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Optimal quantum-programmable projective measurement with linear optics

Ulysse Chabaud,1,* Eleni Diamanti,1 Damian Markham,1 Elham Kashefi,1,2 and Antoine Joux3,†
1Laboratoire d’Informatique de Paris 6, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

2School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, Scotland
3Chaire de Cryptologie de la Fondation SU, Sorbonne Université, Institut de Mathématiques de Jussieu – Paris Rive Gauche,

CNRS, INRIA, Université Paris Diderot, Campus Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France

(Received 17 September 2018; published 14 December 2018)

We present a scheme for a universal device which can be programed by quantum states to approximate a
chosen projective measurement to a given precision. Our scheme can be viewed as an extension of the swap
test to the instance where one state is supplied many times. As such, it has many potential applications given
the variety of quantum information tasks which make use of the swap test. In particular, we show that our
scheme is optimal for state discrimination under the one-sided error requirement, and optimally approximates
any projective measurement. Furthermore, we propose a practical implementation of our scheme with passive
linear optics, which involves a simple interferometer composed only of balanced beam splitters.
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I. INTRODUCTION

In a typical experiment performing a quantum measure-
ment, the choice of measurement is encoded in macroscopic,
classical information in the experimental setup. For example,
it can be encoded into the reflectivity of a beam splitter, the
phase in the branch of an interferometer, or the spacial direc-
tion of a Stern-Gerlach device. Often these choices are made
beforehand and fixed. In some cases they can be programed in
a single setup (for example, using thermo-optic phase shifters
[1]). In all these cases, however, the choice of measurement
basis is effectively programed classically.

In this work we consider the case where the choice of
measurement is instead controlled by a quantum state. There
are several reasons why one may consider a quantum state
to control the choice of measurement. This state may be an
output of a quantum computer or a communication protocol,
for example, which is not known beforehand and only acces-
sible as a quantum state. For example, in the cryptographic
setting, nonorthogonal states can be used to remotely program
a measurement which allows one to test the behavior of a
remote party. This is the essence behind the delegated blind
verified quantum computation in [2]. At a fundamental level,
quantum-programmable measurements separate as much as
possible the choice of measurement basis and the bulk of the
physical measurement apparatus, which could be interesting
in probing foundational questions, for example, in tests of
contextuality where information about which measurements
are being carried out leads to loopholes [3–5].

A related and, in a sense, more general problem is that of a
programmable quantum computer, where a quantum program
state is used to encode a unitary to be run on a generic quan-
tum computing device (gate array), first proposed by Nielsen
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and Chuang [6]. There it was shown that to do so determinis-
tically requires orthogonal program states for every different
unitary. To use the continuous parameters available in quan-
tum states to encode more computations, the best one can do is
probabilistic. In principle these techniques can be used to pro-
gram quantum measurements. Indeed, since the original pro-
posal there have been several alternative schemes, extensions,
and applications, including programmable quantum state dis-
criminators and measurements [7–11]. These results, how-
ever, are either too general to consider the type of efficiency
we show here, or specialized to tasks which are different from
our simple setting (for example, state discrimination [11]).

We cast our problem as follows, illustrated in Fig. 1. One
has M − 1 program registers, each prepared in the state |ψ〉
corresponding to the choice of measurement basis, and a
single input register prepared in some state |φ〉. Our aim is to
output a classical bit corresponding to a projective measure-
ment, where 0 represents the outcome |ψ〉 and 1 represents
its complement. In an ideal measurement the result 0 would
occur with probability |〈φ|ψ〉|2. However, this is impossible
for finite M . This follows from standard arguments based
on the linearity of quantum mechanics, in analogy to the
necessity of orthogonal program states for the computation
mentioned above. (See, for example, Ref. [6] for the case of
programmable universal quantum computation, which easily
extends to our case.) We can thus ever only approximate
perfect measurements. In our case we parametrize this ap-
proximation by ε, requiring that the result 0 is returned with
probability ε close to |〈φ|ψ〉|2 (see Sec. III for a formal
definition).

We present a scheme which achieves this optimally in
terms of how ε scales with M , under the condition that if
the input is |ψ〉, the measurement always returns 0. This
so-called one-sided error requirement [12] makes sense for
various potential applications where it is important not to be
wrong for this answer. One such example is the link between
our scheme and the swap test [13].
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FIG. 1. Programmable projective measurement. Given an input
|φ〉 and M − 1 program registers |ψ〉⊗M−1, and allowing for possible
ancillas (not pictured here), we apply some circuit C, independent
of |ψ〉, and output a binary result where 0 is associated to projecting
onto |ψ〉 and 1 to its complement.

In the swap test, two unknown quantum states are com-
pared using a controlled-swap operation. This test is espe-
cially relevant for the task of state discrimination. The general
task of assessing if a set of M arbitrary states are identical has
been addressed in [14,15]. To solve this in generality requires
controlled permutations for all possible permutations and
therefore scales exponentially in circuit size. If one restricts
oneself to the case where one has M/2 copies of one state and
M/2 copies of the other, one can apply the construction in
[15] to get an optimal result. However, this scaling is not much
better than simply doing the original swap test M/2 times, yet
the corresponding test is much more difficult.

From this point of view, the interesting cases of two-
states comparison is if one has an asymmetric number of one
compared state compared to the other. In the most extreme
case one would have just one copy of one state and M − 1
copies of the other, which is exactly the case we consider
for our programmable projective measurement, viewing the
program state as the one we have many copies of. In particular,
the M = 2 case reduces to the swap test.

Moreover, the swap test has been shown equivalent to the
linear optical Hong-Ou-Mandel effect [16]. Generalizing this
equivalence, we present a practical solution to our problem
with linear optics using the Hadamard interferometer [17,18].

The next sections are organized as follows. In Sec. II we
introduce the circuits for the swap test and its generalization,
the swap test of order M . We show in Sec. III that these
circuits can be used for programmable projective measure-
ment and prove their optimality. We then present in Sec. IV a
simple linear optical interferometer to implement our scheme.
For completeness, we introduce in Sec. V a general family
of interferometers which reproduce the appropriate statistics.
We conclude with an interpretation of our results and discuss
various applications in Sec. VI.

II. SWAP CIRCUIT OF ORDER M

The swap test [13] provides an efficient probabilistic tool
to compare two unknown quantum states. It takes as input two

FIG. 2. Circuit representation of a swap test. The ancilla qubit is
measured in the computational basis.

quantum states |φ〉 and |ψ〉 that are not entangled and outputs
0 with probability 1

2 + 1
2 |〈φ|ψ〉|2 and 1 with probability 1

2 −
1
2 |〈φ|ψ〉|2, where 〈φ|ψ〉 is the overlap between the states |φ〉
and |ψ〉. When the measurement outcome is 0 (resp. 1), we
conclude that the states were identical (resp. different), up to
a global phase.

A circuit implementing the swap test is represented in
Fig. 2, where an ancilla is first prepared in the |+〉 state by
a Hadamard gate,

H = 1√
2

(
1 1
1 −1

)
, (1)

which controls a swap between the two systems being tested.
The swap test meets the so-called one-sided error require-

ment [12], i.e., if the input states are identical, the test will al-
ways declare them as identical. On the other hand, if the input
states are different, the test can obtain a wrong conclusion and
declare the states identical. The probability that this happens
is strictly less than 1; hence by repeating the test various times,
the probability that the sequence of tests never answers 1 can
be brought down arbitrarily close to zero, exponentially fast.
However, the swap test is destructive in the sense that the out-
put states of a previous test cannot be reused for a new test be-
cause they become maximally entangled during the test [16].
This means that in order to boost the correctness of the test in
this manner, multiple copies of both states must be available.

Let M � 2. We introduce the following generalization of
the swap test, in the context where one has access to various
copies of a reference state |ψ〉 but to only a single copy of the
other tested state |φ〉:

Definition 1. The swap test of order M is a binary test that
takes as input a state |φ〉 and M − 1 copies of a state |ψ〉,
and outputs 0 with probability 1

M
+ M−1

M
|〈φ|ψ〉|2 and 1 with

probability ( M−1
M

)(1 − |〈φ|ψ〉|2). If the outcome 0 (resp. 1) is
obtained, the test concludes that the states |φ〉 and |ψ〉 were
identical (resp. different).

Such a test clearly satisfies the one-sided error requirement.
In the following, we are restricted to the swap test of order M

when M is a power of 2, writing n = ln M . We introduce the
swap circuit of order M (Fig. 3) that acts on M input qubits
by applying n consecutive layers of products of swap gates
controlled by n ancilla qubits. These ancilla qubits are first
initialized in the |+〉 state using Hadamard gates. Then, they
are used as control qubits for the gates S0, . . . , Sn−1, which
can be applied in any order, where for all k ∈ {0, . . . , n − 1}

Sk =
⊗

i∈[0,2k−1],
j∈[0,2n−k−1−1]

SWAP[j2k+1 + i, j2k+1 + i + 2k], (2)

with SWAP [i, j ] being the unitary operation that swaps the
ith and j th qubits for i, j ∈ {0, . . . ,M − 1}. These controlled
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FIG. 3. Swap circuit of order M . The unitaries Sk are tensor
products of swap gates described in the main text (2). The n = ln M

ancilla qubits are measured in the computational basis at the end of
the computation. The probability of obtaining 0 for all measurement
outcomes is 1

M
+ M−1

M
|〈φ|ψ〉|2.

gates are applied to the input states |φ〉, |ψ〉, . . . , |ψ〉 (one
copy of a state |φ〉 and M − 1 copies of a state |ψ〉). Finally,
a Hadamard gate is applied to each ancilla, which is then
measured in the computational basis. By a simple induction,
we obtain that the probability of obtaining the outcome 0 for
all ancilla qubits is the squared norm of the following state:

1

M
(|φψ . . . ψ〉 + |ψφ . . . ψ〉 + · · · + |ψ . . . ψφ〉), (3)

which depends only on the overlap between the states |φ〉 and
|ψ〉. More precisely,

Pr(0, . . . , 0) = 1

M
+ M − 1

M
|〈φ|ψ〉|2. (4)

The swap circuit of order M thus implements the swap test of
order M . Indeed, if the outcome (0, . . . , 0) is obtained, the test
outputs 0 and we conclude that the states were identical, while
for any other outcome the test outputs 1 and we conclude that
the states were different. Note that in the case where M = 2,
the scheme reduces to the original swap test.

Because the M − 1 last input states are identical, swapping
them acts as the identity. This can be used to simplify the swap
circuit of order M by replacing the n = ln M layers of swap
gates in Eq. (2) by the following n layers S ′

0, . . . , S
′
n−1, which

have to be applied in this order:

S ′
k =

2k−1⊗
l=0

SWAP[l, l + 2k]. (5)

This reduces the total number of swap gates from M ln M
2 to

M − 1 without changing the number of ancilla qubits. This

FIG. 4. The simplified swap circuit of order M consisting of
n = ln M consecutive swap tests. (a) The first swap test compares
the input states |φ〉 and |ψ〉. (b) If this test is not able to tell apart
the input states, i.e., if its outcome is 0, then the second swap test
compares the bipartite output state of the first test with the state
|ψ〉⊗2. (c) If this test outcome is again 0, then the third swap test
compares the quadripartite output state of the second test with the
state |ψ〉⊗4, and so on. If the n outcomes are 0, the test concludes
that the states |φ〉 and |ψ〉 were identical.

circuit has a simple structure of n = ln M consecutive swap
tests (Fig. 4). For k ∈ {0, . . . , n − 1}, conditioned on all the
previous outputs being 0, the kth swap test compares the
output state of the previous test and the state |ψ〉⊗2k

. Here, the
swap test of two multipartite quantum states consists of ap-
plying a swap test to each of their corresponding subsystems.
However, this multipartite swap test uses only a single ancilla
qubit controlling the product of swap gates, as in Eq. (5),
instead of an ancilla qubit for each pair of subsystems.

We now prove the optimality of the swap test of order M

under the one-sided error requirement, i.e., we show that it
achieves the lowest error probability in comparing states |φ〉
and |ψ〉 given M − 1 copies of |ψ〉 and one copy of |φ〉 such
that the one-sided error requirement is satisfied.

For this purpose, we first derive a more general result. In
Ref. [15], the authors consider the problem of testing if M

quantum states are identical or not (the so-called identity test),
with the promise that all the states are pairwise identical or
orthogonal. In particular, they show that the optimal value
for the error probability of any identity test with these as-
sumptions satisfying the one-sided error requirement is 1

M
. We

extend this result to the case where the states to be compared
are no longer assumed pairwise identical or orthogonal:

Theorem 1. Under the one-sided error requirement, any
identity test of M unknown quantum states |ψ0〉, . . . , |ψM−1〉
has an error probability at least

1

M!

∑
σ∈SM

M−1∏
k=0

〈ψk|ψσ (k)〉, (6)

where SM is the symmetric group over {0, . . . ,M − 1}.
Proof. An identity test satisfying the one-sided error re-

quirement can only be wrong when declaring identical states
(outputting 0) that were not identical. Hence, to prove Theo-
rem 1, it suffices to lower bound the probability of outputting
0 for any identity test. This is done by showing that the opti-
mal identity test consists of a projection onto the symmetric
subspace of the input states Hilbert space. We give a detailed
proof in Appendix A. �

Applying Theorem 1 with |ψ0 . . . ψM−1〉 = |φψ . . . ψ〉 im-
plies that the value 1

M
+ M−1

M
|〈φ|ψ〉|2 is a lower bound

for the error probability of any identity test of M states
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|φ〉, |ψ〉, . . . , |ψ〉 (one copy of a state |φ〉 and M − 1 copies of
a state |ψ〉). With Definition 1 we directly obtain the following
result:

Corollary 1. The swap test of order M has optimal error
probability 1

M
+ M−1

M
|〈φ|ψ〉|2 under the one-sided error re-

quirement.
The swap circuit of order M is thus optimal for quantum

state identity testing with an input |φ〉, |ψ〉, . . . , |ψ〉, under
the one-sided error requirement, since it implements the swap
test of order M . In the next section, we show that the swap
circuit of order M can be used to implement a programmable
projective measurement.

III. CIRCUIT FOR PROGRAMMABLE PROJECTIVE
MEASUREMENT

Given that a projective measurement with respect to a state
|ψ〉 is a process that takes as input a state |φ〉 and outputs 0
with probability |〈φ|ψ〉|2 and 1 with probability 1 − |〈φ|ψ〉|2,
we introduce the natural notion of projective measurement
with finite error:

Definition 2. Given a quantum state |ψ〉 and ε > 0, a pro-
jective measurement with error ε with respect to the reference
state |ψ〉 is a process that takes as input a quantum state |φ〉
and outputs 0 with probability P (0) and 1 with probability
P (1), such that |P (0) − (|〈φ|ψ〉|2)| � ε and |P (1) − (1 −
|〈φ|ψ〉|2)| � ε.

Note that the two conditions in the previous definition
are equivalent, since P (0) + P (1) = 1. It will thus suffice to
consider, e.g., the first condition. In this context, under the
one-sided error requirement, a projective measurement with
any error ε always outputs 0 if the input state is equal to the
reference state.

Theorem 2. A swap circuit of order M can be used to
perform a projective measurement with error 1

M
under the one-

sided error requirement. Moreover, it is optimal in the sense
that it uses the minimum number of copies of the reference
state for achieving such an error.

Proof. For the swap circuit of order M , we have
Pr(0, . . . , 0) = 1

M
+ M−1

M
|〈φ|ψ〉|2, so we can consider the

whole circuit except the state |φ〉 as a black box in Fig. 3,
and postprocess the measurement outcomes D as follows: if
D = (0, . . . , 0), output 0, and output 1 otherwise (Fig. 5). The
setup now takes a single state |φ〉 in input and outputs 0 with
probability P (0) = 1

M
+ M−1

M
|〈φ|ψ〉|2, and 1 with probabil-

ity P (1) = 1 − P (0). We have |P (0) − (|〈φ|ψ〉|2)| � 1
M

and
when |φ〉 = |ψ〉, we have P (0) = 1 = |〈φ|ψ〉|2, and hence
this device performs a projective measurement with error 1

M

and meets the one-sided error requirement.
We now prove the optimality of this device in terms of

resources, i.e., we show that any device implementing a pro-
jective measurement with error 1

M
and meeting the one-sided

error requirement cannot use less than M − 1 copies of the
reference state.

We consider a device that implements a projective mea-
surement with error ε, with respect to a reference state |ψ〉, us-
ing N copies of this reference state. This device takes as input
a quantum state |φ〉 and outputs 0 with probability Pφ (0) and
1 with probability Pφ (1) = 1 − Pφ (0). By Definition 2, the
probability of outputting 0 satisfies |Pφ (0) − (|〈φ|ψ〉|2)| � ε.

FIG. 5. The swap circuit of order M used as a programmable
projective measurement device. It takes as input a state |φ〉, and
the internal measurement outcomes are postprocessed such that the
device outputs 0 with probability 1

M
+ M−1

M
|〈φ|ψ〉|2 and 1 with

probability M−1
M

(1 − |〈φ|ψ〉|2). The programmable resource is the
state |ψ〉, and the process uses M − 1 copies of this state as well as
n = ln M ancillas.

When the input state |φ〉 is orthogonal to the reference state
|ψ〉, the probability Pφ,⊥(0) of outputting 0 thus satisfies

Pφ,⊥(0) � ε. (7)

On the other hand, we can use this device to perform an
identity test of N + 1 states |φ〉, |ψ〉, . . . , |ψ〉 (one copy of
the state |φ〉 and N copies of the state |ψ〉): if the output 0
(resp. 1) is obtained, we conclude that the states were iden-
tical (resp. different). This device meets the one-sided error
requirement, so by Theorem 1 it has error probability at least

1
N+1 + N

N+1 |〈φ|ψ〉|2. This error probability corresponds to the
probability of outputting 0 when the input states are different.
In particular, when the input state |φ〉 is orthogonal to the
reference state |ψ〉, the probability Pφ,⊥(0) of outputting 0
thus satisfies

Pφ,⊥(0) � 1

N + 1
. (8)

Combining both inequalities (7, 8) we obtain 1
N+1 � ε or

equivalently, N � 1
ε

− 1. For ε = 1
M

, this amounts to N �
M − 1, which completes the proof. �

Theorem 2 implies that given a large enough swap circuit
and the ability to produce many copies of a state |ψ〉, one can
projectively measure any state with respect to the state |ψ〉
up to arbitrary small error. This error scales as the inverse
of the number of copies. The circuit can thus be used as
a programmable projective measurement device, where the
programmable resource is the reference state |ψ〉 whose num-
ber of copies can be adjusted to control the precision of the
measurement (Fig. 5).

The implementation of the swap circuit of order M is, how-
ever, challenging due to the presence of many controlled-swap
gates. In order to lower the implementation requirements,
we study in the next section the Hadamard interferometer
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and show that its statistics can be efficiently postprocessed
to reproduce those of a swap circuit of order M , without
the need for ancillas. This comes at the cost that the device
no longer has a quantum output, which does not matter for
most applications. In particular, we show that the Hadamard
interferometer provides a simple linear optical platform for
implementing the programmable projective measurement that
we have described.

IV. INTERFEROMETER FOR PROGRAMMABLE
PROJECTIVE MEASUREMENT

In what follows, we consider optical unitary interferom-
eters of size M which take as input one single photon in a
quantum state |φ〉 and M − 1 indistinguishable single photons
in a state |ψ〉, one in each spatial mode. (The spatial modes
of the interferometers are indexed from 0 to M − 1.) These
states should be thought of as encoded in additional degrees
of freedom of the photons (e.g., polarization, time bins). The
output modes are measured using photon number resolving
detection.

There exist complex amplitudes α and β and a state |ψ⊥〉
with 〈ψ |ψ⊥〉 = 0 such that

|φ〉 = α|ψ〉 + β|ψ⊥〉, (9)

where α = 〈ψ |φ〉 and |α|2 + |β|2 = 1. We have the following
homomorphism property for single-photon states:

|1φ〉 = |1αψ+βψ⊥〉 = α|1ψ 〉 + β|1ψ⊥〉, (10)

where for any state |χ〉, |1χ 〉 is the state of a single photon
encoding the state |χ〉. It thus suffices to compute the output
statistics separately when |φ〉 = |ψ〉 (indistinguishable case)
and when |φ〉 = |ψ⊥〉 (distinguishable case) to obtain the out-
put statistics in the general case by linearity. The probability
of detecting the photon number pattern D = (d0, . . . , dM−1),
or equivalently, that the kth detector detects dk photons for all
k ∈ {0, . . . ,M − 1}, is then

Pr(D) = |α|2Pri (D) + |β|2Prd (D)

= Prd (D) + |〈φ|ψ〉|2[Pri (D) − Prd (D)], (11)

where Pri (D) is the probability in the indistinguishable case
and Prd (D) is the probability in the distinguishable case. The
single-photon encoding maps identity of quantum states to
distinguishability of single photons. Note that for any mea-
surement outcome D = (d0, . . . , dM−1), we have d0 + · · · +
dM−1 = M , since an interferometer is a passive device that
does not change the total number of photons. For any inter-
ferometer of size M , we prove in Appendix B the following
inequality:

Prd (D) � Pri (D)

M
, (12)

for any detection pattern D. Combining this inequality with
Eq. (11) yields

Pr(D) �
(

1

M
+ M − 1

M
|〈φ|ψ〉|2

)
Pri (D). (13)

This last expression is valid for any interferometer and can
be used to retrieve, in the context of linear optics, the error

FIG. 6. Hadamard interferometer with four input modes. The
dashed red lines represent balanced beam splitters. The input states
are one single photon in state |φ〉 and three single photons in state
|ψ〉, one in each mode.

probability bound for state identity testing under the one-sided
error requirement obtained in Corollary 1. Indeed, assume that
E is a detection event, which could be a disjoint union of
detection events, used for an identity test: If E is obtained we
conclude that the states were identical (or equivalently, that
the photons were indistinguishable); otherwise we assume
that the states were different (or equivalently, that the first
photon was distinguishable from the others). The one-sided
error requirement can thus be written as Pri (E) = 1: indis-
tinguishable photons always pass the test. For different input
states |φ〉 and |ψ〉, the error probability of the corresponding
test is then given by Pr(E), which by Eq. (13) is lower
bounded by 1

M
+ M−1

M
|〈φ|ψ〉|2.

We now study a particular unitary interferometer when the
size M is a power of 2, namely, the Hadamard interferometer
[17,18], and show that it provides a practical and simple
implementation of the swap test of order M . For M = 4
spatial modes (Fig. 6), this interferometer is described by the
Hadamard-Walsh transform of order 2:

1√
2

(
H H

H −H

)
, (14)

where H is a Hadamard matrix, see Eq. (1).
In the general case, the Hadamard interferometer of order

M is described by the Hadamard-Walsh transform of order
n = ln M , which is defined by induction:

Hk+1 = 1√
2

(
Hk Hk

Hk −Hk

)
, (15)

with H0 = 1 and H1 = H . We can now state our main result
linking the Hadamard interferometer and the swap test of
order M .

Theorem 3. The output statistics of the Hadamard interfer-
ometer of order M can be classically postprocessed in time
O(M ln M ) to reproduce those of the swap test of order M .

Proof. We give hereafter an overview of the proof and refer
to Appendix C for further details.
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Due to the structure of the Hadamard-Walsh transform, we
are able to show that there exists a collection of detection
patterns which saturate the bound in Eq. (13) and characterize
this collection. We introduce the M × M matrix,

S = (sij )0�i,j�M−1 =
√

MHn, (16)

thus omitting the normalization factor. The matrix S only
has +1 and −1 entries. We show that its rows, together
with the elementwise multiplication, form a group isomorphic
to (Z/2Z)n. We define for all measurement outcomes D =
(d0, . . . , dM−1) the function

π (D) =
M−1∑
i=0

M−1∏
j=0

(sij )dj (17)

and exploit the aforementioned group structure to obtain the
following equivalences:

π (D) 	= 0 ⇔ π (D) = M

⇔ Pri (D) 	= 0

⇔ Prd (D) = Pri (D)

M
. (18)

With the first two lines, the condition π (D) = 0 is directly
equivalent to having a detection event D that can only be wit-
nessed in the distinguishable case. In other words, the detec-
tion patterns D such that π (D) = 0 can only occur if 〈φ|ψ〉 	=
0. On the other hand, with the third equivalence, the detection
patterns D such that π (D) 	= 0 are those that saturate the
bound obtained in Eq. (13). The Hadamard interferometer can
thus be used to compare the states |φ〉 and |ψ〉: If the outcome
D obtained satisfies π (D) = M , we conclude that the states
were identical; otherwise π (D) = 0 and we conclude that
the states were different. We show, in particular, that the
interferometer described by the unitary matrix Hn satisfies

Pr[π (D) = M] = 1

M
+ M − 1

M
|〈φ|ψ〉|2 (19)

and

Pr[π (D) = 0] = 1 − Pr[π (D) = M], (20)

for any detection pattern D. Hence the identity test using the
Hadamard interferometer of order M is a swap test of order
M . The measurement outcomes D have to be postprocessed
by computing π (D). Using the group structure of the matrix
S, we show that this can be done in time O(M ln M ). �

Note that the group structure invoked in the proof is
preserved under permutations, so Theorem 3 also applies to
the unitary interferometers described by permutations of the
Hadamard-Walsh transform.

The conclusion to be drawn from Theorem 3 is that as
long as a state |ψ〉 can be encoded using single photons,
then one can perform a swap test of order M with respect to
the state |ψ〉 using the Hadamard interferometer of order M

and an efficient classical postprocessing of the measurement
outcomes. The postprocessing consists of the following parity
test: Given the measurement outcome D = (d0, . . . , dM−1),
where d0 + · · · + dM−1 = M , construct the matrix SD from
the matrix S = √

MHn by keeping the kth column only if
dk is odd. If the rows (1, 2, 4, . . . , 2n−1) of SD all have an

FIG. 7. The Hadamard interferometer of order M used as a
programmable projective measurement device. A single photon in
the state |φ〉 goes through a linear interferometer along with M − 1
indistinguishable single photons in the state |ψ〉. The parity of the
number of photons in each output mode is measured and efficiently
postprocessed, such that the device outputs 0 with probability 1

M
+

M−1
M

|〈φ|ψ〉|2 and 1 with probability M−1
M

(1 − |〈φ|ψ〉|2).

even number of −1, output 0; output 1 otherwise. This means
that the postprocessing requires only the parity of the photon
number in each output mode.

In particular, the photon number resolving detectors can
be replaced by detecting the parity of the number of photons
in each output mode. Detecting this parity can, for example,
be achieved with microwave technology [19–21]. Also, only
M − 1 detectors are necessary, since the parity of the number
of photons in the remaining mode can be deduced from the
parities of the other modes, given that the total number of
photons is M .

Using the argument developed in the proof of Theorem 2,
by considering the M − 1 photons and the interferometer as
a black box (Fig. 7) whose outcomes are postprocessed as
described above, we also deduce the following result from
Theorem 3:

Corollary 2. The Hadamard interferometer of order M can
be used to perform a projective measurement with error 1

M

using a classical postprocessing of its measurement outcomes
that takes time O(M ln M ).

Interestingly, the unitary interferometers described by the
Hadamard-Walsh transform and its permutations are not the
only unitary interferometers which can reproduce the statis-
tics of a swap test with efficient postprocessing, and indeed
we present a generalization in Sec. V. However, it is the
simplicity of the Hadamard interferometer in terms of exper-
imental implementation that motivates our interest towards
this interferometer. In particular, this interferometer can be
simply implemented with a few balanced beam splitters. A
result by Reck et al. [22] states that any M × M unitary
interferometer can be implemented using phase shifters and
at most M (M−1)

2 beam splitters, possibly unbalanced. For the
Hadamard interferometer, only M ln M

2 balanced beam splitters
are needed and no phase shifters. The proof of this statement
is based on a simple induction detailed in Appendix D.

V. GROUP GENERALIZATION FOR ANY VALUE
OF THE SIZE PARAMETER M

The Hadamard interferometer requires the size parameter
M to be a power of 2. This requirement can be relaxed,
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possibly raising the experimental requirements at the same
time. Indeed, for any value of M , one can associate to any
Abelian group of order M an interferometer of size M which
has the desired statistics. This is the object of the following re-
sult that uses the invariant factor decomposition of an Abelian
group:

Theorem 4. Let G be an Abelian group of order M . Then
there exists N ∈ N∗ and a1, . . . , aN ∈ N∗, where ai |ai+1 for
i ∈ {1, . . . , N − 1} and a1 . . . aN = M , such that the interfer-
ometer described by the M × M unitary matrix

UG = 1√
M

Fa1 ⊗ · · · ⊗ FaN
, (21)

where Fa = (e
2iπ
a

kl )0�k,l�a−1, is the quantum Fourier trans-
form (QFT) of order a for all a ∈ N∗, can perform a 1

M
-

approximate projective measurement with a postprocessing of
its measurement outcomes that takes time at most M × N .
The rows of FG = √

MUG together with the elementwise
multiplication form a group isomorphic to G.

Proof. We use the notations of the theorem. The invariant
factor decomposition of G gives

G � (Z/a1Z) ⊗ · · · ⊗ (Z/aNZ), (22)

where N ∈ N∗ and a1, . . . , aN ∈ N∗ are unique, satisfying
ai |ai+1 for i ∈ {1, . . . , N − 1} and a1 . . . aN = M . Given that
the rows of Fa together with the elementwise multiplication
form a group isomorphic to (Z/aZ) for all a ∈ N∗, the rows
of FG = (fij )0�i,j�M−1 = √

MUG together with the elemen-
twise multiplication form a group isomorphic to G.

Since the group structure was the only argument invoked
in the proof of Theorem 3, the same conclusion can be drawn
here, by following the same argument:

Pr[π (D) = M] = 1

M
+ M − 1

M
|〈φ|ψ〉|2, (23)

where

π (D) =
M−1∑
i=0

M−1∏
j=0

(fij )dj . (24)

The group G is finitely generated by N elements, so N rows
of FG are sufficient to generate all its rows by elementwise
multiplication. The condition π (D) = M can thus be checked
in time at most M × N . �

In particular, for G � (Z/MZ), the corresponding inter-
ferometer is described by the (normalized) QFT of order
M , while for G � (Z/2Z)n, we retrieve Theorem 3 and the
Hadamard interferometer.

VI. CONCLUSION AND DISCUSSION

We have presented an optimal scheme for a programmable
projective measurement device and a linear optical implemen-
tation, the Hadamard interferometer, which is straightforward
and efficient. This could, for example, be used to design a
photonic circuit which would act as a universal projective

measurement device for a broad range of potential applica-
tions, from quantum information and cryptography to tests of
contextuality.

The Hadamard interferometer is easily implementable, but
this comes at the cost that we are detecting all modes, i.e.,
that there is no quantum output, unlike for the swap circuit
of order M . However, for most applications, it is only the
classical output statistics of the circuit that matters, as is the
case, e.g., for quantum state identity testing.

Our scheme can also be interpreted as an optimal swap test
when one has a single copy of one state and M − 1 of the
other. Given the breadth of applications of the swap test for
entanglement testing [23–25], communications [13,26,27],
quantum machine learning [28,29], etc., one can anticipate our
result will have applications also in these domains.

We have chosen to phrase the problem in terms of M − 1
copies of the state |ψ〉. In principle, we could have chosen any
other encoding of the quantum input into M − 1 registers. The
reason for our choice is twofold. First, it is part of the envis-
aged problem setting—we imagine a device producing states
encoding our measurement, for example, these could be the
output of a computation. Second, we do so in order to separate
as much as possible the resource of M − 1 program systems
and the process of translating them into a measurement. In
particular, if one had any other encoding, for example, into
some entangled states, this encoding process could be incor-
porated into the circuit representing the generic measurement
apparatus. In this sense the most quantum information that can
be contained about the state |ψ〉 in M − 1 systems is M − 1
copies of the state |ψ〉; anything more can be done afterwards.
See, for example, [30] for a similar discussion in the case of
programmable quantum computation of U(1) rotations.

This result also gives rise to a natural interpretation of the
notion of projective measurement in quantum mechanics, as
a comparison between one state and several copies of an-
other state using an interferometer. In the macroscopic limit,
when many copies of a reference eigenstate are available,
we retrieve a macroscopic classically programmable quantum
measurement setup.

For completeness, it could be interesting to characterize the
full class of interferometers that are optimal for state identity
testing under the one-sided error requirement, as we only gave
a broad class of such interferometers using a group construc-
tion. We conjecture that the Hadamard interferometer will
remain the simplest to implement among this class of optimal
schemes. It would also be interesting to consider the influence
of real experimental conditions, as our scheme assumes that
the input states are pure. The one-sided error requirement is
also a challenge experimentally, as any interferometer would
suffer from the effects of imperfection and noise. We leave
these analyses open for future work.
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APPENDIX A: PROOF OF OPTIMALITY

An identity test on a Hilbert space H is a binary test
which can be written as a positive-operator-valued measure
{�0,�1}, with �0 + �1 = I . Such a test takes as input a pure
tensor product state |ψ0 . . . ψM−1〉 ∈ H⊗M and outputs 0 with
probability

P (0) = Tr[�0|ψ0 . . . ψM−1〉〈ψ0 . . . ψM−1|], (A1)

and 1 with probability

P (1) = 1 − P (0) = Tr[�1|ψ0 . . . ψM−1〉〈ψ0 . . . ψM−1|].
(A2)

If the output 0 is obtained, we conclude that we had |ψ0〉 =
· · · = |ψM−1〉, whereas if the output 1 is obtained, we con-
clude that the states were not all identical. The one-sided error
requirement can thus be written as

∀|ψ〉, Tr[�1|ψ〉〈ψ |⊗M ] = 0. (A3)

Following [31], the symmetric subspace of H⊗M can be
characterized as

S = span{|ψ〉⊗M : |ψ〉 ∈ H}, (A4)

and the orthogonal projector onto this space can be written as

PS = 1

M!

∑
σ∈SM

Pσ , (A5)

where for all σ ∈ SM and all |ψ0 . . . ψM−1〉 ∈ H⊗M we have
Pσ |ψ0 . . . ψM−1〉 = |ψσ (0) . . . ψσ (M−1)〉. Given the characteri-
zation of the symmetric subspace, the one-sided error require-
ment in Eq. (A3) implies that the supports of PS and �1 are
disjoint. The support of PS is thus included in the support
of �0, given that �0 + �1 = I , and this implies in turn that
�0 � PS by positivity of �0.

The error probability of the identity test under the one-
sided error requirement is given by the probability of out-
putting the result 0 while the states were not all identical:

P (0) = Tr[�0|ψ0 . . . ψM−1〉〈ψ0 . . . ψM−1|]
� Tr[PS |ψ0 . . . ψM−1〉〈ψ0 . . . ψM−1|]
� 1

M!

∑
σ∈SM

Tr[Pσ |ψ0 . . . ψM−1〉〈ψ0 . . . ψM−1|]

� 1

M!

∑
σ∈SM

Tr[|ψσ (0) . . . ψσ (M−1)〉〈ψ0 . . . ψM−1|]

� 1

M!

∑
σ∈SM

M−1∏
k=0

〈ψk|ψσ (k)〉, (A6)

where in the third line we used the expression of the orthogo-
nal projector PS onto the symmetric subspace.

APPENDIX B: STATISTICS OF AN INTERFEROMETER

Recall that we consider optical unitary interferometers of
size M which take as input one single photon in a quan-
tum state |φ〉 and M − 1 indistinguishable single photons in
a state |ψ〉, one in each spatial mode, indexed from 0 to
M − 1. The output modes are measured using photon number

detection. A measurement outcome thus has the form D =
(d0, . . . , dM−1), with d0 + · · · + dM−1 = M .

The permanent of an M × M matrix T = (tij )0�i,j�M−1 is
defined by

Per(T ) =
∑
σ∈SM

M−1∏
k=0

tkσ (k), (B1)

where SM is the symmetric group over {0, . . . ,M − 1}. We
now compute Pri (D) and Prd (D) for all detection patterns D.

In the indistinguishable case, M indistinguishable photons,
one in each mode, are sent through a linear optical network
described by an M × M unitary matrix U = (uij )0�i,j�M−1.
The probability of a detection event D can be computed (see,
e.g., [32]) as

Pri (D) = |Per(UD )|2
D!

, (B2)

where D! = d0! . . . dM−1!, and where UD is the matrix ob-
tained from U by repeating dk times the kth column for
k ∈ {0, . . . ,M − 1}.

In the distinguishable case, M − 1 indistinguishable pho-
tons are sent in modes 1, . . . ,M − 1 through a linear op-
tical network described by an M × M unitary matrix U =
(uij )0�i,j�M−1, along with one additional photon in the zeroth
mode in an orthogonal state. Since it is fully distinguishable
from the others, the additional photon behaves independently;
hence the probability of detecting the photon number pattern
D for one distinguishable photon and M − 1 indistinguish-
able photons in input is

Prd (D) =
M−1∑

k=0
dk 	=0

Pri (D − 1k )Pri (1k ). (B3)

This last expression formalizes the fact that the M − 1 indis-
tinguishable photons give a detection pattern D − 1k which,
completed by the additional distinguishable photon in the kth
output mode, forms the pattern D. Developing this expression
with Eq. (B2) yields

Prd (D) = 1

D!

M−1∑
k=0
dk 	=0

dk|u0kPer(U0,D−1k
)|2, (B4)

where U0,D−1k
is the matrix obtained from U by removing the

zeroth row, then by repeating dl times the lth column for l 	= k

and by repeating dk − 1 times the kth column.
In order to obtain more readable expressions, we define for

all k ∈ {0, . . . ,M − 1} and for any detection pattern D,

pk (D) =
{

u0kPer(U0,D−1k
)√

D!
if dk 	= 0,

0 otherwise.
(B5)

Using the Laplace expansion of the permanent, the previous
equations (B2) and (B4) are rewritten

Pri (D) =
∣∣∣∣∣
M−1∑
k=0

dkpk (D)

∣∣∣∣∣
2

(B6)
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and

Prd (D) =
M−1∑
k=0

dk|pk (D)|2. (B7)

Since
∑M−1

k=0 dk = M , we obtain, using the Cauchy-Schwarz
inequality with the complex vectors {√dk}0�k�M−1 and
{√dkpk (D)}0�k�M−1,

Prd (D) � Pri (D)

M
, (B8)

for any detection pattern D.

APPENDIX C: PROOF OF THEOREM 3

Let us define

S = (sij )0�i,j�M−1 =
√

MHn, (C1)

thus omitting the normalization factor. We have

S =
√

2H ⊗ · · · ⊗
√

2H︸ ︷︷ ︸
n times

, (C2)

where H is a Hadamard matrix. The rows of
√

2H , together
with the elementwise multiplication, form a group isomorphic
to Z/2Z, and thus the rows of S together with the elementwise
multiplication form a group isomorphic to (Z/2Z)n. As a
consequence, multiplying elementwise all the rows of S by
its ith row for a given i amounts to permuting the rows
of S. Let D = (d0, . . . , dM−1) and k ∈ {0, . . . ,M − 1} such
that dk 	= 0. Let also SD−1k

be the matrix obtained from S

by repeating dl times the lth column for l 	= k and dk − 1
the kth column. For all i ∈ {0, . . . ,M − 1}, one can obtain
the matrix S0,D−1k

(with the zeroth row removed) from the
matrix Si,D−1k

(with the ith row removed) by multiplying
elementwise all rows by the ith row and permuting the rows.
Since the permanent is invariant by row permutation, we
obtain, for all i ∈ {0, . . . ,M − 1} and all k ∈ {0, . . . ,M − 1}
such that dk 	= 0,

Per(Si,D−1k
) = εik (D)Per(S0,D−1k

), (C3)

where εik (D) = sik

∏M−1
j=0 (sij )dj . Finally, we use the Laplace

row expansion formula for the permanent of SD to obtain, for
all D = (d0, . . . , dM−1) and all k ∈ {0, . . . ,M − 1} such that
dk 	= 0,

Per(SD ) =
M−1∑
i=0

sikPer(Si,D−1k
)

=
(

M−1∑
i=0

sikεik (D)

)
Per(S0,D−1k

)

=
⎛
⎝M−1∑

i=0

M−1∏
j=0

(
sij

)dj

⎞
⎠Per(S0,D−1k

)

= π (D)Per(S0,D−1k
), (C4)

where we used Eq. (C3) in the second line. With the general
expressions of Pri (D) (B2) and Prd (D) (B4), this equation

implies

MPri (D) = π (D)2Prd (D). (C5)

With the Laplace column expansion formula for the perma-
nent of SD and the last line of Eq. (C4), we also obtain

M2Pri (D) = π (D)2Pri (D). (C6)

In particular, combining Eqs. (C5) and (C6),

M2π (D)2Prd (D) = π (D)4Prd (D). (C7)

Now Prd (D) is nonzero for all D, since by Eq. (B4) it is a
sum of moduli squared of permanents of (2n − 1) × (2n − 1)
matrices, which in turn cannot vanish by a result of [33].
Hence the previous equation is rewritten

Mπ (D) = π (D)2. (C8)

As a consequence, π (D) = M or π (D) = 0 for all D. Com-
bining Eqs. (C5) and (C8) we obtain

π (D) 	= 0 ⇔ π (D) = M

⇔ Pri (D) 	= 0

⇔ Prd (D) = Pri (D)

M
, (C9)

and thus

Pri[π (D) = M] =
∑

π (D)=M

Pri (D)

=
∑

Pri (D)	=0

Pri (D)

= 1. (C10)

We also obtain

Prd [π (D) = M] =
∑

π (D)=M

Prd (D)

= 1

M

∑
π (D)=M

Pri (D)

= 1

M
. (C11)

We finally conclude by combining Eqs. (C10) and (C11), and
Eq. (11):

Pr[π (D) = M] =
∑

π (D)=M

Pr(D)

= 1

M
+ M − 1

M
|〈φ|ψ〉|2. (C12)

The postprocessing mentioned in the main text, i.e., com-
puting π (D), can be done efficiently in time O(M ln M ) for
any detection pattern D = (d0, . . . , dM−1). Indeed, let SD be
the M × M matrix obtained from S by repeating dk times the
kth column for k ∈ {0, . . . ,M − 1}. The expression π (D) in
Eq. (17) is the sum of the product of the elements of each
row of SD . Since the entries of the matrix S are only +1
and −1, π (D) = M if and only if the number of −1 on the
rows of SD is even for all rows. The condition π (D) = M

can thus be written as a system of M linear equations modulo
2. Since (Z/2Z)n is finitely generated by n elements, the
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M rows of SD can be generated with at most n rows using
elementwise multiplication, for any measurement outcome D.
Hence, computing the parity of the number of −1 on each
row of SD , which is equivalent to testing π (D) = M , can be
done by computing at most n = ln M parity equations, with a
number of terms in each equation which is at most M .

A simple induction shows that a possible choice for the
rows whose parity has to be tested is the rows with index 2k

for k ∈ {0, . . . , n − 1} (the rows of the matrix being indexed
from 0 to M − 1).

APPENDIX D: THE HADAMARD INTERFEROMETER
CAN BE IMPLEMENTED WITH A FEW

BALANCED BEAM SPLITTERS

Let Ik be the k × k identity matrix for all k. The size M is a
power of 2, with n = ln M . We prove by induction over n that
there exist P0(n), . . . , Pn−1(n) permutation matrices of order
M/2, such that

Hn =
n−1∏
k=0

Pk (n)(IM/2 ⊗ H )Pk (n)T . (D1)

Since multiplying matrices is equivalent to setting up exper-
imental devices in sequence, and given that H is the matrix
describing a balanced beam splitter, Eq. (D1) implies the
result we want to prove.

For n = 1, we have M = 2, and Eq. (D1) is true with
P0(1) = I1. For brevity, we define for all k,

H (k) = Ik⊗H. (D2)

Assuming that Eq. (D1) is true for n, we use the recursive
definition of the Hadamard-Walsh transform,

Hn+1 = H ⊗ Hn, (D3)

along with properties of the tensor product of matrices in order
to obtain

Hn+1 = (Hn ⊗ I2)H (M ) = Q(I2 ⊗ Hn)QT H (M )

= Q

[
I2 ⊗

n−1∏
k=0

Pk (n)H (M/2)Pk (n)T
]
QT H (M )

= Q

[
n−1∏
k=0

(I2 ⊗ Pk (n))H (M )(I2 ⊗ Pk (n)T )

]
QT H (M )

=
n−1∏
k=0

[Q(I2 ⊗ Pk (n))]H (M )[Q(I2 ⊗ Pk (n))]T H (M ),

(D4)

where Q is a permutation matrix of order M and where in
the third line we have used Eq. (D1). Setting Pk (n + 1) =
Q(I2 ⊗ Pk (n)) for k ∈ {0, . . . , n − 1} and Pn(n + 1) = IM

proves Eq. (D1) for n + 1, since these matrices are permu-
tation matrices of order M . This completes the induction and
the proof of the result.
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