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Quantum control with measurements and quantum Zeno dynamics
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We introduce an efficient iterative method to prepare a target state in Hilbert spaces with high dimensionality
using a combination of unitary evolution, measurements, and quantum Zeno dynamics. The latter confines the
evolution within Zeno subspaces of decreasing size. This gives an exponential speedup relative to the case of
states evolving in the full Hilbert space between projective measurements. We demonstrate our approach on
the control problem of rapidly transferring a superfluid into the Mott insulator in the Bose-Hubbard model. We
discuss the general applicability of the method by preparing arbitrary superpositions with random Hamiltonians.
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I. INTRODUCTION

Preparation of specific target quantum states is a prerequi-
site for, e.g., control of qubits, quantum computation, quantum
metrology, and simulation of novel matter phases [1–3]. This
type of control is typically achieved by manipulating the
unitary dynamics using quantum optimal control theory [4–7].

Although quantum optimal control theory has been applied
successfully in several systems, it is still challenging to control
many-body systems such as ultracold atoms. A paradigmatic
and experimentally relevant example is to transfer a state from
the superfluid phase into the Mott insulator phase [8–10],
which is the starting point for applications such as performing
quantum logic gate operations [11–15], quantum simulations
[16], and single-atom transistors [17]. This transfer is difficult
since the adiabatic time scales diverge close to the phase
transition where the gap to the excited state closes in an
infinite system [18]. There have been attempts to numerically
optimize the transfer using optimal control theory and adi-
abatic ramp shapes [10,19,20], and the transition has been
studied and optimized experimentally [8,20,21].

An alternative to unitary control is to steer the dynam-
ics using the backaction associated with quantum measure-
ments [22–27]. For instance, by measuring a sequence of
observables in spin systems, it is possible to prepare desir-
able local properties as well as long-range correlations [28].
Measurement-based control of many-body systems requires
inclusion of the quantum backaction in the modeling. Initial
steps in this direction have been taken in Refs. [29–31], where
it is shown that collective weak measurements of the on-site
densities or coherences in an optical lattice can be used to
engineer correlated tunneling and long-range entanglement.
The weak measurements confine the system to distinct Zeno-
subspaces defined by an effective non-Hermitian Hamilto-
nian, governing the evolution of the monitored system [31],
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and Raman-like transitions may be observed between these
subspaces [32,33].

Here we discuss combinations of unitary and
measurement-based dynamics that may offer better control
strategies. Our focus will be on preparation of a target state.
For this purpose, one previously proposed control strategy
is fixed unitary evolution and measurements (FUMES) [34].
In FUMES it is the timing of the measurements, rather than
the unitary dynamics, which is optimized. This means that
the unitary dynamics is given by a fixed static Hamiltonian
while measurements, attempting to project the system into
the target state, are performed at the times with highest
success probability. In Ref. [34] it was shown that FUMES is
competitive with other types of measurement-based control
schemes such as multiple evenly distributed observables
(MEDO) [35] and mutually unbiased measurements
(MUM) [36].

A projective measurement on a many-body system is typi-
cally realized by many individual (local) measurements. Even
if the full projective measurement fails to produce the desired
outcome, some of the individual measurements might still
have succeeded. Despite exhibiting superior performance to
MEDO and MUM, the FUMES strategy suffers from the
drawback that it cannot maintain these partial successes. In
this paper we propose to employ quantum Zeno dynamics to
improve the FUMES strategy by freezing the state compo-
nents prepared by each partial success [37]. This effectively
confines the unitary dynamics to smaller Zeno subspaces
similar to what was found in Refs. [32,33]. We demonstrate
that this gives an exponential speed-up relative to FUMES.

In Sec. II we introduce FUMES and Z-FUMES as methods
for preparing a Mott insulator starting from the superfluid. In
Sec. III, we analyze the performance of Z-FUMES in a more
realistic setting using continuous homodyne measurements
rather than projective measurements on the Bose-Hubbard
model. In Sec. IV, we demonstrate the general applicability
of Z-FUMES by simulating the preparation of arbitrary states
using random Hamiltonians and measurements. Section V
concludes the paper.
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FIG. 1. (a) Bose-Hubbard model (1) and the measurements of the single-site operators (n̂i). (b) A single Z-FUMES trajectory starting from
the superfluid state and reaching the Mott state for a lattice with N = 7 particles and L = 7 sites. A measurement is performed at each of the
dashed, horizontal lines. The color map tracks the populations, 〈n̂i〉 on the individual sites. (c) Fidelity for FUMES and Z-FUMES averaged
over 1000 simulated trajectories for N = L = 7. The solid (yellow) curve shows the deterministic fidelity obtained using a linear ramp without
measurements from U/J = 0 at J t zero to U/J = 30 at time J t . The rapid, coherent oscillations are due to the nonadiabatic excitation of the
system. The vertical line indicates that Z-FUMES reaches F = 0.99 at J t = 18.5.

II. CONTROL OF THE BOSE-HUBBARD MODEL

A. Control problem

Ultracold bosons in a one-dimensional optical lattice are
described by the Bose-Hubbard model

Ĥ = −J

L−1∑
j=1

(â†
j âj+1 + â

†
j+1âj ) + U

2

L∑
j=1

n̂j (n̂j − 1), (1)

where J is the tunneling rate, U is the on-site interaction, and
L is the number of sites, see Fig. 1(a). âj and n̂j are the
annihilation and number operators for particles on the j ’th
site respectively. Here we assume unit filling, i.e., that the
number of particles matches the number of sites (N = L). For
U = 0 or J = 0 the ground state of the system has different
quantum phases, which are the superfluid and Mott insulator
respectively [38]. In this paper we refer to the ground state of
the U = 0 Hamiltonian as the superfluid state. As discussed
below, our method may be applied to prepare general many-
body correlations. However, we first focus on the intuitive
but experimentally relevant case of transferring a system
from an initial superfluid state into the Mott state |Mott〉 =
|1, 1, . . . , 1〉. The quality of this transfer is quantified by the
fidelity F = |〈Mott|ψ〉|2 where ψ is the state at the end of the
control protocol.

Recent advances in single atom detection have made
it feasible to image single atoms in both optical lattices
[39–41] and free space [42]. Including Raman sideband cool-
ing allows the atoms to be detected without additional heating
[40,43,44]. Dispersive imagining of single atoms in an optical
lattice has also recently been realized using the Faraday effect
[45].

In principle this enables the implementation of quan-
tum non-demolition measurements of the local atom-
numbers, thus providing access to the set of observables

{n̂1, n̂2, . . . , n̂L} for both the projective measurement and
the quantum Zeno dynamics, see Fig. 1(a). A simultaneous
measurement of all observables collapses the state into a
Fock state |n1, n2, . . . , nL〉 with

∑
j nj = N . This type of

system can be controlled using the FUMES control strategy
introduced in Ref. [34]. In FUMES the system is projected
into a Fock state by simultaneous measurements of all the
n̂i operators. This type of measurement will either succeed
by projecting into the Mott state or fail by a projection
into another Fock state. For a nonzero J the Fock states
are not eigenstates of the model (1), which implies that if
the measurement fails then the subsequent unitary dynamics
drives the system out of the projected Fock state. Hence, at
later times there is again a nonzero probability of projecting
into the target state. If the projections occur at arbitrary times
then there is only a low probability of success [46]. In FUMES
this probability is improved by only measuring at peaks in
the fidelity above some preset threshold. In an experimental
setting, these peaks can be calculated prior to the experiment
by solving the deterministic Schrödinger equation. FUMES is
problematic in the sense that for a large lattice it becomes ex-
ponentially improbable to project directly into the Mott state.
In order to remedy this effect, we propose Z-FUMES, which is
a combination of FUMES and quantum Zeno dynamics [37].
Quantum Zeno dynamics in optical lattices have been reported
experimentally in Refs. [43,44]. Although a projective mea-
surement of all the sites may not have reached the Mott state,
some of the individual sites may still have the desired unit
occupancy. In order to prevent these particles from tunneling
away we propose to trap them using quantum Zeno dynamics,
i.e., by performing rapid repeated measurements of the on-site
number operator [37]. Zeno-locking the number of particles
on a site does not only ensure the correct occupancy, it also
prevents particles from tunneling across that site. This implies
that locked sites effectively decouple the lattice into smaller
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parts. However, the Mott state can only be reached if each
of these sublattices contain the correct number of particles.
Hence, we should only Zeno lock a given site whenever it
contains a single particle and the right and left sublattices have
matching numbers of sites and particles.

We compare FUMES and Z-FUMES for creating a Mott
state in this model for a system with size N = L = 7. Be-
tween the measurements the evolution of the state is governed
by the Hamiltonian (1) with U/J = 0. The on-site density
〈n̂i〉 during a Z-FUMES trajectory is shown in Fig. 1(b). The
state is initially in the superfluid state and discrete changes in
the density are introduced by projective measurements of the
on-site density at specific times marked by dashed lines. At
the time J t = 4, the two outer sites have been Zeno locked,
creating a sublattice of length five. The edges of this sublattice
are gradually Zeno locked in this trajectory, and after about
J t = 10, the system has converged to the Mott insulator state
with 〈n̂i〉 = 1 for i = 1, 2, . . . , 7. The gradual locking in the
proper subspaces is the reason Z-FUMES converges faster
than FUMES.

In Fig. 1(c) the mean fidelity as a function of J t is shown
for both FUMES and Z-FUMES. The curves are obtained
by averaging the results of 1000 simulated trajectories. The
figure shows that Z-FUMES reaches an expected unit fidelity
after about J t = 20 while after J t = 70 FUMES still only
has a success rate of 60%. For comparison we also show
the fidelity after a unitary linear ramp of the interatomic
interaction strength from U/J = 0 to U/J = 30 during the
same time interval but in the absence of any measurements.
For each value of J t , the ramp is thus performed with a
different speed. The solid (yellow) line in Fig. 1(c) shows the
final fidelity as a function of the total ramp time. For higher
values of J t the transfer is adiabatic and the fidelity will
approach unity. The curve further exhibits characteristic rapid,
coherent oscillations, which are due to the energy differences
between populated eigenstates during the transfer. Although
the fidelity from the linear ramp lies higher than FUMES on
the curve, one should remember that the linear ramp never
reaches a pure Mott state whereas FUMES leads to formation
of the pure Mott state in 60% of the simulated runs. Z-FUMES
clearly performs better than both the linear ramp and FUMES.

B. Scaling with system size

In this part, we discuss how FUMES and Z-FUMES scale
with the lattice size in the Bose-Hubbard model (1). For this
purpose, we define Tconv as the time where the mean fidelity
reaches E[F ] = 0.99. The scaling of this quantity with the lat-
tice size L is illustrated in Fig. 2 where Tconv is averaged over
1000 simulations for each value of L. FUMES scales poorly
with the lattice size as it becomes exponentially improbable to
project the system into the Mott state. The improved scaling in
Z-FUMES is due to the fact that each time a site is locked, the
lattice is divided into smaller sublattices each with a higher
probability of measuring the desired outcome in subsequent
measurements.

Due to the exponential growth of the Hilbert space, it is
not possible to simulate Eq. (1) for large systems. However,
it is possible to perform a toy model analysis by assum-
ing a complete reshuffling within each sublattice after a

FIG. 2. Expected J t needed to reach a fidelity above 0.99 as a
function of the lattice size for FUMES and Z-FUMES simulated
under the Bose-Hubbard model (1). The results are averaged over
1000 trajectories for each value of L.

measurement. The probability for a particle distribution n =
(n1, n2, . . . , nL) is given by the multinomial expression

P (n) = 1

n1!n2! · · · nL!

L!

LL
. (2)

For FUMES the mean number of measurements needed for
convergence MF may be estimated directly from Eq. (2) (see
Appendix)

MF � eL

√
2πL

. (3)

In each iteration of the toy model simulation of Z-FUMES
the outcome of a measurement on each sublattice Lsub is
sampled from Eq. (2) with L = Lsub. The first few iterations
of one realization within this toy model simulation are shown
in Fig. 3 where the bars represent the number of atoms on a
given site and the white bars show the Zeno locked sites. Here,
after just four measurements most of the sites have been Zeno
locked.

A conservative estimate of the number of measurements
needed for convergence for Z-FUMES MZ is explained in
the Appendix by assuming a uniform probability distribution
among the Fock states,

MZ � 16

√
L

π
. (4)

The nonexponential scaling clearly demonstrates the power of
continually dividing the system into ever smaller decoupled
sublattices. Equations (4) and (3) clearly show that Z-FUMES
achieves an exponential speedup compared to FUMES, re-
sulting in the favorable scaling seen in Fig. 2. The trajectory
in Fig. 1(b) simulated with Eq. (1) used nine measurements
for convergence whereas Eq. (4) estimates MZ � 24 showing
that the estimate is not tight.
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FIG. 3. First four measurements of a toy model simulation of
Z-FUMES assuming a complete reshuffling between measurements.
Zeno locked sites are shown with white. The distributions of particles
(n1, n2, . . . , nL) after a measurement is sampled from Eq. (2) for
each sublattice with L = Lsub, where Lsub is the sublattice length.

III. CONTINUOUS MEASUREMENTS

In the previous sections we have assumed that the measure-
ments occur instantaneously. This is a valid assumption when
the typical duration of a measurement is short compared to the
dynamics of the measured system [47]. However, this is not
generally true in practical applications with finite interaction
strengths where the measurement record I (t ) is continuous
[45]. As a step toward experimental realizability we inves-
tigate the performance of Z-FUMES with weak continu-
ous measurements. Due to the backaction of the continuous
measurements, the dynamics obeys a stochastic Schrödinger
equation, which can be understood as the time evolution con-
ditioned on the stream of measurement results in I (t ) [47,48].
At each instant in time, I (t ) is dominated by stochastic noise,
resulting in a state |ψ (t )〉, which evolves in a random manner.
This time evolution exhibits quantum jumps if measurement
outcomes occur at discrete points in time as in photo detection
while for example homodyne detection leads to a diffusive
trajectory [48]. Quantum jump trajectories have previously
been studied in the context of the Bose-Hubbard model
[29–31,33,49,50]. Here we consider diffusion-type measure-
ments which imply a stochastic Schrödinger equation of the
form

d |ψ (t )〉 = dt

⎡
⎣−iĤ (t ) +

∑
j

−γj

2
ĉ
†
j ĉj + Ij (t )ĉj

⎤
⎦ |ψ (t )〉 ,

(5)
where the ĉj = n̂j are the measurement operators and the
γj corresponding measurement strengths, which determine
the rate at which information is extracted [48,51]. In the
examples studied here, we assume uniform strengths γj ≡
γ . A measurement becomes projective in the limit γ → ∞
[47]. Note that Eq. (5) does not preserve the normalization,

FIG. 4. Expected fidelity in Z-FUMES averaged over 1000 tra-
jectories simulated using continuous homodyne measurements. The
simulations are made for different measurement strengths γ and a
lattice with L = 5 sites. The dashed curve is not simulated using
continuous homodyne measurements but with unitary dynamics and
projective measurements as in Fig. 1(c). The horizontal dashed lines
indicate 60% expected fidelity.

which is instead imposed explicitly in each time step. The
measurement record Ij (t ) for the j th detector reflects the
current state of the system,

Ij (t ) = γj 〈ĉ†j + ĉj 〉 (t ) + √
γj ξj (t ), (6)

where the ξj (t ) = dWj (t )/dt are infinitesimal Wiener in-
crements, representing white noise in the detection setup.
Integration of the record allows one to determine the outcome
of a measurement for large values of γ . In order to investigate
the performance of FUMES and Z-FUMES at low values of
γ , we assume that it is possible to quench the lattice such that
J (t ) = Jd with U (t ) = 0 in the absence of measurements and
J (t ) = 0 with U (t ) = Jd during measurements, where Jd is
the characteristic dynamical energy scale. After a measure-
ment some of the particles may be trapped by the Zeno effect
using sufficiently strong measurements to suppress tunneling.
In our simulations we used γj/Jd = 1000 for Zeno locking of
the particle on site j .

In Fig. 4, Z-FUMES is investigated for different values of
the measurement strength in a system with L = 5 lattice sites.
The figure also shows the expected fidelity for Z-FUMES sim-
ulated using discrete projective measurements as in Fig. 1(c).
As expected, the fidelity of the continuous measurement
scheme converges toward that corresponding to projective
measurements as the measurement strength becomes large.
At the time Jdt = 15 more than 60% of the trajectories have
converged with γ /Jd = 0.5, which means that Z-FUMES
is effective even with moderate values of the measurement
strength.

IV. GENERAL APPLICATION OF Z-FUMES

In this section we show that FUMES and Z-FUMES can
also be applied to prepare an arbitrary target state of a
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Q̂2 = 1

Q̂3 = 1

Q̂1 = 1

FIG. 5. Illustration of how the qj are distributed in a general
context. The circles show the Zeno subspace corresponding to a value
of q

(i )
j for a particular Q̂i . Each Zeno subspace contains a number

of the basis states |q1, q2, . . . , qL〉. A simultaneous measurement of
all the Q̂i observables yields a single state projection, which in this
illustration is into the target state |ψtarget〉 = |1, 1, 1〉. In this example
we have B = L = 3.

system, almost independently of its Hamiltonian evolution.
In the last section we gave the example of preparing an
individual Fock state by measuring the on-site populations.
If the measurements were instead performed in the Fourier
basis (corresponding to momentum eigenstates) then many-
body states with exotic phase correlations could be prepared
[28,31,34]. To demonstrate this general applicability in an
unbiased way, we here assume random Hamiltonians drawn
from the Gaussian unitary ensemble which ensures a uniform
distribution in the space of Hamiltonians with a particular
dynamical time scale [52]. This type of random Hamiltonian
is used to model, e.g., chaotic systems with one and many
particles [53].

We assume the system can be manipulated through the
backaction from measuring a set of commuting observables
{Q̂1, Q̂2, . . . , Q̂L}, [Q̂i, Q̂j ] = 0. The joint eigenstates of the
measurement operators define a set of orthonormal states
|q1, q2, . . . , qL〉, and the target state |ψtarget〉 must be one
of these eigenstates. A measurement of all Q̂i observables
must uniquely determine a |q1, q2, . . . , qL〉 state. Each mea-
surement operator may be written as a linear combination
Q̂i = ∑

i q
(i)
j | . . . , q (i)

j , . . . 〉〈. . . , q (i)
j , . . . |. The eigenvalues

q
(i)
j should be constructed with a large degeneracy such that

they define different subspaces; see Fig. 5. A measurement of
a Q̂i is successful if it measures the same q

(i)
j as for the target

state. Zeno locking this value confines the time evolution to a
smaller subspace containing the target state. The subsequent
time evolution within this subspace is

ÛZ (�t ) = exp(−iP̂ Ĥ P̂�t ), (7)

where P̂ is the projector on the locked Zeno subspace [54].
A subspace should only be Zeno locked if there is a sufficient

FIG. 6. Expected number of measurements needed for conver-
gence E[M] for FUMES and Z-FUMES for systems with different
number of measurement operators L and outcomes B; see legend.
The dotted lines show the estimate from Eq. (8). Each point is aver-
aged over 1000 random Hamiltonians and initial states. The Hilbert
space dimension is N = BL meaning that a larger N corresponds to
more measurement operators.

coupling between the current state and the target state within
that subspace, i.e., |〈ψtarget|ÛZ (�t )|ψ (t )〉| > εo where εo is a
predefined threshold.

These ideas constitute a direct generalization of the Bose-
Hubbard control scheme discussed in the previous sections.
There the orthonormal basis consists of the Fock states and
the individual on-site number operators can be written as
linear combinations of projectors on these states. We have,
for instance, that the on-site density operator for the ith
site is n̂i = ∑

i n
(i)
j | . . . , n(i)

j , . . . 〉〈. . . , n(i)
j , . . . |. The eigen-

spectrum of the number operator on a single site is clearly
degenerate. Measuring the n̂i operators one by one gradually
leads to a collapse onto a single Fock state. The condition
of only Zeno locking in subspaces with sufficient coupling
between the current state and the target state corresponds to
exclusively locking sites with matching numbers of particles
and sites on the left and right sublattices.

We have applied Z-FUMES to perform general state trans-
fers using random Hamiltonians. In order to show the average
behavior, we have performed calculations for 1000 different
random Hamiltonians for each size of the Hilbert space. We
assume access to L different measurement operators each with
B different outcomes giving a Hilbert space of size N =
BL. Figure 6 compares the number of measurement needed
for convergence E[M] for different number of measurement
operators L and number of outcomes B. As in the case of the
Bose-Hubbard model, the Z-FUMES curves converge much
faster than FUMES, requiring about two orders of magnitude
fewer measurements. All Z-FUMES curves show a similar
rate of convergence despite the system size differing by an
order of magnitude.

The scaling with the system size may be understood by a
simple model. Assuming that all measurement outcomes are
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equally likely, the probability of a measured Q̂i producing the
desired outcome is B−1. If the measurements are independent,
the mean number of locked observables is K/B when mea-
suring K observables. The number of measurements needed
to converge may then be estimated by summing the average
time for locking each operator

MZ = B

L∑
K=1

1

K
� B ln L. (8)

This logarithmic scaling is slower than the square root found
for the Bose-Hubbard model in Eq. (4). In the Bose-Hubbard
model there are fewer states in the Hilbert space, but only a
few states are lockable due to the constraint that the left and
right sublattice must have matching number of particles and
sites. In combination this gives a lower probability for locking
a site than in the unconstrained case. The value in Eq. (8) is
compared with the simulations using random Hamiltonians in
Fig. 6. Figure 6 shows that it is favorable to have fewer possi-
ble measurement outcomes, which is also captured by Eq. (8).
For larger systems, Eq. (8) seems to underestimate the number
of measurements needed, which may be due to violation of the
assumption that the observables are independent.

In FUMES the system either projects into the target state or
not and assuming a uniform distribution the expected number
of measurements is MF = BL = N . This linear scaling is
plotted with a black line in Fig. 6. The FUMES curves follow a
linear scaling depending only on N, but the slope is lower than
unity. We attribute this to the fact that FUMES only performs
the measurements at peaks in the fidelity, but also note that the
scaling may change for larger Hilbert space dimensions.

V. CONCLUSION

We have introduced a protocol, denoted Z-FUMES, for
multiparticle state preparation using unitary dynamics and
measurement-based control. Our protocol steers the evolution
toward a target state by measuring a set of observables.
Each observable is Zeno locked when an appropriate outcome
is obtained, which confines the time evolution to gradually
shrinking Zeno subspaces. Z-FUMES gives an exponential
speedup compared to other measurement-based control pro-
tocols.

We analyzed in detail the preparation of a Mott state using
Z-FUMES. Here it is necessary to measure the density on each
lattice site, which can be realized experimentally using strong
fluorescence imaging combined with Raman side-band cool-
ing as shown in Refs. [43,44]. We demonstrate furthermore
that Z-FUMES can be applied for preparing a Mott state in
more realistic settings relying on weak continuous rather than
projective quantum measurements. We also discussed how to
implement Z-FUMES in a more general setting with random
Hamiltonians.

In this work we focused on local measurements in order to
reach the Mott insulator state which is characterized by local
properties. It is also possible to generate strongly correlated
states using nonlocal measurements [28]. This could be used
to engineer exotic quantum state such as Schrödinger cats [34]
or other states with long-range correlations [30].

FIG. 7. Probability distribution Pi for Zeno locking site i ob-
tained from the multinomial distribution (white) Eq. (2) and uni-
form distribution (grey) found by summing over all configurations
allowing Zeno locking. The black bars show estimated values of
Pi by checking which sites could have been Zeno locked from
measurements on 600 trajectories using Eq. (1).
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APPENDIX: SCALING IN FUMES AND Z-FUMES

In this Appendix we discuss the arguments leading up
Eqs. (3) and (4). The probability for fulfilling the condition to
lock the ith site Pi can be found directly from the simulations
using Eq. (1). In Fig. 7, Pi are estimated from measurements
in 600 trajectories for N = L = 7. The numerical results
are compared with the same probabilities found using the
multinomial distribution in Eq. (2) and a uniform distribution
where all Fock states are equally likely to be measured.
The uniform distribution underestimates the probability for
locking a specific site, which may be attributed to lockable
configurations with a low number of particles on each site
being more probable as evident from Eq. (2).

We shall now discuss how to derive an upper estimate
for the scaling of Z-FUMES with the number of sites using
the uniform distribution. The probabilities in Fig. 7 for the
uniform case may be directly found by counting the number
of possible configurations allowing a site to be Zeno locked

Pi = C(i − 1)C(L − i)

C(L)
. (A1)

Here we assume unit filling L = N and C(N ) = (2N )!/2N !2

is the number of ways to distribute N particles among N sites.
In the special cases of i = 1 or i = L Eq. (A1) becomes
Pi = L/2(2L − 1). The limit, 1 	 i 	 L of Eq. (A1) can be
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investigated using Stirling’s approximation

Pi � 1

8

√
L

π (i − 1)(L − i)
. (A2)

Seeking an upper estimate on the number of measurements
needed for convergence, we compute the average probability
for locking a site from Eq. (A2)

Pavg ≡ 1

L

L∑
i=1

Pi � 1

2L − 1

+ 1

8L

∫ L−1

2

√
L

π (i − 1)(L − i)
di, (A3)

where the first term is the edge contribution and the discrete
sum is approximated by an integral. Calculating the integral

and performing a large L expansion we obtain

Pavg = 1

8

√
π

L
+ 1

2L
− 1

2
√

πL3/2
+ · · · . (A4)

Assuming that the probability distribution for locking is bi-
nomial with success probability Pavg, the average number of
sites locked in a chain of length K is KPavg. An estimate on
the number of measurements needed for convergence is found
by summing the average time for locking each site

MZ �
L∑

K=1

8√
πK

� 16

√
L

π
, (A5)

where the discrete sum is approximated by an integral and
only the dominant first term from Eq. (A4) is included.

In FUMES the collective measurement either projects the
state into the target state with n = (1, 1, . . . , 1) or not. The
average number of measurements needed for convergence
may then be estimated directly from Eq. (2)

MF = 1

P (1, 1, . . . , 1)
= LL

L!
� eL

√
2πL

. (A6)
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