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Gaussian boson sampling using threshold detectors
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We study what is arguably the most experimentally appealing boson sampling architecture: Gaussian states
sampled with threshold detectors. We show that, in this setting, the probability of observing a given outcome is
related to a matrix function that we name the Torontonian, which plays an analogous role to the permanent or the
Hafnian in other models. We also prove that, provided that the probability of observing two or more photons in
a single output mode is sufficiently small, our model remains intractable to simulate classically under standard
complexity-theoretic conjectures. Finally, we leverage the mathematical simplicity of the model to introduce a
physically motivated, exact sampling algorithm for all boson sampling models that employ Gaussian states and
threshold detectors.
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I. INTRODUCTION

Parallel developments in computational complexity theory
and quantum optics have raised the possibility of achieving
a quantum advantage in sampling problems using nonuni-
versal models of quantum computation [1]. Arguably, the
most celebrated of these developments is the boson sampling
problem [2] where indistinguishable single photons are sent
through a passive linear optics network and then probed using
photon counters. Experimental constraints in the generation of
indistinguishable single photons have led to the development
of new models such as scattershot boson sampling [3–5] and
Gaussian boson sampling (GBS) [6,7], the latter of which has
also been shown to have applications in quantum chemistry
[8–10], optimization [11,12], and graph theory [13]. In both
of these models, single photons are replaced by squeezed
states of light which are amenable to large scale experimental
production [14,15], but still require photon-number-resolving
detectors (PNRs). More recently, new protocols have shifted
the experimental complexity back to the state preparation
side by replacing single photons with photon-subtracted or
photon-added squeezed states that are now probed using
heterodyne measurements, which are simpler to perform than
photon counting [16–18]. A similar strategy of preparing
non-Gaussian states followed by Gaussian measurements was
followed in Ref. [19].

Although many of the models listed above have lessened
the experimental difficulties of building a boson sampler,
none of them has looked at what is perhaps the most experi-
mentally accessible configuration: squeezed states undergoing
linear operations sampled with threshold detectors. These
binary outcome detectors measure whether there were zero
photons or one or more photons in the field being mea-
sured. As opposed to currently available PNRs based on
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superconducting technology, threshold detectors are inexpen-
sive, commercially available, and can be operated at room
temperature [20].

In this work, we study the problem of sampling Gaussian
states using threshold detectors. In the same way that the
probability distribution of regular boson sampling is related
to the permanent, and in GBS to the Hafnian, when sampling
Gaussian states with threshold detectors the output distribu-
tion is related to a matrix function that we name the Toronto-
nian. The Torontonian can be interpreted as an infinite sum
of Hafnians. We also prove that, if in GBS the probability
of observing two or more photons in the same output mode
is sufficiently small, the model remains hard to simulate
classically even when employing threshold detectors. We also
propose a physically motivated exact classical sampling algo-
rithm which can be used for all the boson sampling models
mentioned above when employing threshold detectors. This
constitutes the first explicit example of a classical sampling
algorithm for boson sampling based on Gaussian states, with
a running time whose only source of exponential growth is
the number of non-Gaussian events (clicks) in the sampling.
A recent benchmarking of the algorithm presented here has
been done in Ref. [21] using the Titan supercomputer from
Oak Ridge National Laboratory where it was found that a 20
click sample from an 800 mode system can be obtained in
about 2 h using 240 000 CPUs.

II. GAUSSIAN STATES

Gaussian states form an experimentally accessible set of
states that can be efficiently described in the symplectic
formalism in terms of covariance matrices and mean vec-
tors [22,23]. In this description, we arrange the canoni-
cal operators of the � modes of interest in a vector r̂ =
(x̂1, p̂1, . . . , x̂�, p̂�)T . Gaussian states ρ(V , r̄ ) have the spe-
cial property that they are completely characterized by a
vector of means r̄ = 〈r̂〉ρ = Tr(r̂ρ) and a covariance matrix
V ij = 1

2 〈�r̂i�r̂j + �r̂i�r̂j 〉ρ with �r̂ = r̂ − r̄ . For the mul-
timode vacuum state V = 12� (using the convention h̄ = 2)
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and r̄ = 0. It will also be useful to employ the Q function
of the Gaussian state ρ, defined as Q(α) = 〈α|ρ|α〉/π� =
exp (−�α �−1 �α†/2)/[π�

√
det(�)] with �α = α − ᾱ.

The covariance matrix of the Gaussian Q function is

� = 1
4 (BC )V (BC )† + 1

2 12� (1)

is the covariance matrix of the complex amplitudes α = x +
i p and their complex conjugates α∗ = x − i p. Here B is the
permutation matrix that takes the vector r̂ to the xp order-
ing (x̂1, . . . , x̂�, p̂1, . . . , p̂�) = (x̂, p̂), and C = [1� i 1�

1� −i 1�
].

Finally, note that both � and its inverse have the following
block structure:

� =
[

W Y ∗

Y W∗

]
, (2)

where W = W † ∈ C�×� is Hermitian and Y = YT ∈ C�×� is
symmetric. As in previous works, we focus on the case of zero
displacement, ᾱ = x̄ = p̄ = 0.

III. CLICK PROBABILITIES AND TORONTONIANS

It is well known that the combination of Gaussian states
and Gaussian measurements can be efficiently simulated on
a classical computer [23–25]. An experimentally accessible
non-Gaussian measurement is the one performed by threshold
detectors [26–28]. These detectors perform a measurement
defined by the POVM elements

�̂
(n)
0 = |0n〉〈0n|, �̂

(n)
1 = Î

(n) −�̂
(n)
0 , (3)

where Î
(n)

is the identity operator in the Hilbert space of mode
n and |0n〉 is the vacuum state of mode ân. The outcome �̂

(n)
1

corresponds to a click in the detector and �̂
(n)
0 to no click.

When using photon counting to measure an �-mode
Gaussian state, we denote a particular outcome (with N

total photons) by a multiset S = {i1, i2, . . . , iN } specifying
the modes where photons were detected. The multiplicity of
mode index k, denoted sk , is the number of photons that were
detected in that mode, with

∑�
k=1 sk = N . The probability of

the outcome S is [6,7]

p(S) = Haf[X O (S)]√
det(�)s1! . . . s�!

, (4)

where X = [0 1
1 0], O (S) = 1−(�−1)(S), and A(S) ∈ C2N×2N

is the matrix formed by indexing elements within each block
of A according to the multiset S. More precisely, if mode
index k has multiplicity sk , the corresponding row and column
of A is repeated (or dropped when sk = 0) from each block
when forming A(S). For example, if one has three modes and
writes

A =
[

W Y ∗

Y W∗

]
,

W =
⎡
⎣W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

⎤
⎦, Y =

⎡
⎣Y1,1 Y1,2 Y1,3

Y2,1 Y2,2 Y2,3

Y3,1 Y3,2 Y3,3

⎤
⎦
(5)

and has s1 = 3, s2 = 0, s3 = 1, then

A(S) =
[

W (s) Y ∗
(s)

Y (s) W∗
(s)

]
, (6)

W (s) =

⎡
⎢⎣

W11 W11 W11 W13

W11 W11 W11 W13

W11 W11 W11 W13

W31 W31 W31 W33

⎤
⎥⎦, (7)

Y (s) =

⎡
⎢⎣

Y11 Y11 Y11 Y13

Y11 Y11 Y11 Y13

Y11 Y11 Y11 Y13

Y31 Y31 Y31 Y33

⎤
⎥⎦. (8)

The same notation can be employed when using threshold
detectors, in which case the elements of S correspond to
the modes where a click was observed, and no element has
multiplicity greater than one. The probability of observing an
outcome S is given by

p(S) = π�

∫ ∏
i∈S

d2αiP
(i)
1 (αi )

∏
k /∈S

d2αkP
(k)
0 (αk )Q(α), (9)

where the P functions of the POVM elements in Eq. (3) are

P
(n)
0 (αn) = δ(2)(αn) = δ(αn)δ(α∗

n ), (10a)

P
(n)
1 (αn) = 1

π
− P

(n)
0 (αn). (10b)

By performing a straightforward yet lengthy calculation (see
Appendix A for details), it is possible to show that the proba-
bility of an outcome S is given by

p(S) = Tor[O (S)]√
det(�)

, (11)

where

Tor( A) =
∑

Z∈P ([N])

(−1)|Z| 1√
det(1−A(Z) )

(12)

is the Torontonian of a matrix A ∈ C2N×2N with a block
structure as in Eq. (2). Here P ([N ]) is the power set (the
set of all subsets) of [N ] := {1, 2, . . . , N}. Note that a direct
calculation of the Torontonian according to Eq. (12) requires
the computation of 2N determinants. When the determinants
are calculated using standard algorithms based on Cholesky
decompositions, this leads to a complexity of O(N32N ) for a
direct calculation of the Torontonian, which is equivalent to
the state-of-the-art for computing Hafnians [29].

The probability of a certain click pattern S obtained with
threshold detectors can also be computed by summing all the
corresponding probabilities of that event when using PNRs.
Given a threshold click pattern S = {i1, i2, . . . , iN }, let CS be
the set of all outcomes where photons are observed only in the
modes ik ∈ S and there is at least one mode with multiplicity
sk > 1, i.e., with a collision in that mode. From Eqs. (4) and
(11), it holds that

Tor[O (S)] = Haf[X O (S)] +
∑
S ′∈CS

Haf[X O (S ′ )]

s ′
1! · · · s ′

�!
. (13)

This equation suggests that the Torontonian is a kind of gen-
erating function for all the PNR click statistics, which are all
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proportional to Hafnians. As shown in detail in Appendices B
and C, this link can be formalized by using recently developed
algorithms for the calculation of Hafnians [29], leading to the
expression

Haf(X O ) = 1

�!

d�

dη�
Tor(ηO )

∣∣
η=0, (14)

where the matrix O has size 2� × 2�.

IV. COMPLEXITY OF THRESHOLD GBS

When sampling from a Gaussian state in a regime where
there is a very small probability of observing two or more
photons in the same output mode, the use of threshold de-
tectors should not significantly affect the properties of the
underlying distribution. Formally, let p(S) be the probabil-
ity of observing an output pattern S when sampling from
a state using PNRs and let p′(S) be the probability when
using threshold detectors. We define p′(S) = 0 for any S

whose elements have multiplicity greater than one, since those
patterns will not appear in a threshold experiment. Define
the set of all collision outputs C as the set of PNR outputs
where two or more photons are observed in at least one mode.
The probability of observing a collision when sampling from
p(S) is then ε := ∑

S∈C p(S). As shown in Appendix E, the
distance between these two distributions satisfies

‖p(S) − p′(S)‖1 = ε, (15)

confirming that the distributions are difficult to distinguish
when ε is very small. Let q(N ) be the probability of detecting
N photons in an �-mode state obtained by sending a Gaussian
state through a linear interferometer characterized by a unitary
U . It then holds that

EU [ε] = 8

�
Eq[N2], (16)

where the first expectation is taken from the Haar measure
and the second expectation is over q(N ) (see Appendix E for
details). By choosing � = O(Eq[N2]) it is thus possible to set
the collision probability to be any fixed small constant.

In Ref. [6], it was shown that if the Hafnian-of-Gaussians
conjecture and the Hafnian-anticoncentration conjecture are
true, for any fixed ε > 0 the existence of a polynomial-time
classical algorithm that samples from a distribution that is ε

close in total variation distance to the output distribution p(S)
would imply the collapse of the polynomial hierarchy to the
third level. The setting of small collision probability, used in
all previous variants of boson sampling, is also the regime
where the Hafnian-of-Gaussians conjecture applies [6]. From
the above results, it is straightforward to extend this claim to
threshold GBS.

Assume that there exists a polynomial-time classical al-
gorithm that samples from a distribution π (S) such that
‖p′(S) − π (S)‖1 = ε′ for some ε′ > 0. From Eq. (15) and the
triangle inequality it holds that

‖p(S) − π (S)‖1 = ‖p(S) − p′(S) + p′(S) − π (S)‖1

� ‖p(S) − p′(S)‖1 + ‖p′(S) − π (S)‖1

= ε + ε′.

FIG. 1. Schematic illustration of the sampling algorithm. Start-
ing from an �-mode Gaussian state, we iteratively apply the update
rule of Algorithm 1 for each mode, causing the conditional state
of the remaining modes to change, as illustrated by the varying
Gaussian curves. In this example, a click occurs in modes � − 2
and � − 4. Each click causes a doubling of the number of Gaussian
states in the linear combination ρ�′ = ∑

k akρ�′ k that describes the
state of the remaining modes. The complexity of the algorithm grows
exponentially in the number of clicks.

Therefore, by setting ε = ε + ε′, we conclude that the exis-
tence of a polynomial-time classical sampling algorithm for
threshold GBS also implies a polynomial-time algorithm for
GBS with PNRs and consequently a collapse of the polyno-
mial hierarchy to the third level, provided that the Hafnian-
of-Gaussians conjecture and the Hafnian-anticoncentration
conjecture are true.

V. SAMPLING ALGORITHM

Alongside the development of various boson sampling
models, there has also been progress in developing classical
methods for simulating the original boson sampling model
of Ref. [2], where approximate Markov chain [30] and exact
sampling algorithms [31] represent the state of the art. In this
section, we show that the appeal of threshold detectors is not
only experimental: their action on Gaussian states also has
a simple mathematical formulation. We leverage this fact to
describe an exact sampling algorithm for threshold GBS. This
algorithm, shown schematically in Fig. 1, can also be adapted
to other boson sampling settings.

Consider an �-mode Gaussian state ρ�(V , r̄ ) and perform
a measurement on the �th mode using the POVM of Eq. (3).
If no click is observed, since the operator �̂0 is Gaussian,
the state of the remaining � − 1 modes is also a Gaussian
state ρ�−1(V ′

A, r̄ ′
A) with updated covariance matrix V ′

A and
displacement vector r̄ ′

A. This occurs with probability p =
Tr(ρ��

(�)
0 ). If a click is observed, the conditional state of the

remaining modes is a linear combination of Gaussian states
given by

ρ�−1 = Tr�
(
ρ��̂

(n)
1

)
1 − p

= ρ�−1(V A, r̄A) − p ρ�−1(V ′
A, r̄ ′

A)

1 − p
.

(17)
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Note that in this case ρ�−1 is a non-Gaussian state. This fact
forms the basis of the sampling algorithm: the initial state ρ� is
iterated through one mode at a time, updating the conditional
state using Eq. (17) every time a click is detected, while
keeping track of the modes where clicks have been observed.
Suppose that after the kth step, corresponding to mode �′ =
� − k, we have recorded m clicks. Then the tree in Fig. 1
has 2m branches at that step, and the conditional state can be
written as a linear combination of Gaussian states of the form

ρ�′ =
2m∑
k=1

akρ�′ k, (18)

where the coefficients ak are not all positive in general.
The explicit update rule is described in pseudocode in
Algorithm 1. After iterating through all � modes, suppose
we have observed N clicks. Let cj denote the number of
steps between clicks (j − 1) and j , i.e., the number of
steps between consecutive branching events. Then a total
of

∑N
j=1 cj 2j = O(2N ) probabilities and updates must be

computed. In calculating them, the dominant term is the
matrix multiplication of Eq. (20) which requires O(�2) steps,
leading to a total complexity of O(�22N ).

Any passive or active linear optical operation on states that
are linear combinations of Gaussian states [as in Eq. (18)] can
be described by transforming the covariance matrices V k and
vectors of means r̄k of each individual Gaussian state. This
includes unitary operations like phase shifts, beam splitters,
and squeezing, as well as nonunitary operations like loss
and linear amplification. Furthermore, at the price of dealing
with probability density functions that are linear combinations
of two-dimensional Gaussians, we can also simulate single-
mode homodyne and heterodyne measurements. When the
states in Eq. (18) are probed with PNRs, it is also possible
to show that the probabilities of detection are weighted sums
of Hafnians (see Appendix C for details).

The sampling algorithm presented above can be used to
study many different types of boson sampling problems. In
Fig. 2, we summarize the relationship between these models
and threshold GBS. As discussed above, O(�22N ) operations
are required to generate a sample with N clicks from threshold
GBS. For boson sampling using heralded single photons, as in
Fig. 2(b), N clicks are needed to herald N single photons,
which are followed by N detections, giving a complexity

Algorithm 1. Update rule.

Input: �-mode state: ρ� = ∑2m

k=1akρ�,k (V k, r̄k )
for 1 � k � N do

V k →
[

V A,k V AB,k

V T
AB,k V B,k

]
, r̄k →

[
r̄A,k

r̄B,k

]
, (19)

V ′
A,k → V A,k − V AB,k (V B,k + 12)−1V T

AB,k, (20)

r̄ ′
A,k → r̄A,k − V AB,k (V B,k + 12)−1 r̄B,k (21)

{V A,k is a 2(� − 1) × 2(� − 1) matrix describing modes 1 to � − 1,
V AB,k is a 2(� − 1) × 2 matrix describing the correlations between
modes 1 to � − 1, k and mode � and V B,k is a 2 × 2 matrix
describing mode �.}
end for

Calculate click probability:

p =
2m∑
k=1

akqk with qk = 2e−r̄T
B,k

(VB,k+12 )−1 r̄B,k√
det(V B,k + 12)

(22)

Flip a coin with bias p

if click then

ρ�−1 →
2m∑
k=1

ak

ρ�−1,k (V A,k, r̄ A,k ) − qkρ�−1,k (V ′
A,k, r̄ ′

A,k )

1 − p
(23)

else

ρ�−1 →
2m∑
k=1

(
akqk

p

)
ρ�−1,k (V ′

A,k, r̄ ′
A,k ) (24)

end if
Output: (� − 1)-mode state: ρ�−1

of O(�222N ). This scaling does not change for scattershot
boson sampling, where the heralding is moved after the
interferometer. As shown in Fig. 2(c), for N heralded sin-
gle photons undergoing homodyne detection [19], O(�22N )
operations are needed to simulate homodyne detection in a
single mode, leading to O(�32N ) complexity across all �

modes. The same scaling holds when replacing heralding
with photon addition or subtraction and heterodyne measure-
ments [18], as shown in Fig. 2(d). The discussion of how to

: Two-mode squeezed vacuum :Single-mode squeezed vacuum  :Vacuum  :Homodyne detection  :Heterodyne detection  :Beamsplitter/squeezer

(a) (b) (c) (d)

FIG. 2. Boson sampling models using threshold detectors. (a) Gaussian boson sampling, where single-mode squeezed states passing
through a linear optical interferometer are probed with threshold detectors. (b) Scattershot boson sampling, where single photons are prepared
by heralding on a click in a threshold detector. (c) The model of Ref. [19] where heralded single photons are measured using homodyne
detection. (d) The protocol of Ref. [18] where photon-added or -subtracted states are sent into a linear optical network and then measured
using heterodyne detection.
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implement heterodyne and homodyne measurements in states
that are linear combinations of Gaussian states can be found
in Appendix D.

In all the models considered in the previous paragraph,
our sampling algorithm has a scaling that grows exponentially
only on the number of clicks obtained. This is similar to the
best known classical algorithms [30,31] for boson sampling
in which the complexity of generating a sample scales like 2n,
where n is the number of photon clicks in the sample.

VI. CONCLUSION

The experimental appeal of threshold detectors in boson
sampling is clear: they are standard, inexpensive equipment
that can be operated at room temperature. In this work, we
have shown that the use of threshold detectors also gives
rise to a GBS model that is both mathematically elegant and
intractable to simulate classically. At the core of this model
is a matrix function—the Torontonian—that determines the
probability distribution of measurement outcomes, analogous
to the role of the permanent and the Hafnian in other variants
of boson sampling. Our results also lead to a physically
motivated, exact sampling algorithm for all models of boson
sampling that can be approximated as Gaussian states being
measured using threshold detectors. Because the algorithm
is exact, it provides an ideal tool for benchmarking near-
term Gaussian boson sampling devices. Overall, explicitly
incorporating threshold detectors may lead to further advances
in both the theory and experiment of boson sampling.
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APPENDIX A: CLICK PROBABILITIES
WITH THRESHOLD DETECTORS

In this section we calculate the probability of a click pattern
event when a Gaussian state is measured with threshold
detectors. We focus on the case where the mean displacements
are all zero, ᾱi = r̄ i = 0 ∀i . We write the Gaussian Q function
with covariance matrix � as

Q(α) = 〈α|ρ|α〉
π�

= exp
(− 1

2α�−1α†)
π�

√
det(�)

. (A1)

It can be shown that the matrix D ≡ �−1 always has the same
block structure as �, given by

D =
[

K L∗

L K ∗

]
> 0, (A2)

where K = K † is Hermitian and L = LT is symmetric. The
P functions of the POVM elements |0〉〈0| and Î − |0〉〈0| in
mode n can be written as

P
(n)
0 (αn) = δ2(αn), P

(n)
1 (αn) = 1

π
− P

(n)
0 (αn). (A3)

Suppose an �-mode Gaussian state is measured with threshold
detectors and N clicks are observed in the modes indexed by

S = {i1, i2, . . . , iN }. The probability of this event is given by

p(S) = π�

∫ ∏
i∈S

d2αiP
(i)
1 (αi )

∏
k /∈S

d2αkP
(k)
0 (αk )Q(α).

(A4)

Whenever there is no click in mode k, we are forced to set
αk = α∗

k = 0 in Eq. (A4). Thus we can just make a matrix
D(S) with 2N rows and columns obtained from D by keeping
only the rows and columns {i1, . . . , iN , i1 + �, . . . , iN + �}
associated with the modes where no photon was detected. The
matrix D(S) has the same block structure of D in Eq. (A2),

D(S) =
[

K (s) L∗
(s)

L (s) K ∗
(s)

]
, (A5)

where the (lowercase) label s is used to indicate which rows
and columns {i1, . . . , iN } have been kept from the matrices
K , L. To simplify notation we now use the dummy integration
variables β = (β1, . . . βm, β∗

1 , . . . , β∗
N )T for the probability in

Eq. (A4). Employing Eq. (A1) we obtain

p(S) = 1√
det(�)

∫ N∏
k=1

d2βkP1(βk ) exp

(
−1

2
β D(S)β

†
)

= 1

πN
√

det(�)

∫ N∏
k=1

d2βk (1 − πδ(βk )δ(β∗
k ))

× exp

(
−1

2
β D(S)β

†
)

. (A6)

Now we need to rewrite the product terms 1 − πδ(βk )δ(β∗
k ).

To this end we use the following identity:

N∏
k=1

(1 − xk ) =
∑

Z∈P ([N])

(−1)|Z|
|Z|∏
i=1

xZi
, (A7)

where [m] denotes the set of integers {1, 2, . . . , m}, P (A) is
the power set (the set of all subsets) of A, and |A| indicates
the cardinality of A. For example, [2] = {1, 2}, P ([2]) =
{{}, {1}, {2}, {1, 2}}, and if we take Z = {1, 2} = {Z1, Z2},
then |Z| = 2 and

∏|Z|
i=1 xZi

= xZ1xZ2 = x1x2. With this sim-
plified notation we can write

N∏
k=1

(1 − πδ(βk )δ(β∗
k )) =

∑
Z∈P ([N])

(−π )|Z|
|Z|∏
i=1

δ
(
βZi

)
δ
(
β∗

Zi

)
,

(A8)

and the click probability becomes

p(S) = 1

πN
√

det(�)

∫ N∏
k=1

d2βk

∑
Z∈P ([N])

(−π )|Z| (A9)

×
|Z|∏
i=1

δ
(
βZi

)
δ
(
β∗

Zi

)
exp

(
−1

2
β D(S)β

†
)

.

As before, each time we have a delta function in the variables
βik , β

∗
ik

we have to remove the columns ik and ik + l and
whatever is left is a Gaussian integral. For each element
Z = {Z1, . . . , Z|Z|} ∈ P ([N ]), we again use the notation F(Z)

for the 2|Z| × 2|Z| matrix obtained from F ∈ C2N×2N by
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keeping columns and rows Z1, . . . , Z|Z| and Z1 + N, . . . ,

Z|Z| + N . With this, we can write

p(S) = 1

πm
√

det(�)

∑
Z∈P ([N])

(−π )|Z|(π )N−|Z|√
det((D(S) )(Z))

= Tor(1−D(S) )√
det(�)

, (A10)

where in the last line we introduced the Torontonian of the
matrix D(S). For any matrix A ∈ C2N×2N that can be written
as in Eq. (A2), we define its Torontonian as

Tor( A) =
∑

Z∈P ([N])

(−1)|Z| 1√
det(1−A(Z) )

, (A11)

which is precisely the equation used to give the probability of
detection in Eq. (12) of the main text.

APPENDIX B: HAFNIANS AND GAUSSIAN
BOSON SAMPLING

The Hafnian of a 2� × 2� symmetric complex matrix is
defined as

Haf( A) =
∑

μ∈PMP

�∏
j=1

Aμ(2j−1),μ(2j ), (B1)

where PMP stands for the set of perfect matching permu-
tations. As defined, it takes (2� − 1)!! = 1 × 3 × 5 × · · · ×
(2� − 1) operations to calculate the Hafnian of A. In Ref. [29]
the following formula for the Hafnian is derived:

Haf( A) =
∑

Z∈P ([�])

(−1)|Z|f (( AX )(Z)), (B2)

where the matrix X is defined as

X = XT = X−1 =
[

0 1
1 0

]
. (B3)

The function f (C ) takes a matrix C and returns the coefficient
of z� in the following polynomial:

p�(ηC ) =
�∑

j=1

1

j !

(
�∑

k=1

Tr(Ck )

2k
ηk

)j

. (B4)

This coefficient can be found by taking derivatives, i.e.,

f (C ) = 1

�!

d�

dη�
p�(ηC )

∣∣
η=0. (B5)

The function p�(ηC ) requires only the eigenvalues of the
matrix C , since it considers just traces of powers of C, which
can be calculated explicitly in terms of the eigenvalues. Note
that the formula in Eq. (B2) is significantly faster than the
naive definition of the Hafnian since it requires a summation
of ∼|P ([�])| = 2� terms. Note that, instead of considering
p�(ηC ) in Eq. (B5), one can consider p�′ (ηC ) for any �′ > �.
This will only add polynomials of degree �′ > � which will
not change the value of f (C ). In particular, one can let �′ →
∞. This will become important in the next section when we
link the Hafnian and the Torontonian.

For Gaussian boson sampling (GBS), we need the Hafnian
of the symmetric X O, where

O = 1−D. (B6)

In GBS the probability of an event is given by

Haf(X O ) = Haf(X X O X ) = Haf(X X (1−D)X )

=
∑

Z∈P ([�])

(−1)|Z|f (((1−D)X X )(Z) )

=
∑

Z∈P ([�])

(−1)|Z|f (1−D(Z))

=
∑

Z∈P ([�])

(−1)|Z|f (O (Z) ). (B7)

In the first line we used the fact that the Hafnian of a matrix
whose rows and columns have been permuted is equal to the
Hafnian of the unpermuted matrix. In the second line we used
the fact that X is Hermitian and its own inverse.

The last formula is rather interesting because it makes
explicit that even if the covariance matrix corresponds to a
mixed state, i.e., if W �= 1�, the Hafnian of the symmetric
matrix X O is always a real number since 1−D(Z) is also a
Hermitian matrix and thus the eigenvalues of all its principal
submatrices are real.

APPENDIX C: CONNECTING THE TORONTONIAN
AND THE HAFNIAN

The Hafnian of the matrix X O gives the probabilities of a
certain click pattern in a photon-number resolving (PNR) de-
tector. If instead we used threshold detectors, the probability
of an event would be proportional to the Torontonian of O
[see Eq. (B6)]:

Tor(O ) =
∑

Z∈P ([�])

(−1)|Z|g(O (Z) ), (C1)

where now we have

g(C ) = 1√
det(1−C )

. (C2)

Like the function f introduced in Eq. (B2), the function
g only depends on the eigenvalues of C . Indeed, note the
strong similarities between the definition of the Torontonian
in Eq. (C1) and the Hafnian formula in Eq. (B2).

We can make this suggestive connection more explicit.
Specifically, we can write the Hafnian in terms of the
Torontonian as

Haf(X O ) = 1

�!

d�

dη�

⎛
⎝ ∑

Z∈P ([�])

(−1)|Z|g(ηO (Z) )

⎞
⎠

∣∣∣∣∣∣
η=0

= 1

�!

d�

dη�
Tor(ηO )

∣∣
η=0. (C3)

To see this, we extend the limits of the sums in Eq. (B4) to
infinity, since this does not affect the coefficient in front of z�.
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We can therefore redefine

p�(ηC ) →
∞∑

j=1

1

j !

( ∞∑
k=1

Tr(Ck )

2k
ηk

)j

(C4)

= exp

( ∞∑
k=1

Tr(Ck )

2k
ηk

)
. (C5)

From this form, we can recognize the Mercator series for the
logarithm:

−1

2
log det (1−ηC ) = −1

2
Tr(log (1−ηC ))

=
∞∑

k=1

Tr(Ck )

2k
ηk. (C6)

By taking the exponential on both sides, we get

exp

(
−1

2
log det(1−ηC )

)
= 1√

det(1−ηC )

=
∞∑

j=0

1

j !

( ∞∑
k=1

Tr(C )k

2k
ηk

)j

.

(C7)

We conclude that the generating function p�(ηC ) from
Eqs. (B4) and (B5) can be replaced by

p�(ηC ) = 1√
det(1−ηC )

, (C8)

which establishes the connection of Eq. (14) between
Hafnians and Torontonians.

Finally, we note that the function [det(1−ηC )]−α has been
explored in previous works in the literature. Depending on
the choice of α, it can be seen as a generating function for
determinants, permanents, and generalizations of permanents
called α permanents [32–34]. It also appears in generaliza-
tions of the MacMahon master theorem [35,36].

APPENDIX D: GAUSSIAN MEASUREMENTS IN STATES
THAT ARE LINEAR COMBINATIONS OF GAUSSIANS

In this section we investigate how to generate samples of
homodyne and heterodyne measurements applied to states
that are linear combinations of Gaussian states,

ρ̂� =
N∑

k=1

akρ̂�,k (V k, r̄k ). (D1)

To simulate a measurement on mode n we first find
the marginal state of this mode, which is again a linear
combination

σ =
N∑

k=1

akσk (V n,k, r̄n,k ), (D2)

where σk (V n,k, r̄n,k ) is a single mode Gaussian state with
covariance matrix V n,k and vector of means r̄n,k . Consider a
Gaussian measurement with POVM {�(W , rm)}rm

. To obtain
the probability density function of a Gaussian measurement

on mode n (assumed without loss of generality to be the last
one, so n = �), we use Born’s rule to write

p(rm) = Tr[�̂(W , rm)σ ] =
N∑

k=1

akqk (rm), (D3)

qk (rm) = Tr[�̂(W , rm)σk (V n,k, r̄n,k )], (D4)

where rm is a two-dimensional vector. Note that each of the
overlaps Tr[�̂(W , rm)σk (V n,k, r̄n,k )] is a Gaussian function
in rm and can be calculated in closed form by writing the
Wigner function of each density matrix or POVM element
and then doing Gaussian integrals in two-dimensional phase
space. The covariance matrix for homodyne measurements is
W hom = [1/s2 0

0 s2] with s � 1 and for heterodyne measure-

ments W het = [1 0
0 1].

We now need to sample from this two-dimensional dis-
tribution, for which many methods are readily available (cf.
Chap. 5 of Ref. [37]). Also note that since the probability
density function is a sum of Gaussians, we can easily obtain
analytical expressions for the marginal density functions and
cumulative distribution functions. Once a value r̃m has been
sampled with probability p(r̃m), we can propagate the back-
action by the following recipe:

ρ̂�−1 = Trn=�[�̂(W , r̃m)ρ̂�]

p(r̃m)

= 1

p(r̃m)

N∑
k=1

akTrn=�[�̂(W , r̃m)ρ̂�,k (V k, r̄k )]. (D5)

The covariance matrix, vector of means, and normalization of
the unnormalized (� − 1)-mode Gaussian state

Trn=�[�̂(W , r̃m)ρ̂�,k (V k, r̄k )] = qk (r̃m) ρ̂�,k (V ′
A,k, r̄ ′

A,k )

(D6)

are easily calculated by writing [23]

V k =
[

V A,k V AB,k

V T
AB,k V B,k

]
, r̄k =

[
r̄A,k

r̄B,k

]
, (D7)

V ′
A,k = V A,k − V AB,k (V B,k + W )−1V T

AB,k, (D8)

r̄ ′
A,k = r̄A,k + V AB,k (V B,k + W )−1(r̃m − r̄B,k ). (D9)

These results allows us to generate homodyne and heterodyne
samples of the non Gaussian states obtained by postselecting
Gaussian states using threshold detectors. As discussed in
Sec. V the exponential growth in the complexity of generating
these samples is dictated only by the number of clicks neces-
sary to generate the non-Gaussian state being sampled with
heterodyne or homodyne measurements.

APPENDIX E: COMPLEXITY OF THRESHOLD GAUSSIAN
BOSON SAMPLING

In Gaussian boson sampling, let p(S) be the probability
of observing an output pattern S when sampling from a state
using PNRs, and let p′(S) be the probability when using
threshold detectors. Define the set of collision outputs C as the
set of PNR outputs where two or more photons are observed
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in at least one mode. The probability of observing a collision
when sampling from p(S) is ε := ∑

S∈C p(S). It holds that

2‖p(S) − p′(S)‖1 =
∑

S

|p(S) − p′(S)|

=
∑
S∈C

|p(S) − p′(S)|

+
∑
S /∈C

|p(S) − p′(S)|

=
∑
S∈C

|p(S)| +
∑
S /∈C

|p(S) − p′(S)|

= ε +
∑
S /∈C

|p(S) − p′(S)|, (E1)

where we have used the fact that p′(S) = 0 for all S ∈ C.
Furthermore, let CS be the set of PNR outputs where photons
are observed only in the modes corresponding to the elements
of S and there is at least one mode where two or more photons
are detected. Define the mapping T such that T (S ′) = S ∈ C
for any S ′ ∈ CS , i.e., the mapping that takes collision outputs
to outputs without any collisions. We then have that

p′(S) = p(S) +
∑

S ′:T (S ′ )=S

p(S ′), (E2)

which implies

∑
S /∈C

|p(S) − p′(S)| =
∑
S /∈C

∣∣∣∣∣∣p(S) − p(S) +
∑

S ′:T (S ′ )=S

p(S ′)

∣∣∣∣∣∣
=

∑
S /∈C

∑
S ′:T (S ′ )=S

p(S ′)

=
∑
S ′∈C

p(S ′) = ε, (E3)

where we have used the fact that C = ⋃
S /∈C{S ′ : T (S ′) = S}.

From Eqs. (E1) and (E3) we conclude that

‖p(S) − p′(S)‖1 = ε. (E4)

Note that, since p(S) = Haf[XO(S)]/
√

det � and p′(S) =
Tor[O(S)]/

√
det �, it also holds that

‖Haf[XO(S)] − Tor[O(S)]‖1 = ε√
det �

. (E5)

Collision probability

It was proven in Ref. [2] that the probability of observing a
collision when 2N identical photons interact in an �-mode
linear interferometer satisfies

EU [P (collision)] <
8N2

�
, (E6)

where U is the unitary describing the interferometer and the
expectation is taken over the Haar measure. For Gaussian
boson sampling, the input photon number is not fixed but,
since the linear interferometer commutes with the number
operator, we can equivalently consider first performing a
measurement of the total photon number and then applying the
interferometer transformation. Denoting by q(N ) the proba-
bility of observing N total photons, we have

EU [P (collision)] = EU

[ ∞∑
n=0

q(N )P (collision|N )

]

=
∞∑

n=0

q(N )EU [P (collision|N )]

<

∞∑
n=0

q(N )
8N2

�

= 8

�

∞∑
n=0

q(N )N2

= 8

�
Eq[N2]. (E7)
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