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Twin-field quantum key distribution with large misalignment error
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Based on the novel idea of twin-field quantum key distribution [TF-QKD; Lucamarini et al., Nature (London)
557, 400 (2018)], we present a protocol named the “sending or not sending TF-QKD” protocol, which can
tolerate large misalignment error. A revolutionary theoretical breakthrough in quantum communication, TF-
QKD changes the channel-loss dependence of the key rate from linear to square root of channel transmittance.
However, it demands the challenging technology of long-distance single-photon interference, and also, as stated
in the original paper, the security proof was not finalized there due to the possible effects of the later announced
phase information. Here we show by a concrete eavesdropping scheme that the later phase announcement does
have important effects and the traditional formulas of the decoy-state method do not apply to the original
protocol. We then present our “sending or not sending” protocol. Our protocol does not take postselection for the
bits in Z-basis (signal pulses), and hence the traditional decoy-state method directly applies and automatically
resolves the issue of security proof. Most importantly, our protocol presents a negligibly small error rate in
Z-basis because it does not request any single-photon interference in this basis. Thus our protocol greatly
improves the tolerable threshold of misalignment error in single-photon interference from the original a few
percent to more than 45%. As shown numerically, our protocol exceeds a secure distance of 700, 600, 500, or
300 km even though the single-photon interference misalignment error rate is as large as 15%, 25%, 35%, or
45%.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] can in principle
present secure private communications with its security guar-
anteed by principles of quantum physics. With the develop-
ment [3–15] in both theory and experiment, it is more and
more hoped to be extensively applied in practice, though there
are barriers for doing so. Among all barriers, channel loss of
long-distance QKD is the major one [10,12].

Very recently, revolutionary theoretical progress was made
by Lucamarini et al. They proposed the novel idea of twin-
field quantum key distribution (TF-QKD) [14], which has
historically changed the relationship between key rate and the
channel loss from linearly dependent to square root depen-
dent. Consequently, TF-QKD makes a great breakthrough for
a secure distance longer than 500 km.

In the TF-QKD [14], Alice and Bob send fields to the
untrusted third party Charlie. In a virtual ideal protocol,
Alice and Bob initially share single-photon entangled states of
|�0〉 = 1√

2
(|01〉 + |10〉). They each will take a phase shift of

either 0 or π to each one’s local field, and they will send their
fields to Charlie. After a collective measurement, Charlie will
see whether the bipartite is |�0〉 or |�1〉 = 1√

2
(|01〉 − |10〉).

*xbwang@mail.tsinghua.edu.cn

Except for Alice and Bob, no one knows which value, 0 or
π was selected by Alice or Bob in doing their phase shift,
although it is known to everyone whether Alice and Bob has
used the same phase shift or a different phase shift. So they
can use the information whether Alice has taken a phase shift
0 or π for their secret key.

However, in practice, we do not have such an initially
shared state. The TF-QKD proposed to use weak coherent
states at each side. As was stated in the original article [14],
the security is not finally completed because the possible
effects of the later announcement of the phase information are
not taken into consideration. As shown by a concrete eaves-
dropping scheme in the supplement, we find that the phase
information announced later makes the traditional formulas of
the decoy-state method [5–7] not apply to the original protocol
[14]. In fact, given the scheme in the Appendix, Eve can have
full information for the key bits while the traditional decoy-
state method can give a key rate of 50%. Our eavesdropping
scheme shows that the fraction of single-photon bits among all
raw bits must be not less than 50%, otherwise Eve may have
full information for all bits without causing any disturbance.
Although one may naturally turn to the key rate formulas
for non-random-phase coherent states to resolve the issue,
however, TF-QKD relied on the challenging technology of
long-distance single-photon interference, which may produce
large misalignment error. Here we construct a “sending or
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not sending” TF-QKD protocol where there is no phase-slice-
dependent postselection for signal bits. Not only does this
itself increase the amount of key bits, but also this makes
the traditional calculation formulas for the decoy state method
directly apply, the security proof is automatically completed,
and the less efficient key rate formula for non-phase-random
coherent states is not necessary. Most importantly, our pro-
tocol can tolerate large misalignment error rate due to the
long-distance single-photon interference.

II. SENDING OR NOT-SENDING (SNS) PROTOCOL

Step 0. At any time window i, as requested by the TF-QKD,
they (Alice and Bob) take random phase shifts δAi, δBi to
their coherent states accompanied by the strong reference light
which will be sent to Charlie in Step 1. (Charlie is supposed
to do appropriate phase compensation in the protocol, but he
is possibly dishonest.)

Step 1. At any time window i, Alice (Bob) independently
determines whether it is a decoy window or a signal window.
If it is a decoy window, she (he) sends out to Charlie a
decoy pulse in coherent state |√μeiδAi+iγAi 〉 (|√μeiδBi+iγBi 〉),
and μ can randomly change among a few different values at
different decoy windows. If it is a signal window, she (he)
decides to send out to Charlie a signal pulse |√μ′eiδAi+iγAi 〉
(|√μ′eiδBi+iγBi 〉) by probability ε, and she (he) decides not
to send it out by probability 1 − ε. Given whatever window
she (he) commits, and whatever decision she (he) makes, the
global phases γAi (γBi) are always announced by sending out
a strong reference light.

Note: This sending by a small probability ε or not sending
by probability 1 − ε is the heart of our protocol.

Note: For simplicity, we shall omit subscript i here af-
ter if there is no confusion. A coherent state of intensity
x and global phase γ is a linear superposition of photon
number states {|k〉} of |√xeiγ 〉 = ∑∞

k=0
e−x/2(

√
xeiγ )k√

k!
|k〉. In a

signal window, if Alice or Bob decides to send, she (he)
shall always send a coherent state of intensity μ′. For ex-
ample, at a certain time when they both determined sig-
nal windows, if Alice decides to send while Bob decides
not to send, the two-mode state from this time window is
|√μ′eiδA+iγA〉|0〉; if both of them decide to send, the two-
mode state is |√μ′eiδA+iγA〉|√μ′eiδB+iγB 〉; if both of them
decide not to send, the state at that time window is |00〉.
States from a decoy window can have different intensities.
If at a certain time both of them have chosen a decoy
window and both of them have happened to choose the
same intensity μ, the two-mode coherent state from this
time window is |√μeiδA+iγA〉|√μeiδB+iγB 〉. Here γA, γB are
global phases of the coherent states. They are known to Eve
because Alice and Bob always send strong reference pulses
to accompany each two-mode states above. In the protocol,
Charlie is supposed to do phase compensation, trying to
remove the global phases. If Charlie does this perfectly, the
states from each side after the compensation have the same
global phases. For example, state |√μeiδA+iγA〉|√μeiδB+iγB 〉
will be changed into |√μeiδA〉|√μeiδB 〉 after a perfect phase
compensation by Charlie.

Step 2. Charlie is supposed to measure all twin fields with
a beam splitter after taking phase compensation and announce
the measurement outcome.

Note: We define an effective event by the following cri-
terion: (1) If Charlie announces only one detector counting
corresponding to a time window i when both of them have
determined a signal window, it is an effective event; (2) if
Charlie announces only one detector counting corresponding
to a time window i when both of them have determined a
decoy window and used the same intensity of coherent states,
and in that time window, the prechosen values δA, δB satisfy

1 − | cos(δA − δB )| � |λ|. (1)

Here the value λ is determined by the size of phase slice
[14] chosen by Alice and Bob. Whenever an effective event
happens, a bit in the corresponding basis is recorded.

Step 3. They announce each one’s decoy windows and
signal windows. They also announce details for intensities and
values δA, δB of pulses sent from decoy windows.

Note: We define a Z-window as a time window when
both Alice and Bob have determined a signal window. We
name states from such Z-windows as states in Z-basis, or
simply Z-pairs, Z-states. Effective events that happen in
Z-basis are named Z-bits. Given that δA value (δB value)
is randomized, whenever Alice or Bob sends a coherent
state of intensity μ′, it can be equivalently regarded as a
density matrix of

∫ 2π

0 |√μ′eiδA+iγA〉〈√μ′eiδA+iγA |dδA/2π =
∑∞

k=0
e−μ′

μ′k

k! |k〉〈k|, which is a classical mixture of different
photon number states only. Hence we can define Z1-windows
as a subset of Z-windows when only one party of Alice and
Bob decides to send and she (he) actually sends a single-
photon state. In a Z1-window, the two-mode single-photon
state sent out is either |z0〉 = |01〉 or |z1〉 = |10〉. We shall call
them Z1-states or Z1-pairs. Also, effective events caused in
Z1-windows are named Z1-bits. Furthermore, we define an X-
window as a time window when (1) both of them have chosen
the decoy window, (2) both of them have chosen the same
intensity for the coherent state to send, and (3) the random
phase δA, δB chosen for the window satisfies Eq. (1). We name
the two-mode states from X-windows states in X-basis, or
simply X-pairs or X-states, and an X-bit is a bit caused by
X-pair. Also, as shown later, states of X-pairs can be regarded
as a probabilistic mixture of different photon-number states,
with the two-mode single-photon ingredient |ψ1〉〈ψ1|, and
|ψ1〉 = 1√

2
(ei(δB+γB )|01〉 + ei(δA+γA )|10〉). Therefore we can

define an X1-window as an X-window when they send a
(two-mode) single-photon state. We also name those states
from X1-windows X1-pairs or X1-states, and the bits caused
X1-pairs as X1-bits. They do not know which time windows
are Z1-windows and X1-windows, neither do they know which
bits are Z1-bits and X1-bits, though they can know the number
of these windows and bits by calculation. If we consider only
Z1-windows and X1-windows, the states set here is similar to
that in a BB84 protocol [1].

Step 4. They randomly choose some Z-bits to do error test.
By this they can know the bit-error rate in Z-basis, EZ . They
discard the test bits, and the remaining Z-bits will be distilled
for the final key.

062323-2



TWIN-FIELD QUANTUM KEY DISTRIBUTION WITH … PHYSICAL REVIEW A 98, 062323 (2018)

Note: For any effective event happens in Z-basis, Alice
(Bob) judges the bit value in this way: if she (he) has decided
to send out a signal pulse, she (he) denotes a bit value 1 (0);
if she (he) has decided not to send, she (he) denotes a bit
value 0 (1). One can see straight away, if an effective event
happens while both Alice and Bob have decided not to send,
or both of them have decided to send, a wrong bit in Z-basis is
created, because in such a case, the bit value denoted by Alice
is different from the bit value denoted by Bob.

Step 5. They use the announced data from X-pairs to
calculate the counting rate (yield) s1 for X1-windows (which is
also the value for Z1-windows). The number of bits created in
Z1-windows can be directly calculated from this value. Also,
by observing the error rate of X-pairs of intensity μ, EX

μ ,
the counting rate of intensity μ, Sμ, and the counting rate
of vacuum s0, they can calculate the upper bound value of
flipping rate of X1-bits by

e
X1
1 � ē

X1
1 = SμEX

μ − e−2μs0/2

2μe−2μs1
. (2)

Asymptotically, the phase-flip rate e
ph

1 for Z1 bits is e
ph

1 =
e
X1
1 .

Note: In the protocol, Charlie does the beam-splitter mea-
surement [14] after he takes the phase compensation. There
are two output ports of the beam splitter: the right detector
and left detector. They use the following criterion to judge a
right bit or a wrong bit in X-basis: A right X-bit is the left
(right) detector clicking caused by an X-pair with positive
(negative) value of cos(δA − δB ). A wrong X-bit is the right
(left) detector clicking caused by an X-pair with positive
(negative) value of cos(δA − δB ). Given the observed error
rate in X-basis and s1, the phase-flip error rate e

ph

1 for Z1-bits
can be obtained because asymptotically it is just the error
rate of those single-photon-caused X-bits, as shown in the
supplement. Note that, although they know the number of
X1-bits, they don’t know which ones are X1-bits, and hence
quantity e

X1
1 cannot be directly observed, it can be only

calculated by the formula above.
Note: Also, as one can easily see, if Charlie does the

phase compensation perfectly, the output of the beam-splitter
measurement [14] will produce a small observed error rate in
X-basis, if |λ| is small in the postselection criterion [Eq. (1)].
Charlie does not have to be honest or do the compensation
perfectly. But this will only change the observed error rate in
X-basis rather than the security of the protocol.

Step 6. They distill the final key with an asymptotic key rate
formula

Nf = n1 − n1H
(
e
ph

1

) − ntf H (EZ ), (3)

where Nf is the number of final bits, n1 is the number
of remaining Z1-bits after the error test in Step 4, nt is
the number of remaining Z-bits after the error test in Step
4, H (x) = −x log2 x − (1 − x) log2(1 − x) is the binary en-
tropy function, and f is error correction efficiency factor. The
formula can be equivalently written in the following form of
key rate per time window:

R = 2ε(1 − ε)μ′e−μ′
s1

[
1 − H

(
e
ph

1

)] − SZf H (EZ ), (4)

where SZ is the observed counting rate of Z-windows.
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FIG. 1. Log scale of the key rate as a function of the distance
between Alice and Bob with different misalignment errors. ea : mis-
alignment error rate of single-photon interference. MDIQKD: The
optimized key rate for existing decoy-state MDI-QKD with coherent
states. In calculating MDI-QKD, we take misalignment error rate
1.5% for X-basis and 0 for Z-basis. The numerical result here shows
that asymptotically our protocol can have an obvious advantage to
the existing decoy-state MDI-QKD even though the misalignment
error is as large as 35%. Here, infinite intensities are assumed in the
decoy state calculation.

III. NUMERICAL SIMULATION

In our protocol, we use the traditional formulas for the
decoy-state method. Since we don’t need any postselection
in Z-basis and we need only sending or not-sending, there is
no misalignment error in this basis. This makes the protocol
able to work with large misalignment from the single-photon
interference in X-basis. The results of numerical simulation
are summarized in Figs. 1 and 2.

In the calculation, we have assumed a detector with a dark
count rate of 10−11 and detection efficiency of 80%. An error
correction coefficient of 1.1 is set in our calculation. Here we
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FIG. 2. Log scale of the key rate as a function of the misalign-
ment error when the distance between Alice and Bob is 500 km.
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have considered only the asymptotic result, and we have set
the phase slice infinitely small. We can do so because in our
case we take no postselection in Z-basis. And, at each data
point, we have optimized ε and the signal pulse intensity so
as to obtain the best key rate. We can see that our protocol is
so robust to misalignment errors that it can exceed a secure
distance of nearly 300 km even with a misalignment error rate
of 45%. It exceeds a secure distance of 700 or 600 km even
though the single-photon misalignment error rate is as large as
15% or 25%. Also, when the distance is fixed to be 500 km,
the key rates are shown with different misalignment errors.
The largest tolerable error rate can be 35%. These results
show that our protocol by far breaks the existing few percent
threshold of the single-photon misalignment error rate for a
larger-than-zero secure distance. When there is no misalign-
ment error, our protocol exceeds a secure distance of more
than 800 km.

IV. VALIDITY OF THE DECOY-STATE METHOD

Specifically, in the protocol Alice takes a random phase
shift δA to her coherent state, and Bob takes a random phase
shift δB to his coherent state. The two-mode weak coherent
state prepared by them is |√μeiδA+iγA〉 ⊗ |√μeiδB+iγB 〉. Here
the global phases γA and γB cannot be regarded as random
phases because they also send the strong reference pulses.
First, we introduce the new independent variables δ± = (δB ±
δA)/2. Integrating the two-mode state of X pulses on variable
δ+ over the range of [0, 2π ), we obtain a classical mixture in
the convex form

∑

k

pk (μ)|ψk〉〈ψk| (5)

with |ψk〉 being the state of total photon number k for the two-
mode state |ψk〉 and pk (μ) being its probability. For example,

|ψ0〉 = |00〉, p0(μ) = e−2μ, (6)

|ψ1〉 = 1√
2

(eiδB+iγB |01〉 + eiδA+iγA |10〉), (7)

with

p1(μ) = 2μe−2μ,

|ψ2〉 = 1√
2
ei(δA+γA+δB+γB )|11〉

+ 1

2
e2i(δB+γB )|02〉 + 1

2
e2i(δA+γA )|20〉, (8)

with

p2(μ) = 2μ2e−2μ, (9)

and so on. This means states from X-windows are actually
classical mixture of different photon numbers. The phase
randomized states from Z-windows can also be regarded as
a mixture of different photon-number states, in particular,
the ingredients of single photons are randomly on states |01〉
or |10〉. As shall be shown later in virtual protocols, single-
photon states of Eq. (7) can be used to test the phase-flip rate
of those single photons from Z-windows.

One may argue that there is a later announcement of phase
information for decoy pulses, how to guarantee the validity of
the traditional decoy-state method here, e.g., Eq. (3). Since the
phase-shift information of signal pulses is never announced,
we can regard signal pulses as a classical mixture of different
photon number states. What we want to know is the number of
single-photon-caused bits and their phase-flip error rate from
signal bits. Once we know the facts, they do not change by
any action outside the laboratory. Consider a virtual protocol
where Alice and Bob secretly decided the random phase-shift
values prior to the protocol. In such a case, our calculations
at Step 6 are obviously solid. Note that the values of single-
photon counts and phase-flip error rate are objective facts
which do not change by any outside actions. After Alice and
Bob know the fact, they can announce the phase information
of all decoy pulses. But they can also choose to first announce
the phase information and then calculate the crucial values
for the signal bits, because no one knows at which time they
have done the calculation. In such a case, they do not need
to predetermine the random phase values, they just use the
protocol we proposed above. Also, there is a similar story in
the MDI-QKD: the bases information cannot be announced
before the states are measured. But it can be announced later,
for, the X-basis states are used only to know the phase-flip
value of those qubits in Z-basis.

Explicitly, we divide the whole space into two subspaces,
E for Eve and AB for Alice and Bob. After Alice and Bob
postannounce phase-shift information, they will not receive
any information from Charlie (Eve). Suppose Eve has a ma-
chine M which automatically stores all those postannounced
information on phase-shift values of effective states in X-
windows. Eve can in principle have two different choices:

Choice 1: Ignores the machine M and does not take any
actions.

Choice 2: Makes use of the stored information of M and
takes whatever actions she can to her probe.

Definitely, under Choice 1, all decoy-state methods are
valid, all calculated values for signal states, such as s1 the
lower bound of single-photon counts for Z-windows and the
ē
ph

1 upper bound of phase-flip rate of those single-photon
counts of Z-windows, are correct and the final key is secure.
On the other hand, both Choice 1 and Choice 2 are local
actions in subspace E , and they do not cause detectable effects
in subspace AB. Therefore, even if Eve takes Choice 2, it
makes no difference to subspace AB. That is, no matter which
choice Eve takes, there will be no detectable difference in
subspace AB. Therefore, Alice and Bob can always assume
Choice 1 for Eve. This can be stated as the following theorem.

Theorem: Given whatever information is announced by
Alice and Bob, Eve’s actions to her probe only cannot cause
any detectable effects in Alice and Bob’s subspace AB.

The phase-flip error is not detectable in the real protocol
presented earlier. But, imagine a purification protocol where
Alice and Bob use entangled photons in Z-windows and
coherent states in X-windows only. Then the phase-flip error
is detectable and the purification result will be all the same no
matter which choice Eve has taken. Reducing this virtual pro-
tocol to the real protocol we conclude that later announcement
of phase-shift values does not change the security. Details of
this are shown in the notes to Virtual Protocol 3.
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V. SECURITY PROOF WITH VIRTUAL
PROTOCOLS AND REDUCTION

We first recall the definition of time windows in the send-
ing or not-sending (SNS) protocol: Any time window i, if
both Alice and Bob commit to a signal window, is called
a Z-window; if both of them commit to a decoy window,
and if each of them has sent out to Charlie a coherent
state of the same intensity μk it is called an X-window.
Besides Z-windows and X-windows, in a complete SNS
protocol, there are also mismatching windows, e.g., a time
window when Alice commits to a signal window while Bob
commits to a decoy window, or when Alice and Bob each
commit to a decoy window but choose different intensi-
ties μk for the coherent state. For presentation conciseness,
we shall first prove the security of the simplified form of
the SNS protocol which has Z-windows and X-windows
only. After the simplified SNS protocol is proven secure, we
then show that the proof also holds for the complete SNS
protocol.

A. Z-basis encoding on ancillary photons of an extended state

If the ith time window is a Z-window, Alice and Bob each
make a decision on either sending or not-sending. If Alice
(Bob) decides sending, she (he) puts down a bit value 1 (0)
and then sends out a coherent state to Charlie; if Alice (Bob)
decides not-sending, she (he) puts down a bit value 0 (1) and
does not send out anything (i.e., sends out a vacuum |0〉) to
Charlie.

The Z-basis encoding of the SNS protocol is done by
decisions on sending or not-sending made by Alice and Bob
locally. More precisely, the sending or not-sending decision of
a time window that always corresponds to the local classical
bits 1, 0 to Alice or 0, 1 to Bob. We can also imagine that
whenever Alice (Bob) decides sending or not-sending, she
(he) always produces a local ancillary photon-number state
|1〉 or |0〉 and the corresponding bit values are encoded in the
local ancillary state. To Alice (Bob), state |0〉 corresponds to
a bit value 0 (1), and state |1〉 corresponds to a bit value 1
(0). This is equivalent to say that they (Alice and Bob) have
used an extended state including a real-photon state which
will be sent out to Charlie and ancillary state placed locally.
For example, in a certain window when Alice decides sending
and Bob decides not sending, we can imagine that they have
actually prepared an extended state

(ρA⊗̃|0〉〈0|)| ⊗ |10〉〈10|, (10)

where ρA is the coherent state sent out by Alice in a Z-window
when she decides sending. We shall also use notation ρB as
the coherent state sent out by Bob in a Z-window when he
decides sending. As stated already, each one’s bit value is
actually encoded in the local ancillary photon-number state. If
the ith time window is a Z-window, Alice and Bob each make
a decision on either sending or not-sending. Define subspace
T for the subspace of sent-out states and An for the subspace
of local ancillary states with Alice and Bob. We can also
construct an extended quantum state in the complex space

T ⊗ An for a Z-window as

� = (p1/2)(|0〉〈0|⊗̃ρB ) ⊗ |01〉〈01|
+ (p1/2)(ρA⊗̃|0〉〈0|) ⊗ |10〉〈10|
+p2|00〉〈00| ⊗ |00〉〈00|
+p3(ρA⊗̃ρB )| ⊗ |11〉〈11|. (11)

Here both symbols ⊗̃ and ⊗ are for a tensor product, and
⊗̃ is the tensor product inside subspace T , and ⊗ is the
tensor product between subspace T and An. On the right-hand
side of Eq. (11), those states left of ⊗, such as |0〉〈0|⊗̃ρB ,
ρA⊗̃|0〉〈0|, |00〉〈00|, and ρA⊗̃ρB , are in the subspace T , and
those states right of ⊗, such as |10〉〈10|, |01〉〈01|, |00〉〈00|,
and |11〉〈11|, are in the subspace An. For presentation sim-
plicity, we shall name the light field of subspace T in an
extended state a real-photon state, or real photons, and name
the local light field in subspace An an ancillary-photon state,
or ancillary photons.

Ancillary state |01〉〈01| (|10〉〈10|) is for the decisions that
Alice decides not-sending (sending) and Bob decides send-
ing (not-sending). Ancillary-photon state |00〉〈00| (|11〉〈11|)
is for the decisions that both of them decide not-sending
(sending). In a Z-window of SNS protocol, their action is
equivalent to just sending out the real photons of � to Charlie
and keep their ancillary photons.

Also, since ρA and ρB are phase-randomized coherent
states, each of these states can be regarded as classical mix-
tures of different photon number states. Suppose that we can
replace ρA or ρB by

ρμ′ =
∞∑

n=0

e−μ′
μ′n

n!
|n〉〈n| = μ′e−μ′ |1〉〈1| + (1 − μ′ e−μ′

)ρ̄,

(12)

where

ρ̄ = 1

1 − μ′e−μ′

∑

n�=1

e−μ′
μ′n

n!
|n〉〈n|, (13)

and hence we can rewrite the extended state � in the following
equivalent format:

� =
∑

r

qr�r , (14)

where r = 1, 2, 3, 4 and

�1 = (1/2)(|01〉〈01| ⊗ |01〉〈01|
+ |10〉〈10| ⊗ |10〉〈10|),

�2 = (1/2)[(|0〉〈0|⊗̃ρ̄ ) ⊗ |01〉〈01|
+ (ρ̄⊗̃|0〉〈0|) ⊗ |10〉〈10|],

�3 = |00〉〈00| ⊗ |00〉〈00|,
�4 = (ρμ′ ⊗̃ρμ′ ) ⊗ |11〉〈11|. (15)

Also, for any time window i, if it is an X-window of the SNS
protocol, they (Alice and Bob) send out two-mode coherent
state

ρX = |β̃k〉〈β̃k|, (16)
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where, i.e., in the form of a two-mode coherent state,

|β̃k〉 = |√μke
iδA+iγA〉|√μke

iδB+iγB 〉, (17)

and k is randomly chosen from a few different values for
different intensities, μk , δA, δB are random values taken
privately by Alice and Bob, respectively, and γA, γB are global
phases announced to Charlie publicly.

In the SNS protocol above, the state for a Z-window is
a classical mixture of different kinds of time windows. The
Z-windows are a classical mixture of Z1-windows which uses
only the extended states �1 and other types of Z-windows
which use the extended states of �2,�3,�4. (Note that all
these states are orthogonal.) To show the security of this
protocol, we can take the following theme: We first show the
security of a protocol with only state �1 for a Z-window,
and then extend it to the case of state � for a Z-window by
the tagged model [15]: we regard the bit values of Z-basis
encoding from state �1 as the set of untagged bits and the bit
values from other states (�2,�3,�4) as the set of tagged bits.

In a complete SNS protocol, besides X-windows and Z-
windows, there are other time windows (those mismatching
windows [16]), but as shown in the end of the proof, in that
case another extended state including all time windows is
constructible, and it is still a mixture of �1 and other states,
and therefore the tagged model and the security proof here
still holds. At this moment, for presentation conciseness, we
consider the simplified form of the SNS protocol where there
are only Z-windows and X-windows.

We shall start from our Virtual Protocol 1 where Alice
and Bob preshare extended quantum entangled states and
classical information for both X-windows and Z-windows.
The security of the outcome of this virtual protocol can be
shown by entanglement purification to the ancillary photons.
After reductions, we find that Eve cannot distinguish this
protocol from a simpler protocol, Protocol 2. We then show
that, based on the proven security of Protocol 2, Protocol 3
must be secure because we can equivalently regard that states
of X-windows of Protocol 2 are a subset of that of Protocol
3. Eve cannot distinguish Protocol 3 and Protocol 4, which is
the simplified form of SNS. Finally, we can construct that the
complete SNS protocol, Protocol 5, can be obtained through
assigning specific probabilities to each preshared extended
states in a virtual protocol. This completes the security proof.

B. Virtual Protocol 1

Definition of effective event: We define an effective event of
a Z-window if Charlie announces one and only one detector
clicking for an individual Z-window. We define an effective
event of an X-window if Charlie announces one and only
one detector clicking for an individual X-window and values
δA, δB in the corresponding state satisfy Eq. (24). They will
then use only states or data corresponding to effective events
in the protocol. A time window that presents an effective event
is named an effective time window. An effective ancillary
photon is an ancillary photon corresponding to an effective
event.

1. Preparation stage

They preshare classical information for different time win-
dows they will use, X-windows and Z-windows. They also
preshare an extended state

�0i = |�1i〉〈�1i |,

|�1i〉 = 1√
2

(eiγBi |01〉 ⊗ |01〉 + eiγAi |10〉 ⊗ |10〉) (18)

for the ith time window. Here values of γAi
, γBi

are announced
publicly.

For any time window i, if it is an X-window, Alice takes
a local random phase shift δAi and Bob takes a local random
phase shift δBi locally to the real photon of state �0i . We name
the state after the random phase shifts �Xi . Explicitly

�Xi
= |� ′

1i〉〈� ′
1i |, |� ′

1i〉 = 1√
2

(eiδBi
+iγBi |01〉 ⊗ |01〉

+ eiδAi
+iγAi |10〉 ⊗ |10〉) (19)

with the random values δAi, δBi being privately chosen by
Alice and Bob, respectively.

For any time window i, if it is an Z-window, through
discussions by a secret channel, Alice takes a local restricted
random phase shift δAi and Bob takes a local restricted random
phase shift δBi to the real photon of state �0i , with the
restriction

1 − | cos
(
δBi

− δAi

)| � |λ|. (20)

We name the state after the restricted random phase shifts �Zi ,
which has the form

�Zi
= |� ′

1i〉〈� ′
1i |, |� ′

1i〉 = 1√
2

(eiδBi
+iγBi |01〉 ⊗ |01〉

+ eiδAi
+iγAi |10〉 ⊗ |10〉). (21)

Compared with �Xi , it has an additional restriction of
Eq. (20).

The constraint Eq. (20) makes the state in Z-windows
not identical to that in all X-windows. If we define an X̃-
window as a time window whose parameters δAi

, δBi
are in

extended state �Xi
satisfying Eq. (20), the extended state for

Z-windows is identical to the extended state of X̃-windows.
For presentation simplicity, we shall omit the subscripts

i in all phase values δAi
, δBi

, γAi
, γBi

and states. Also, we
introduce states |χ0〉, |χ1〉 in the real-photon space for any
time window:

|χ0〉 = 1√
2

(eiδB+iγB |01〉 + eiδA+iγA |10〉),

|χ1〉 = 1√
2

(eiδB+iγB |01〉 − eiδA+iγA |10〉),

× if cos(δB − δA) � 0, (22)

and

|χ0〉 = 1√
2

(eiδB+iγB |01〉 − eiδA+iγA |10〉),

|χ1〉 = 1√
2

(eiδB+iγB |01〉 + eiδA+iγA |10〉),

× if cos(δB − δA) < 0. (23)
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2. Virtual Protocol 1

1-1: At any time window i, if it is a Z-window (X-
window), they send out to Charlie the real-photon state from
state �Z (�X) as defined by Eq. (21) [Eq. (19)] to Charlie and
keep the ancillary photons locally.

1-2: Charlie announces his measurement outcome of all
time windows. They tell each other δA, δB values through
classical communication and then take postselection to all
X-windows and the one-detector-clicking events from the
X-windows by the following criterion:

1 − | cos(δB − δA)| � |λ|, (24)

which is identical to Eq. (20). Taking postselection by this
criterion, they obtain X̃-windows and effective events of X-
windows, which can be regarded as effective events of X̃-
windows. According to our definition, an X̃-window satisfies
Eq. (20) therefore identical to a Z-window.

Definition: After the postselection taken in Step 1-2, they
divide their effective time windows and corresponding ef-
fective ancillary photons into four subsets according to the
clicking detector (the left or the right) and the sign of cos(δB −
δA) (positive or negative). Each subset of time windows is
labeled by ξ = (a, d ) where a = +,− and d = L,R.

Explicitly, time window ξ = (a, d ) is an effective time
window heralded by joint events of a and d as defined in the
following:

Event a: the sign of cos(δB − δA) is a (+ or −). Explicitly,
a = + for cos(δB − δA) � 0, a = − for cos(δB − δA) < 0.

Event d: Detector d has clicked and the other detector has
not clicked. d can be either L for the left detector or R for the
right detector.

Definitions: We shall use notation Zξ (Xξ ) for a Z-window
(X-window) with joint events of a, d for ξ = (a, d ). We shall
also use set AZξ

(AXξ
) for the set of effective ancillary photons

of time windows Zξ (Xξ ).
1-3: They check the phase-flip error rate Eξ for set

of AXξ
, where ξ = (+, L), (−, L), (+, R), (−, R), which is

also the estimated phase-flip error rates of set AZξ
and ξ =

(+, L), (−, L), (+, R), (−, R).
1-4: They purify the ancillary photons of time windows

Zξ and ξ = (+, L), (−, L), (+, R), (−, R) separately. After
purification, they obtain a high-quality single-photon state
|�0〉 = 1√

2
(|01〉 + |10〉) or |�1〉 = 1√

2
(|01〉 − |10〉) with (al-

most) 100% purity. They each measure the photon number
locally to the purified photons and obtain the final key kf .
Alice puts down a bit value 0 or 1 whenever she obtains a
measurement outcome of vacuum or one photon, Bob puts
down a bit value 1 or 0 whenever he obtains a measurement
outcome of vacuum or one photon.

Note 1: Security. The security of the final key is based
on the faithfulness of the purification, i.e., the estimation
of the phase-flip error rate. Charlie has determined effective
ancillary photons, but Alice and Bob test the phase-flip error
rate themselves in Step 1-3. Although the extended state of an
X-window is not identical to that of a Z-window, the extended
state of an X̃-window is identical to that of a Z-window. After
the postselection condition in Step 1-2, it is equivalent to
say that all effective events of X-windows are just effective
events from X̃ windows. Therefore, an ancillary photon from

set AXξ
is identical to an ancillary photon from set AZξ

.
So, statistically, the phase-flip-error rate value of set AXξ

is
exactly the value of set AZξ

.
Note 2: Definitions of phase-flip-error rate. Suppose set

AXξ
contains nξ effective ancillary photons. If each photon of

set AXξ
was measured in basis {|�0〉, |�1〉} and there were

n
(0)
ξ outcomes of |�0〉〈�0|, and n

(1)
ξ outcomes of |�1〉〈�1|,

the phase-flip error rate for set AXξ
is

Eξ = min
(
n

(0)
ξ , n

(1)
ξ

)

nξ

. (25)

Changing the values of n
(0)
ξ , n

(1)
ξ , nξ into the corresponding

values of set AZξ
in Eq. (25), we can define the phase flip

error rate for set AZξ
. Statistically, Eξ for set AXξ

is also
the asymptotic phase-flip error rate of set AZξ

. To know the
values Eξ , they can choose to measure each photon of set
AXξ

in basis {|�0〉, |�1〉}. But instead of this, they can also
choose to take local measurements in basis {|x±〉} in each
side and check the parity of each measurement outcome.
(Outcomes of |x+〉|x+〉 or |x−〉|x−〉) are even-parity while
|x+〉|x−〉 or |x−〉|x+〉 are odd parity.) Note that all effec-
tive ancillary photons are single photons. As is easy to see,
for single photons, the fraction of odd parity (even parity)
outcome from measurement of each sides in basis {|x±〉} is
exactly equal to the fraction of |�1〉〈�1| (|�0〉〈�0|) outcome
from the measurement in basis {|�0〉, |�1〉}. Moreover, this
measurement step is needed here only for this virtual protocol,
it is not needed for a real protocol. For ease of presentation,
we suppose they use the measurement basis {|�0〉, |�1〉}.

Note 3: Reduction of preshared states for X-windows.
Reduction 1. It makes no difference to anyone outside if

they measure all ancillary photons of X-windows in basis
{|�0〉, |�1〉} before the protocol starts. This measurement
operation is on an ancillary photon, while the initial random
phase-shift operation (δA, δB) is on the real-photon space,
so these two operations commute. We assume they first take
measurement of ancillary photons and then take local random
phase shifts of the real-photon state for an X-window. They
start from the preshared pair of Eq. (18). After measurement
of the ancillary photon, they obtain one of the following
outcome extended states for an X-window, depending on the
measurement outcome of ancillary photon:
either

|W̃0〉 ⊗ |�0〉, |W̃0〉 = 1√
2

(eiγB |01〉 + eiγA |10〉), (26)

or

|W̃1〉 ⊗ |�1〉, |W̃1〉 = 1√
2

(eiγB |01〉 − eiγA |10〉). (27)

They then take local phase shifts δA, δB of a real-photon state
of outcome extended state, which is one of the above two
states. If they then take all steps in Virtual Protocol 1 from Step
1-1 to Step 1-4 as if they were using the original preshared
extended states without measurement of the ancillary photons
at this stage, the result should be equivalent to the original
virtual protocol.

Reduction 2. Alternatively, they can just start with states
of Eqs. (26) and (27) for their X-windows. In such a
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case, an X-window is either an X0-window with real-photon
state |W̃0〉 or an X1-window with real-photon state |W̃1〉.
They need preshare classical information on Z-windows, X0-
windows, and X1-windows. They preshare real-photon states
|W̃0〉 = 1√

2
(eiγB |01〉 + eiγA |10〉) for X0-windows and |W̃1〉 =

1√
2
(eiγB |01〉 − eiγA |10〉) for X1-windows. Imagine that they

also preshare some single-photon states |�0〉 and |�1〉. (These
states |�0〉 and |�1〉 are not really necessary; to show every-
thing clearly we assume so for the moment.)

In an X0-window, they take local private random phase
shift δA, δB on the preshared state |W̃0〉, changing it to

|W0〉 = 1√
2

(eiδB+iγB |01〉 + eiδA+iγA |10〉). (28)

They label a preshared state |�0〉 as the ancillary photon for
this state |W0〉 above. They then send the real-photon state
|W0〉 out to Charlie. After Step 1-2, they have known the
values of δA, δB , and they now know the original extended
state with the labeled ancillary photon

�+,0 = |χ0〉〈χ0| ⊗ |�0〉〈�0| if cos(δB − δA) � 0, (29)

�−,0 = |χ1〉〈χ1| ⊗ |�0〉〈�0| if cos(δB − δA) < 0. (30)

Here we have used the same definition for |χ0〉, |χ1〉 as used
in Eqs. (22) and (23).

In an X1-window, they take the same operations above to
state |W̃1〉, changing it to

|W1〉 = 1√
2

(eiδB+iγB |01〉 − eiδA+iγA |10〉). (31)

They label a preshared state |�1〉 as the ancillary photon for
this state |W1〉 above. They then send the real-photon state
|W1〉 out to Charlie. After Step 1-2, they will know the values
of δA, δB , and they now know the original extended state with
the labeled ancillary photon is

�+,1 = |χ1〉〈χ1| ⊗ |�1〉〈�1| if cos(δB − δA) � 0, (32)

�−,1 = |χ0〉〈χ0| ⊗ |�1〉〈�1| if cos(δB − δA) < 0. (33)

Here we have used the same definition for |χ0〉, |χ1〉 as used
in Eqs. (22) and (23).

Given the orthogonal extended states by Eqs. (29), (30),
(32), and (33), we can define four subsets of time windows
by X(a,b), where a = +,− and b = 0, 1. An X(a,b)-window
is an effective time window heralded by joint events a and b

defined in the following:
Event a: the sign of cos(δB − δA) is a.
Event b: the ancillary state is |�b〉. Specifically,

X(a,b) − window:

a = + for cos(δB − δA) � 0,

a = − for cos(δB − δA) < 0,

b = 0 for ancillary state |�0〉〈�0|,
b = 1 for ancillary state |�1〉〈�1|. (34)

On the other hand, after Step 1-2, they can judge explicitly
the values a and b if it is an effective window. Value b

is determined by the preshared information, b = 0 for an
X0-window and b = 1 for an X1-window. Value a is deter-
mined by the random phase-shift values of δA, δB chosen
for the time window, a = + if cos(δB − δA) � 0, a = − if
cos(δB − δA) < 0. Given an X0-window or an X1-window,
the measurement outcome in basis {|�0〉, |�1〉} in Step 1-3
is actually deterministic, and hence the measurement in Step
1-3 is not necessary. Therefore, according to our Definition
1, they can use the following operable definition to calculate
each quantity in Eq. (25) after Step 1-2. We introduce X(a,b,d )

for an effective time window with joint events a, b, and d, as
defined in the following:

Event a: The sign of cos(δA − δB ).

Event b: The time window is an Xb-window.

Event d: Detector d has clicked and the other detector has
not clicked, d = L for left detector and d = R for the
right detector.

For example, an X(+,1,L)-window is a time window satis-
fying the following conditions:

1. At this window, cos(δB − δA) � 0.

2. It is an X1-window, i.e., the the ancillary photon state is
|�1〉〈�1|.

3. The left detector clicks and the right detector does not
click.

We also introduce notation NX(a,b,d ) for the number of
X(a,b,d )-windows in the protocol. Therefore we have

n
(0)
(a,d ) = NX(a,0,d ) , (35)

n
(1)
(a,d ) = NX(a,1,d ) (36)

for Eq. (25). Given Eqs. (35) and (36), we can apply Eq. (25)
immediately after Step 1-2, i.e., we have removed the mea-
surement operation in Step 1-3.

Importantly, all values of a, b, d can be determined from
the values of δA, δB , the preshared information for time win-
dow X0 or X1, and Charlie’s announcement on the clicking
detector, L or R. The ancillary photons for X-windows are
actually not needed in the protocol.

C. Virtual Protocol 2

Here we assume they preshare a classical informa-
tion for windows of Z, X0, and X1. They preshare
the same extended states �Z for Z-windows as in Vir-
tual Protocol 1. They initially preshare real-photon states
|W̃0〉 = 1√

2
(eiγB |01〉 + eiγA |10〉) for X0-windows and |W̃1〉 =

1√
2
(eiγB |01〉 − eiγA |10〉) for X1-windows. They take local ran-

dom phase shifts δA, δB on a state |W̃0〉 for an X0-window
and on state |W̃1〉 for an X1-window. After local phase shifts,
they share a state |W0〉 = 1√

2
(eiδB+iγB |01〉 + eiδA+iγA |10〉)

for an X0-window and a state |W1〉 = 1√
2
(eiδB+iγB |01〉 −

eiδA+iγA |10〉) for an X1-window.
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1. Virtual Protocol 2

2-1: At any time window i, if it is a Z-window, they send
out the real-photon from state �Z to Charlie and keep the
ancillary photon locally. If it is an X0-window (X1-window),
they send out to Charlie the real-photon state |W0〉 (|W1〉).

2-2: Charlie announces his measurement outcome of all
time windows. They tell each other δA, δB values through
classical communication and then take postselection for X-
windows by the criterion of Eq. (24).

2-3: They estimate the phase-flip error rate Eξ for sets of
AZξ

, where ξ = (+, L), (−, L), (+, R), (−, R) by the for-
mula

E(a,d ) = min
(
NX(a,0,d ) , NX(a,1,d )

)

n(a,d )
, (37)

where a = +,− and d = L,R.
2-4: They purify the effective ancillary photons in sets

AZξ
and ξ = (+, L), (−, L), (+, R), (−, R) separately. Af-

ter purification, they obtain a number of final states all in
|�0〉 from sets (+, L), (−, R), and all in |�1〉 from sets
(−, L), (+, R). They each measure the photon number locally
for each purified single photon and obtain the final key kf .

Note 1. The X1-window is not needed. It is easy to show
that the density operator ρ0 for a time window X0 is actually
identical to the density operator ρ1 for a time window X1.
Also, it is easy to see

ρ+,0 = ρ−,1, ρ−,0 = ρ+,1, (38)

where ρa,b is the density operator for time windows of X(a,b),
taken average on all allowed values of δA, δB . This means we
have

NX(a,1,d ) = NX(ā,0,d ) ; (39)

therefore we can simply replace NX(a,1,d ) in the phase-flip
error rate formula Eq. (37) by NX(ā,0,d ) . Also since ρ0 = ρ1,
Eve can find no difference if we replace all X1-windows by
X0-windows. Therefore, we don’t need X1-windows; conse-
quently, they need only a classical information for Z-windows
and X-windows (i.e., X0-windows), and they need only an
initial state |W̃0〉 for X-windows. In this way, an X-window
is just an X0-window. Consider NXa,1,d

in Eq. (37). It can be
replaced by NXā,0,d

because of Eq. (39). Further, since there
is no X1-window now, the X0-window is just an X-window,
NXa,1,d

can be further replaced by NX(ā,d ) , and Eq. (37) is
replaced by

E(a,d ) = min
(
NX(a,d ), NX(ā,d )

)

n(a,d )
. (40)

Note 2. They don’t need to preshare any state for X-
windows. As was shown by Eq. (5) already, the two-mode
coherent state can be regarded as a mixture of different two-
mode photon number state. The single-photon state in Eq. (7)
is equivalent to the preshared state of |W0〉.

Note 3. Purifying all effective ancillary photon in one
batch. Definitely, they can choose to purify all effective ancil-
lary photons of Z-windows in one batch. The phase-flip error

rate is

Eph =
∑

a,d min
(
NX(a,d ) , NX(ā,d )

)

n1
(41)

= 2
∑

d min
(
NX(+,d ) , NX(−,d )

)

NX(+,L) + NX(−,L) + NX(+,R) + NX(−,R)

, (42)

where n1 = NX(+,L) + NX(−,L) + NX(+,R) + NX(−,R) is the
total number of effective X-windows. Surely, NX(−,L) �
min(NX(+,L) , NX(−,L) ) and NX(+,R) � min(NX(+,R) , NX(−,R) ).
Therefore the phase-flip error rate formula of Eq. (41) can be
simplified into

Eph � NX(−,L) + NX(+,R)

n1
, (43)

which is simply to count the following two types of joint
events as phase-flip errors:

1. Left-detector-clicking only and cos(δB − δA) < 0.

2. Right-detector-clicking only and cos(δB − δA) � 0.
If they use this formula, Charlie can make a high-quality

raw state of effective ancillary photons for Alice and Bob by
setting his measurement setup properly with very small prob-
ability for the left-detector-clicking (right-detector-clicking)
due to the incident state of |χ1〉 (|χ0〉).

D. Virtual Protocol 3

Here we assume they preshare a classical information for
windows of Z and X. They preshare the same extended states
�Z for Z-windows only as in Virtual Protocols 1 and 2.

1. Virtual Protocol 3

3-1: They send out the real photons of state �Z in Eq. (18)
for a Z-window and state ρX as defined in Eq. (16) in an X-
window.

3-2: Charlie announces his measurement outcome. They
each announce the random phase-shift values δA, δB and take
postselection for X-windows by Eq. (24).

3-3: They verify the phase-flip error rate e
ph

1 for effec-
tive ancillary photons with classical data of X-windows an-
nounced by Charlie through decoy-state analysis. In an X-
window, an error is counted if the cos(δB − δA) � 0 and the
right detector clicks, or cos(δB − δA) < 0 and the left detector
clicks.

3-4: They take purification and local measurement of puri-
fied single photons to obtain the final key.

Note 1: e
ph

1 , Eph, and validity of the decoy-state method.
The physical meaning of e

ph

1 is the same as that of Eph that
appeared in Virtual Protocol 2, just the phase-flip error rate
of effective ancillary photons of Z-windows. But there, the
value Eph is directly observed, whereas here the value e

ph

1 is
calculated by the decoy-state method.

We use notation I for the information of random phase-
shift values δA, δB of state ρX postannounced in Step 3-2.
According to our theorem, Eve’s action with information I
does not cause any detectable effects for any set of ancillary
photons. Therefore, for any physically testable conclusion on
the ancillary photons, if it is correct in the case that Eve
ignores information I, it must be also correct in the case that
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Eve uses I. Here the decoy-state analysis is to conclude the
upper bound value of the phase-flip error rate of the effective
ancillary photons. The conclusion is physically testable be-
cause the phase-flip error rate for the ancillary photons here
is physically detectable. The conclusion from the decoy-state
method for the upper bound definitely is correct if Eve ignores
information I. According to our theorem the upper-bound
conclusion must also be correct in the case that Eve uses I.

Note 2: Probabilistic mixture of different photon-number
states and the decoy-state analysis. Consider Eqs. (5) and (7).
We can regard the X-windows as a classical mixture of an
X1-window and other types of X-windows, and an X1-window
is defined as an X-window when a two-mode single photon is
sent out to Charlie by Alice and Bob. We need the yield value
of s1, which is just the effective-event rate of all X1-windows.
If, e.g., k1 effective events are produced from K1 X1-windows
in the whole protocol, then s1 = k1/K1. This can be worked
out by decoy-state analysis, e.g., given three intensities μ0 =
0, μ1, μ2 and μ0 = 0 < μ1 < μ2, through directly applying
Eq. (17) of Ref. [17] we have

s1 � s1

= p2(μ2)[Sμ1 − p0(μ1)s0] − p2(μ1)[Sμ2 − p0(μ2)s0]

p2(μ2)p1(μ1) − p2(μ1)p1(μ2)
,

(44)

where pk (μ) is defined by Eqs. (6), (8), and (9) and s0, Sμ1 ,
Sμ2 are an experimentally observed effective-event rate of
Xμ0 -windows, Xμ1 -windows, Xμ2 -windows, and μ0 = 0. We
also have the following formula for the upper bound value
of the phase-flip error rate of effective ancillary photons of
Z-windows:

e
ph

1 � ē
ph

1 = Sμ1E
X
μ1

− e−2μ1s0/2

2μ1e−2μ1s1
. (45)

If we use infinite intensities, we can even verify the exact
value of s1, as was applied in our numerical simulation and
other works on TF-QKD.

Note 3: Quasipurification. Since their goal is to have the
final key only, a true purification to ancillary photons is not
necessary [18]. They can choose to measure all ancillary
photons of Z-windows in advance [18] in photon-number
basis and then take virtual purification to classical data of
Z-windows corresponding to those effective events. They
then take a virtual quasipurification to the classical data,
which is just the final key distillation. Also, the preshared
extended state for a Z-window is just (|01〉〈01| ⊗ |01〉〈01| +
|10〉〈10| ⊗ |10〉〈10|)/2. The prearranged restriction of local
phase shifts by Eq.(20) is now trivial and ignored in Z-
windows.

E. Virtual Protocol 4

Virtual Protocol 4 is exactly equivalent to the simplified
SNS protocol; they need an extended state � as Eq. (14)
for a Z-window and preshare a classical information for Z-
windows and X-windows.

4-1: They send out to Charlie the real photons of state �

in a Z-window and two-mode coherent state ρX as defined in
Eq. (16) in an X-window.

4-2: They take postselection for X-windows by the crite-
rion of Eq. (24).

4-3: They verify the phase-flip error rate e
ph

1 by the decoy-
state analysis. Also, they verify n1, the number of untagged
bits in Z-basis, by decoy-state analysis.

4-4: They each observe the ancillary state for the bit value
of an effective event in a Z-window. They take the error test
for Z-basis encoding by classical communication.

4-5: After virtual purification to the classical data (final key
distillation), they obtain the final key with the length given by
Eq. (46).

Note 1. In this protocol, the state � of Eq. (14) for Z-basis
is a classical mixture of state �1 of Eq. (15) and other states.
Given the notes under Virtual Protocol 3, if they have used
only state �1 for Z-windows in Virtual Protocol 4, it is equiv-
alent to Virtual Protocol 3, which has been shown to be secure
already. We can now apply the tagged model [15]. Consider
Z-windows. Some of the Z-windows use the extended states
of �1; we name these Z-windows Z1-windows. Suppose there
are n1 bits from Z1-windows. These n1 bits from Z1-bits are
regarded as the untagged bits. All the other bits corresponding
are regarded as tagged bits. Applying the tagged model, they
can distill a secure final key from all bits with length

nF = n1 − n1H
(
e
ph

1

) − ntH (EZ ), (46)

where nt is the number of total raw bits corresponding to
effective events and EZ is the bit error rate in Z-basis. An
error bit in Z-basis is defined as the case that Alice’s bit value
is different from Bob’s bit value in an effective Z-window.
In the formula above, values of n1, e

ph

1 can be computed by
the decoy-state method, while nt , EZ are directly observed
by test. In practice, we have a coefficient f for the error
correction efficiency. Taking this factor f , it is just the key
length formula of Eq. (3).

Note 2: Equivalence to the real SNS protocol. Suppose in
the Virtual Protocol 4 that the preshared classical information
takes probability pZ for a Z-window, probability pμk

for an
X-window using intensity μk , and pZ + ∑

k pμk
= 1. In our

real protocol, they each take probability qz for a signal window
and qμk

for a decoy window with intensity μk . In this way, the
real protocol has a probability q2

Z for a Z-window, q2
μk

for
an Xμk

-window. Discarding events of all those mismatching
windows, the real protocol is equivalent to Virtual Protocol 4
with a setting of

pZ = q2
Z/N , pμk

= q2
μk

/N , (47)

N = q2
Z +

∑

k

q2
μk

. (48)

But the security of Virtual Protocol 4 has already been proven.
On the other hand, we can also construct another virtual
protocol, including events of mismatching windows in the
real protocol. Suppose in the real protocol that the real-photon
state sent out for a mismatching window is ρM.

F. Virtual Protocol 5 and complete SNS protocol

They preshare classical information on time windows of Z,
{Xμk

}, and mismatching windows M, assigning probabilities
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of pZ , {pμk
}, and pM for each of them. They also prearrange

the different window commitment of Alice and Bob for the
mismatching windows, i.e., make sure they have committed
differently for all preagreed mismatching windows.

5-1. They send out the real photons of state � of Eq. (14)
in a Z-window, the two-mode coherent state ρX as defined in
Eq. (16) in an X-window, and state ρM in an mismatching
window.

5-2: They each announce the specific type of window
committed and discard those mismatching windows. They
take postselection for X-windows by Eq. (24).

5-3 and 5-4 are identical to Virtual Protocol 4.
Note 1. The first half of 5-2 is not necessary in Virtual

Protocol 5 itself, but we arrange it in order to show that the real
protocol is strictly equivalent to Virtual Protocol 5. Explicitly,
if we set

pZ = q2
Z, pμk

= q2
μk

, pM = 1 − pZ −
∑

k

q2
μk

, (49)

in Virtual Protocol 5, the real protocol is strictly equivalent
to it provided that in any signal window, Alice (Bob) always
places a local state |0〉〈0| there whenever she (he) decides
not-sending, and a local state |1〉〈1| there whenever she (he)
decides sending. Obviously, placing a local state is not needed
in the real protocol. This completes the security of the SNS
protocol.

VI. CONCLUDING REMARKS

In conclusion, following the novel idea of TF-QKD [14],
we proposed the sending or not-sending TF-QKD protocol.
Our protocol does not need to announce the phase information
of signal pulses, and hence the traditional decoy-state formu-
las can be directly applied. The single-photon interference is
not needed in Z-basis, and thus the error rate in Z-basis can be
negligibly small. This makes the protocol tolerable to a fairly
large error rate in X-basis, where single-photon interference
must be done. Numerical simulation shows that the protocol
can exceed a secure distance of 800 km without misalignment
error, and more than 700 km with a misalignment error of
15%. Even though the misalignment error for the single-
photon interference is as large as 25%, the protocol can still
reach a secure distance of more than 600 km, because of
the revolutionary progress made by TF-QKD proposed in
Ref. [14].

Note added. Recently we became aware of recent
work where it was suggested to use different key rate
formulas directly pointing to non-random-phase coherent
states [19,20].
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FIG. 3. Schematic picture of TF-QKD taken from Ref. [14].

APPENDIX: EAVESDROPPING SCHEME BASED ON
LATER ANNOUNCED PHASE INFORMATION

OF SIGNAL STATES

Earlier we showed that our protocol can apply the tradi-
tional decoy-state method directly because the phase infor-
mation of signal states is never announced. But if it were
announced and it took a role in the bit value, then there
were eavesdropping schemes effectively attacking the secret
bits. Here we show this by a specific scheme. Consider the
original TF-QKD protocol [14] as shown in Fig. 3. Suppose
that a coherent state of intensity μ is used by each side for
signal pulses. The pulse pairs are phase modulated before
being sent out for Charlie. The phase modulation includes
the coding phase (0 or π ) at each side and the random phase
shift we assume to be ρ at both sides [14]. After modulation,
the states of signal pulse pairs are two-mode coherent states
|ψ+〉 = |√μeiρ〉| − √

μeiρ〉 for bit value 0 and |ψ−〉 = | −√
μeiρ〉|√μeiρ〉 for bit value 1, which will cause clicking of

detector D0 only, and also |φ+〉 = |√μeiρ〉|√μeiρ〉 for bit
value 0 and |φ−〉 = | − √

μeiρ〉| − √
μeiρ〉 for bit value 1,

which will cause the clicking of detector D1 only. Note that
the strong reference light is controlled by Eve; here we have
assumed the reference phase to be 0 for conciseness. Eve
applies the following scheme:

Step 0: Eve can set whatever channel transmittance. For
simplicity, we assume Eve sets the channel transmittance
to be 1 here. Consider Fig. 1. Before the twin pulses
enter the beam splitter, Eve (Charlie) just honestly does
whatever as requested by the the TF-QKD protocol.

Step 1: Eve takes nondestructive crude measurement to
project the output light from the beam splitter to the
vacuum or nonvacuum subspace. Suppose she obtains
nonvacuum, she stores the detected state and continues
the attacking scheme.

Step 2: Eve takes a crude measurement to project the
stored state either to the subspace S = {|1〉, |2〉} or to the
subspace S̃ = {|3〉, |4〉, |5〉, . . . }. Suppose the outcome is
S , she stores the state and continues.

Step 3: Eve takes the following unitary transfor-
mation to her stored state above: |1〉 → √

μ|1〉 +√
1 − μ|m0〉, |2〉 → |2〉 where |m0〉 is a state orthogonal

to both |1〉 and |2〉. Eve takes a crude measurement which
collapses the stored state in Step 3 either to state |m0〉 or
to the subspace S spanned by the Fock states {|1〉, |2〉}.
Suppose she obtains subspace S in Step 3, she stores
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the state and announces which detector (D0 or D1) has
counted. She waits until Alice and Bob’s announcement,
then goes to Step 4.

Note: Until now we always assume Eve obtains the results
in favor of her attacking in those non-trace-preserving maps.
The point is that, at any step, if Eve doesn’t obtain the
measurement outcome in her favor, she just announces that
she has not detected anything.

Step 4: After Alice and Bob announce the value of ρ, bases
of each pulse pairs, and which pulses are decoy pulses and
which pulses are signal pulses, Eve can take a phase-shift
operation to her stored state, changing it into one of the
following two states corresponding to bit value 0 or 1 of the
incident pulse pair: 1√

2
(|1〉 ± |2〉). This enables Eve to know

the bit value for sure without causing any noise by a projective
measurement.

Here are details of the state evolution for the
non-trace-preserving map above. Suppose at Step 1 only
detector D0 counts, and the incident state can be either |ψ+〉
or |ψ−〉. If the incident state is |ψ+〉, the stored states {|ψ+

i 〉}

at the end of each step {i} are |ψ+
1 〉 = N1

∑∞
k=1

(
√

2μeiρ )k√
k!

|k〉;
|ψ+

2 〉 = N2(
√

μ|1〉 + μeiρ |2〉); |ψ+
4 〉 = 1√

2
(|1〉 + eiρ |2〉);

|ψ+
5 〉 = 1√

2
(|1〉 + |2〉). All parameters N1,N2,N4 are

normalization factors.
Similarly, given the incident states {|ψ−〉}, we can also

calculate the time evolution of {|ψ−}〉 at each step {i}, and
we obtain |ψ−

5 〉 = 1√
2
(−|1〉 + |2〉). This means |ψ+

5 〉 and

|ψ−
5 〉 are orthogonal to each either and Eve can know the

corresponding bit value for sure. In the same way, one can
easily show that Eve can also obtain full information of bit
values without causing a disturbance.

In the eavesdropping above, the fraction of bits caused by
the single-photon state is 50% among all raw bits. According
to the key rate formula [Eq. (2)] of Ref. [14], TF-QKD will
present a key rate of 50% from raw key to final key, although
the actual key rate is obviously 0. This means the key rate
formula does not match the protocol itself there. The root of
the problem is that Eve can make use of the postannounced
phase information of signal states there. Given that protocol,
one has to apply a different key rate formula.
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