as well as the corresponding MUBs.
The fidelity measurement results, averaged over a total of 50
single turbulence phase screens per turbulence strength SR,
are presented in Fig. 2(c). The uncertainty in the turbulence
strength arises from the prior calibration measurements we
performed to ensure the accuracy of the turbulence strength
that was digitally encoded.

IV. DECAY OF FIDELITY AS A FUNCTION
OF MODE SEPARATION

As predicted by Eq. (8), the measured fidelity decays with
increasing turbulence strength. Interestingly, the fidelity in
Eq. (8) is also seen to depend on the OAM used to encode
the qubit information. For a given turbulence strength, states
with higher helicity, �, have higher fidelities, allowing for
more robust quantum communication due to higher tolerance
to noise. To illustrate the advantage of using higher values

of OAM for robust QKD, we simulated the measurements
that Alice and Bob would perform to build a key in the six-
state protocol, using OAM modes with different topological
charges.

The intensities of the OAM modes used are shown in
Fig. 3 for � = {2, 4, 6, 8, 10, 20}. Each point on the graph
corresponds to the fidelity of Bob’s measurements at a given
turbulence strength, averaged over 200 turbulence screens.
Observe that the decay in fidelity is faster when using OAM
states with lower OAM values, compared to those with larger
OAM values. This is indeed consistent with the expected
behavior of the fidelity deduced in Eq. (8). Note that the
minimum fidelity for which the channel is still secure, that
is R > 0, is chosen here to be F = 0.89. This is because for
F > 0.89 the channel is viable for both the BB84 and the
six-state protocol. The mutual information IAB between Alice
and Bob, given by

IAB = 1 + Q log2(Q) + (1 − Q) log2(1 − Q), (12)

vanishes for Q = F = 0.5.
It could be argued that the comparison between these

modes is not a fair one due to the difference in mode size.
Indeed, the size of an OAM mode depends on the OAM value
according to the relation ω� = ω0

√|�| + 1 [50]. The higher
the OAM content, the larger the mode size. However, note that
the strength of turbulence SR in Eq. (10) is inversely propor-
tional to the square of the mode size; given fixed turbulence
conditions (that is we fix r0), larger beams would experience
higher turbulence compared to smaller beams, and hence
will experience higher OAM scattering. The results shown in
Fig. 3 thus show that, despite experiencing higher turbulence,
higher OAM modes still show more robustness compared to
lower OAM modes due to their higher mode separation. To
remove the dependence on beam size, we ran a second simu-
lation where we normalized each OAM mode to the same size;
that is, rather than encoding the same scale parameter ω0 for
all the modes, we assign each mode the OAM-dependent scale
parameter ω� = ω0/

√|�| + 1. This way, all OAM modes have
identical beam size ω0. The newly normalized states, together
with the results of the simulation, are shown in Fig. 3(b).
Observe that the rescaled modes now have a smaller radius.
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FIG. 3. (a) Simulated measurement of fidelity decay as a func-
tion of turbulence for OAM states with � = 2, 4, 6, 8, 10, and 20.
The minimum secure key rate Rmin = 0 is attained for a fidelity
of 0.89, while the mutual information IAB vanishes for F = 0.5.
(b) Simulated measurement of fidelity decay as a function of turbu-
lence for OAM states with � = 2, 4, 6, 8, 10, and 20 with the modes
all renormalized to the same size.

Hence they would experience less turbulence than in the cases
presented in Fig. 3(a). Indeed, reducing the beam size has
increased the robustness to turbulence as shown in Fig. 3.
Similar to the previous simulation, modes with higher OAM
content are even more resilient to turbulence.

Though QKD with higher-order modes is desirable due to
the reduced crosstalk, there are some design challenges that
need to be considered. In the case of photon pairs produced
by parametric down conversion, as is the case here, the OAM
correlation signal decays with increasing OAM index. This
reduces the speed at which secure keys can be generated. A
possible avenue that has been explored involves shaping the
down-converted spectrum at the source. By changing the spa-
tial profile of the pump laser, one is able to change the nature
and amplitude of the spatial (OAM) correlations [51,52]. In
this manner, one could engineer the OAM spectrum so that

higher-order modes have higher correlation signals compared
to the lower-order modes.

V. RECOVERY OF INFORMATION IN
ADDITIONAL SUBSPACES

Atmospheric turbulence causes modal scattering, result-
ing in the broadening of the mode spectrum, transforming
the maximally entangled qubit state in Eq. (3) into a high-
dimensional entangled state as described in Eq. (4). However,
when implementing the BB84 or six-state protocol, Alice and
Bob postselect on a given OAM subspace, say |�|. The con-
sequence of this postselection is the loss of information and
therefore the decay of entanglement. Could Bob extend the
postselected mode space to gain more information? Consider
the scenario depicted in Fig. 4, where a quantum router that
separates even and odd OAM modes [53] is placed after the
turbulent channel but before Bob’s detector. In this scenario,
Alice projects her photon in the |�| = 1 subspace, while
Bob makes his projections in both the |�| = 1 and |�| = 2
subspaces. Let |�〉ABo and |�〉ABe be the two-photon state
shared by Alice and Bob at the detectors for odd and even
|�|, respectively, as depicted in Fig. 4. Then

|�〉ABo = 1√
N1

(|1〉|1〉 + | − 1〉| − 1〉)

+ b2

√
N1

(|1〉| − 1〉 + | − 1〉|1〉), (13)

|�〉ABe = b√
N2

(|1〉|2〉 + | − 1〉| − 2〉)

+ b3

√
N2

(|1〉| − 2〉 + | − 1〉|2〉), (14)

where N1 = 2(1 + b4) and N2 = 2b2(1 + b4) are normaliza-
tion constants.

One can compute the fidelity between Alice and Bob
within the respective subspaces and show that they are given
by Eq. (8). Thus for b sufficiently small (enough to guarantee
that the secret key rate is positive) Bob can extract useful
information by probing additional subspaces. However, here
the measurement in the higher OAM subspace will only occur
at a rate proportional to b2. The effect of turbulence on
the photon detection probability is shown in Fig. 4(c). As
a quantitative illustration, the probabilities were normalized
with respect to the two measuring subspaces. Losses resulting
from turbulence in the primary channel | ± 1〉A ⊗ | ± 1〉B are
accompanied by gains in the other channel | ± 1〉A ⊗ | ± 2〉B ,
up to a limit defined by the turbulence parameter b. In the
range of acceptable values for b (F > 0.874), postselecting
on the additional OAM subspace allows a fraction of the
decohered information to be recovered. We highlight that,
while we have normalized the detection probability to only the
measured subspaces, that is, we have assumed that scattering
is limited to those two subspaces, one should expect a lower
fraction of photons recovered when accounting for the full
high-dimensional space after scattering. In the above, photon
loss during sifting is not accounted for (1/2 in BB84 and
2/3 for the six-state protocol). Nevertheless, postselecting
on additional subspaces would allow Bob to extract more
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(a)

(b)

(c)

FIG. 4. Recovering information in higher OAM subspaces.
(a) To increase photon recovery during QKD, Bob uses a quantum
router to separate photon states according to their parity and postse-
lects two OAM subspaces: |�| = 1 and |�| = 2. (b) The measurement
fidelity of Alice and Bob, normalized to each of the two subspaces
(dotted blue line). The range of turbulence parameter b for which
information recovery is still possible is shown as the green shaded
region enclosed by the Rmax, Rmin and the fidelity curve. (c) The
impact of turbulence on the relative photon detection probability in
two measuring subspaces for Alice and Bob.

information from the QKD link, at a rate inversely propor-
tional to the turbulence strength.

We also considered the possibility that the quantum router
in Fig. 4 could have been introduced by an eavesdropper to
extract the photons with |�| = 2 that would have otherwise
been discarded by Bob through postselection. The eavesdrop-
per, Eve, could for example attempt an intercept-and-resend
strategy. This approach would however not be successful
because of sifting losses: Eve would send photons to Bob
with at least a 50% error in BB84 and over 66% in the

six-state protocol. Hence probing additional subspaces would
only benefit Bob and not the eavesdropper.

VI. CONVERSION OF NOISE INTO LOSS

The intermodal scattering incurred by an OAM state in the
presence of turbulence can be represented as

|�〉AB = 1 ⊗ M̂|�+〉AB, (15)

where M̂ is an operator acting on Bob’s qubit. In the context
of QKD, it is not possible to obtain an exact picture of M̂

by quantum state tomography given that multiple projections
cannot be performed on a single photon. However, it has
recently been shown that, in a one-sided channel, the decay
of entanglement of a quantum state is identical to the decay
of nonseparability in a classical vector beam [42]. As such,
one could employ a nonseparable classical beam, sometimes
called classically entangled, to reconstruct the channel oper-
ator. Because of the abundance of photons in the classical
beam, the necessary projections for the quantum state to-
mography can be realized simultaneously with high signal-
to-noise ratio. This would allow for real-time measurement
of the channel and mitigation of errors on the quantum states
measured. Importantly, this approach can be implemented
optically as we outline next.

For a given realization of turbulence, i.e., a single phase
screen in this case, the channel operator M̂ admits the follow-
ing polar decomposition:

M̂ = Û |M̂| = Û (λ0|0〉〈0| + λ1|1〉〈1|), (16)

where Û is a unitary operator and λi are the eigenvalues of
the positive operator |M̂|, with corresponding eigenstates |i〉.
Note that if Alice and Bob encode information as shown in the
previous sections, then the eigenstates |i〉 would correspond to
superposition of the basis OAM states.

Given that λi � 1, implementing an inverse transforma-
tion is in general not always physically feasible; this is
because the eigenvalues of |M̂|−1, 1/λi , are larger than 1.
Thus implementing the inverse channel transformation would
imply adding identical copies of the photons to the system,
something that is prohibited by the no-cloning theorem [54].
Alternatively, one can engineer a conjugate filter M̃ , given by

M̃ = |M̃|Û † = (λ1|0〉〈0| + λ0|1〉〈1|)Û †, (17)

such that M̃M̂ = λ0λ11. Alice and Bob can then distill the
initial state |�+〉AB at a rate proportional to λ0λ1, thus increas-
ing the measurement fidelity of the QKD link. Interestingly,
the state measured after applying the conjugate filter will
have higher fidelity with respect to the initial state and, in
our case, a higher degree of entanglement. This concentra-
tion of entanglement by means of local operations was first
proposed in [55], where a set of maximally entangled singlet
states could be filtered from an ensemble of nonmaximally
entangled states. This process was later extended to mixed
states [56] and experimentally demonstrated in two and higher
dimensions [57–60]. In all these demonstrations, the entan-
glement concentration was achieved through Procrustean fil-
tering, performed on both photons from an entangled pair.
However, unlike the previous demonstrations, the method
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FIG. 5. Noise to loss conversion scheme with classical light.
(a) Single photons, together with a bright classical beam, are sent
through the same channel and analyzed separately. A state tomogra-
phy of the classical beam is performed to reconstruct the channel
operator. The classical data are subsequently used to perform a
Procrustean filtering on the quantum state in real time. (b) The
detection fidelity is computed from the measured two-photon density
matrix in the presence of turbulence (uncorrected data). The channel
matrix is reconstructed using a bright classical source and used to
engineer a filter that cancels out the effect of turbulence, increasing
the fidelity to unit (corrected).

we present here achieves entanglement distillation with local
operations performed on only one of the entangled parties.

Let us demonstrate the scheme using a particular exam-
ple from our simulation. Alice prepares the entangled state
|�+〉AB and sends one qubit to Bob through a turbulent chan-
nel. Simultaneously, Alice sends a vector beam |�〉 through
the same channel, as shown in Fig. 5(a). The initial quantum
and classical states are expressed as follows:

|�+〉AB = 1√
2

(|�〉A|�〉B + | − �〉A| − �〉B ), (18)

|�〉 = 1√
2

(|�〉|R〉 + | − �〉|L〉), (19)

where |R〉 and |L〉 are right- and left-circular polarization
states.

In the presence of turbulence, the classical beam is trans-
formed by a unitary phase screen, causing intermodal scat-
tering. We assume that Alice and Bob postselect a particular
OAM subspace for both the classical and quantum state. As
a result of postselection, Bob receives the following classical
state:

|�out〉 = 0.53|�〉|R〉 + 0.18eiπ/3| − �〉|R〉
+ 0.24eiπ/5|�〉|L〉 + 0.47e−iπ/8| − �〉|L〉. (20)

Note that the probabilities do not add to unity since we are
projecting onto a particular OAM subspace. While the state

could easily be normalized, we have purposely not done so to
demonstrate the effect of postselection. The channel operator
then reads

M̂ =
(

0.47e−iπ/8 0.18eiπ/3

0.24eiπ/5 0.53

)
. (21)

We denote V and D the matrix of eigenvectors and eigenval-
ues, respectively, of the operator M̂†M̂ . The positive operator
|M̂| is computed as follows:

|M̂|=V
√

DV −1 =
(

0.5167 0.1069+0.0085i

0.1069−0.0085i 0.5494

)
.

One can then show that the positive operator |M̂| admits the
following spectral decomposition:

|M̂| = 0.4246|0〉〈0| + 0.6415|1〉〈1|,
where

|0〉 =
(

0.7584
−0.6497 + 0.0519i

)
, |1〉 =

(
0.6497 + 0.0519i

0.7584

)
.

Note that the above eigenvectors are represented in the OAM
basis where |−�〉 = (1 0)T and |�〉 = (0 1)T .

The unitary matrix U is given by

U =M̂|M̂|−1 =
(

0.8356 − 0.4211i −0.0053 + 0.3527i

0.1836 + 0.3012i 0.9337 − 0.0615i

)
,

(22)

such that U †U = 1.
One can then read off the expression of the positive conju-

gate filter to apply in the correction

|M̃| = 0.6415|0〉〈0| + 0.4246|1〉〈1|, (23)

and show that M̃M̂ = (0.6415 × 0.4246) 1. The result of
the correction in this case is a conversion of noise from
crosstalk, into loss: the identity operator obtained by applying
the conjugate filter shows that the effect of turbulence can be
completely removed from the final quantum state, resulting
in entanglement distillation. The corresponding constant term
quantifies the photon losses during the filtering process. A
simulation of the noise-to-loss conversion on the fidelity is
shown in Fig. 5(b) for single phase screen at various turbu-
lence strengths. The observed increase in fidelity postfiltering
comes at the cost of a reduced key generation rate, shown in
Fig. 5(b).

VII. CONCLUSION

Spatial modes have shown promising potential to realize
high-bandwidth quantum communication beyond the qubit. In
free space, spatial modes are adversely affected by external
perturbations during propagation, as a result of turbulence.
Here we have considered a six-state protocol with OAM,
showed the deleterious effects of turbulence on the secret
key rate, and proposed two approaches to mitigate errors
and losses. Unlike in previous studies, we have carefully ac-
counted for mode-dependent size when comparing the decay
in detection fidelity between OAM states.

To mitigate the effects of turbulence, we have proposed two
schemes. On one hand, we have shown that, depending on
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the strength of turbulence, more information can be recovered
by postselecting a state space larger than the encoding one.
However, the frequency of a viable detection in the additional
subspaces increases with turbulence strength, a behavior not
desired given that detection fidelity decreases with increasing
turbulence strength. On the other hand, we have introduced
an entanglement concentration scheme based on a classical
measurement of the channel. We exploited the fact that en-
tanglement dynamics of quantum and classically entangled

states in a one-sided channel are indistinguishable to show
that the classical beam can be used to probe the channel in
real time. Reconstruction of the channel matrix in real time
can be performed through a process tomography and used to
perform Procrustean filtering on one party in the entangled
pair shared by Alice and Bob. It is our opinion that the
tools presented here will be useful in supplementing existing
methods of turbulence mitigation for robust quantum (and
classical) communication.
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