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We investigate the optimal quantum state reconstruction from the cloud to many spatially separated users
by a measure-broadcast-prepare scheme without the availability of the quantum channel. The quantum state
equally distributed from the cloud to an arbitrary number of users is generated at each port by an ensemble of
known quantum states with assistance from classical information of measurement outcomes by broadcasting.
The obtained quantum state for each user is optimal in the sense that the fidelity universally achieves the upper
bound. We present the universal quantum state distribution by providing physical realizable measurement bases
in the cloud as well as the reconstruction method for each user. The quantum state reconstruction scheme works
for arbitrary many identical pure input states in the general dimensional system.

DOI: 10.1103/PhysRevA.98.062315

I. INTRODUCTION

In protocols of quantum information processing, entangle-
ment and the quantum channel are in general assumed to be
available. However, in a certain scenario we may need to
distribute the quantum state to an arbitrary number of users,
who are spatially separated, while neither entanglement nor
the quantum channel is available. Each user may prepare his
own quantum state according to classical information broad-
casted from the “cloud” which can perform measurement on
the quantum states that need to be distributed. This proto-
col can be named as classical quantum state reconstruction
(CQSR). It is known that there is no-cloning theorem for
quantum information which states that an arbitrary quantum
state cannot be cloned perfectly [1–4]. For spatially separated
users, approximate copies of a quantum state can also be
obtained for a number of users by the combination of the
quantum cloning machine and teleportation [5] which needs
the resource of entangled states and classical communica-
tion [3,6,7], differing from CQSR. One may notice that CQSR
can be achieved with the help of quantum estimation by a
measure-and-prepare scheme [8–10], but with additional con-
dition that the prepared states should not be entangled [11].
Additionally, CQSR should be physically realizable, which
means that the number of measurements should be finite. We
remark that the identically prepared quantum states can be
compressed [12–14], resulting in that those states may be
broadcasted economically. The quantum broadcast channels
are also investigated in Ref. [15].

The general scheme of CQSR can be shown as in
Fig. 1. The cloud will use universal measurement scheme for
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arbitrary input states, and broadcast the results of measure-
ment. Each user can prepare the quantum state by using en-
semble of known quantum states agreed in advance, which are
thus in product forms, with probabilities depending on classi-
cal information. Next we generally equate the state estimation
with CQSR, but bear in mind the difference that each user will
prepare their state without the assistance of entanglement. The
well-known estimation of quantum states shows that the mean
fidelity for input states which are randomly and isotropically
distributed can achieve the upper bound [8]. Here, we focus on
the case of universality in the sense that each arbitrarily given
input can be optimally distributed with the same fidelity.

II. STATEMENT OF THE PROBLEM

Here we consider the following case: the arbitrary M-copy
quantum state ρ in the cloud is to be distributed to N users.
Though it will be seen later that M does not necessarily equal
to N, we will still start with the M = N case, which meets the
requirement of a standard quantum estimation problem. We
first assume that the input is M independent and identically
prepared arbitrary pure states in general d-dimension Hilbert
space H, ρ = |ψ〉〈ψ |⊗M . It is known that this state is in the
symmetric subspace HM

+ of H⊗M and has a dimension d+
M =

CM
M+d−1, where CM

M+d−1 = (M+d−1)!
M!(d−1)! . The basis of symmetric

subspace HM
+ can be denoted by d-dimension vectors �m =

(m0,m1 · · ·md−1) satisfying
∑d−1

i=0 mi = M , where | �m〉 refers
to the symmetric state in which there are mi copies in the state
|i〉, and {|i〉}d−1

i=0 is the computational basis of Hilbert space H.
The standard quantum estimation process can be consid-

ered as a quantum channel E (ρ) which maps HM
+ to itself,

ρ̃ = E (ρ) =
R∑

r=1

Tr[Ôrρ]|�r〉〈�r |, (1)
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FIG. 1. Demonstration of quantum state reconstruction in the
absence of the quantum channel. The input state |ψ⊗M

in 〉 is stored and
measured in the cloud. After the measurement, the corresponding
measurement result is broadcast to the users. Having obtained the
measurement results, each user can re-construct the initial state with
the optimal fidelity.

where Ôr is a set of positive operator valued measurements
(POVMs), and |�r〉〈�r | is the corresponding guess in re-
constructing the estimated state and also lies in HM

+ . The
case R being finite means physically realizable since measure
and broadcast can be implemented finitely. The completeness
requires

R∑
r=1

Ôr = IM
+ , (2)

where IM
+ is the identity of symmetric subspace HM

+ , to make
sure the estimation is trace preserving.

For the CQSR protocol, we propose that the POVM is
performed in the cloud. Additionally, we need to release the
constraint of M users to arbitrary number N of users, meaning
that there is no restriction on the number of audiences. Based
on the measurement result, the users reconstruct the state by
using a known ensemble of states {|�r〉}. We emphasize that
state |�r〉 is not necessarily the product state for estimation,
however, for spatially separated users in CQSR, |�r〉 should
be in product form but without diminishing the fidelity.

For simplicity we use the notation ρ (1) = TrM−1[ρ] and
ρ̃ (1) = TrM−1[ρ], supposing M = N . Note again that here ρ̃

relies on the input ρ = |ψ〉〈ψ |⊗M . The figure of merit for
CQSR can be quantified by the fidelity between a single
copy of the reconstructed state and a single input state |ψ〉,
f (ψ ) = Tr[ρ (1)(ψ )ρ̃ (1)(ψ )].

The mean fidelity is defined as the following form,

f̄ =
∫

dψTr[ρ (1)(ψ )ρ̃ (1)(ψ )]

=
∫

dψ

R∑
r=1

Tr[Ôr |ψ〉〈ψ |⊗M ]

×Tr[|ψ〉〈ψ |TrM−1(|�r〉〈�r |)]

=
∫

dψ

R∑
r=1

Tr
[
Ôr (Uψ |0〉〈0|U †

ψ )⊗M ]

×Tr[Uψ |0〉〈0|U †
ψTrM−1(|�r〉〈�r |)], (3)

where Uψ is a unitary operator which transforms |0〉 to |ψ〉.
Our consideration is to have a universal fidelity for an

arbitrary input state. It is clear that the optimal universal
fidelity cannot exceed the optimal mean fidelity. We will find
later that these two fidelities are actually the same, implying
that the universal fidelity saturates the upper bound.

Here we define the M copy of ensemble of pure states
{|φr〉}Rr=1 with corresponding probabilities {cr}Rr=1 as the com-
pletely symmetric set (CSS) if it satisfies the relation,

R∑
r=1

cr |φr〉〈φr |⊗M = IM
+

d+
M

. (4)

It means that the CSS corresponds to an identity in symmetric
subspace.

We have the following lemma.
Lemma 1. If {|φr〉}Rr=1 and {cr}Rr=1 is an M-copy CSS, then

it is also M − 1,M − 2, . . . , 1-copy CSS.
The proof is straightforward. Taking trace over one Hilbert

space denoted as Tr1, on both sides of Eq. (4), we find that

R∑
r=1

cr |φr〉〈φr |⊗M−1 = 1

d+
M

Tr1I
M
+ = IM−1

+
d+

M−1

. (5)

Here we need the relation,

| �m〉 = 1√
CL

M

C(�k)=M−L∑
�k

d−1∏
j=0

√
mj !

(mj − kj )!kj !
| �m − �k〉|�k〉, (6)

where we have used the notation C(�k) = ∑d−1
i=0 ki . In the same

way we have {|φr〉}Rr=1 and {cr}Rr=1 is also the M − 2,M −
3, . . . , 1-copy CSS.

Obviously the basis of H can form a 1-copy CSS since∑d−1
i=0

1
d
|i〉〈i| = I/d. It is known that the states isomorphically

distributed in H can form an arbitrary M-copy CSS, which is
also related to the symmetric distribution of the information
channel [11]. This infinite set takes the following form:∫

dφ|φ〉〈φ|⊗M = IM
+

d+
M

, M = 1, 2, 3 . . . , (7)

where the integral is taken over the Haar measurement and
M is an arbitrary natural number. However, we need the
number of measurements to be finite such that it is physically
realizable.

III. OPTIMAL ESTIMATION PROTOCOL

Now, we present our main result.
Theorem. For state distribution to achieve optimal mean

fidelity, the POVM must be the form of a M-copy CSS.
Additionally, to make the fidelity identical for an arbitrary
input, this CSS should also be the order of (M + 1) copy.
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To study the optimal fidelity, it is useful to introduce the
following operator,

F̂ =
∫

dψ |ψ〉〈ψ |⊗MTr[|ψ〉〈ψ ||0〉〈0|]. (8)

It is proved that the optimal mean fidelity f̄ is upper bounded
by the maximal eigenvalue λmax of F̂ multiplying the dimen-
sion d, i.e., f̄ ≤ d+

Mλmax. The corresponding POVM has to
be Ôr = c̃rU

⊗M
r |ψmax〉〈ψmax|U †⊗M

r , c̃r is the probability, and
|ψmax〉〈ψmax| is the eigenstate corresponding to the maximal
eigenvalue [8].

By calculations, for dimension d, we can find that the
operator F̂ defined in Eq. (8) is in the diagonal form,

F̂ =
∫

dψ |ψ〉〈ψ |⊗MTr[|ψ〉〈ψ |0〉〈0|]

=
M∑
�m,�n

| �m〉〈�n|
∫

dψ〈 �m|(|ψ〉〈ψ |)⊗M |�n〉Tr[|ψ〉〈ψ |0〉〈0|]

=
∑
�m,�n

| �m〉〈�n|Tr[|�n〉〈 �m| ⊗ |0〉〈0|
∫

dψ |ψ〉〈ψ |⊗M+1]

=
∑
�m,�n

1

d+
M+1

| �m〉〈�n|
C(�r )=M+1∑

�r
Tr[(|�n〉〈 �m| ⊗ |0〉〈0|)|�r〉〈�r|]

=
M∑
�m

1

d+
M+1

| �m〉〈 �m|m0 + 1

M + 1
, (9)

where summation is taken over all the basis in HM
+ . For this

diagonal matrix F̂ , the largest eigenvalue corresponds con-
dition m0 = M , λmax = d+

M+1, the corresponding eigenstate
is |0〉⊗M . The POVM thus takes the form of M-identical
copies, Ôr = c̃r (Ur |0〉〈0|U †

r )⊗M = crd
+
M |φr〉〈φr |⊗M , where

|φr〉 = Ur |0〉. On the other hand, the completeness relation (2)
requires {|φr〉}Rr=1 and {cr}Rr=1 to be a M-copy CCS. The opti-
mal fidelity of state estimation is f̄opt = M+1

M+d
. This fidelity is

the same as the optimal fidelity of a M → ∞ quantum cloning
machine. The relationship between the fidelity of state estima-
tion and that of the cloning machine is already known; see [3]
and the references therein. Here we specifically point out that
the POVM takes the form as Ôr = cr (Ur |0〉〈0|U †

r )⊗M , which
simplifies the original result Ôr = crU

⊗M
r |ψmax〉〈ψmax|U †⊗M

r ,
where |ψmax〉 is generally unknown and may not necessarily
be a product state [8].

However, even if the state estimation achieves optimal
mean fidelity, it is still far from enough, because for some
input states, the fidelity could be undesirably small, which is
an unwanted case. Here we further demand that CQSR yields
the universal fidelity for any input state. Obviously the uni-
versal fidelity is upper bounded by the mean fidelity, namely
M+1
M+d

. We now prove that this upper bound is achievable for a
(M + 1)-copy CSS.

We can consider the input to be M-copy pure states |ψ〉⊗M ,
which is in the symmetric subspace. Here, we present a more
general form for an arbitrary matrix in the symmetric subspace

for the input,

ρ =
∑
�m,�n

A �m,�n| �m〉〈�n|. (10)

Simply, we know that |ψ〉〈ψ |⊗M ∈ ρ, meaning that the form
of identical pure states is a special case. After tracing out M −
1 copies, the single-copy state is

ρ (1) = 1

M

d∑
α,β=1

∑
�m,�n

A �m�n
√

mαnβ |α〉〈β|δ �m−�α,�n− �β, (11)

where �α denotes the vector with its αth entry to be 1 and
other entries to be 0. If the POVM is (M + 1)-copy CSS,
d+

M+1

∑R
r=1 cr |φr〉〈φr |⊗M+1 = IM+1

+ , after some calculations,
we can find that the single copy of the output state takes the
form,

ρ̃ (1) = TrM−1[E (ρ)]

=
∑
�m,�n

A �m�n
R∑

r=1

d+
McrTr[|φr〉〈φr |⊗M | �m〉〈�n|]|φr〉〈φr |

= M

M + d
ρ (1) + 1

M + d
I. (12)

The calculation details can be found in the Appendix. These
results show that in the sense of a single-copy state, the
CQSR is equivalent to a polarization channel with a universal
fidelity F = M+1

M+d
. So the single-copy output state is written

universally as the input state with a shrinking factor and a
completely mixed state with a corresponding probability. For
identical pure input states ρ = |ψ〉〈ψ |⊗M , we have ρ (1) =
|ψ〉〈ψ |. We emphasize that the fidelity is defined between
single input and output states.

Here we would like to address more discussions upon
the number of users N , and the copy number of the input
state M . The general quantum estimation scheme requires
the input and output states to have the same copy number.
However, as we used single-copy fidelity Tr[ρ (1)ρ̃ (1)] instead
of overall fidelity Tr[ρρ̃] as the figure of merit, the preparation
state may take the direct product form. During this process
we actually discarded all the entanglement contained in the
original state, which enables us to go beyond the quantum
estimation scheme to extend the user number to arbitrary
N . Correspondingly the definition of single-copy fidelity is
slightly modified from TrM−1[·] to TrN−1[·] for the partial
trace, while leaving the main conclusions of this paper un-
changed.

For the protocol of CQSR, the importance of our results
is that we only need to find a (M + 1)-copy CSS; the state
|ψ〉〈ψ |⊗M can be optimally distributed to an arbitrary number
of users, provided each user can reconstruct the quantum
state by a known ensemble of states based on the classical
information broadcasted. It is then crucial that the CSS con-
tains only a finite number of states, so that it is physically
realizable. Operationally, by using (M + 1)-copy CSS with
a finite number of states, we can optimally distribute the
quantum state to an arbitrary number of spatially separated
parties without a quantum channel. We remark that the opti-
mal fidelity corresponds to that of a universal quantum cloning
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machine for infinite copies, however, the cloning machine
needs a quantum channel to achieve this aim.

IV. EXAMPLES

In the following we show the protocol of CQSR by two
insightful examples.

Example A. First let us consider the case where a single
qudit (state in d-dimension Hilbert space) is measured and
broadcasted. Our results suggest that if a 2-copy CSS with
finite states is found, a single qudit can be distributed with
the optimal fidelity 2

d+1 . To construct this CSS set, we intro-
duce the so-called mutually unbiased bases (MUBs); see, for
example, [16,17]. For a Hilbert space with dimension d, the
MUBs contain d + 1 sets of the orthogonal basis {|ψk

t 〉}, t =
0, . . . d − 1, k = 0, . . . d. Any states belong to different basis
|ψk

t 〉 and |ψk′
t ′ 〉(k �= k′) satisfy the condition, |〈ψk

t |ψk′
t ′ 〉| =

1/
√

d, meaning unbiased for all states. The construction
of MUBs for the case that d is an odd prime number is
already well studied and known to take the following form,
|ψ0

t 〉 = |t〉, |ψk
t 〉 = 1√

d

∑d−1
j=0(ωt )d−j (ω−k )sj |j 〉, (k �= 0),

t = 0, . . . d − 1, where {|j 〉}d−1
0 is the computational basis,

sj = j + · · · + (d − 1), and ω = exp(2πi/d ).
We point out that MUBs set constitutes a 2-copy CSS,

1

d(d + 1)

d∑
k=0

d−1∑
t=0

∣∣ψk
t

〉〈
ψk

t

∣∣⊗2 = I2
+

d+
2

. (13)

This identity can be proved by direct calculations (see the
Appendix). According to our results, we know that by mea-
surement corresponding to MUBs, a single qudit can be
optimally distributed without the availability of the quantum
channel,

ρ̃ = 1

d(d + 1)

d∑
k=0

d−1∑
t=0

Tr
(∣∣ψk

t

〉〈
ψk

t

∣∣ρ)∣∣ψk
t

〉〈
ψk

t

∣∣
= 1

d + 1
ρ + 1

d + 1
Id . (14)

The fidelity is F = 2/(d + 1) which is optimal. Explicitly, the
state ρ is measured in the cloud by projective measurement
corresponding to MUBs; the results are broadcasted. Based on
broadcasting information, each user can construct a quantum
state ρ̃ by ensemble states of MUBs with optimal fidelity.

However, the MUBs set is not a general (M + 1)-copy CSS
for M � 1. We propose that the construction of general (M +
1)-copy CSS should be an open problem.

Example B. Now we consider the qubit situation for case
M = 2, d = 2. The two-dimensional MUBs can also be ap-
plied to this problem, where MUBs correspond to the known
six bases denoted as (see, for example, [3])

|0〉, |+〉 = 1√
2

(|1〉 + |0〉), |+̃〉 = 1√
2

(|1〉 + i|0〉),

|1〉, |−〉 = 1√
2

(|1〉 − |0〉), |−̃〉 = 1√
2

(|1〉 − i|0〉).

By straightforward calculation, one can find that the six states
form a 3-copy CSS,

1

6

∑
α=0,1,+,−,+̃,−̃

|α〉〈α|⊗3 = I3
+

d+
3

. (15)

With these six bases, one can estimate two identical qubits
|ψ〉⊗2 with optimal fidelity,

ρ̃ = 1

6

∑
α

Tr(|α〉〈α|⊗2|ψ〉〈ψ |⊗2)|α〉〈α|⊗N, (16)

where we write explicitly N in the equation to point out that
the number of users N is arbitrary. One can check that a
single-qubit output takes the form,

ρ̃ (1) = 1
2 |ψ〉〈ψ | + 1

4I2. (17)

The fidelity is optimal corresponding to the universal quantum
cloning machine 2 → ∞, which confirms that our method is
applicable.

We emphasize here that the MUB-constructed CSS is only
valid for limited cases. For arbitrary M and d, the com-
pleteness relationship is not fulfilled. On the other hand, we
conjecture that ∞-copy CSS could only be realized by infinite
sets. If it is true, then any effort to find out a physical realizable
finite CSS would be futile, making the construction of CSS
of arbitrary dimension and copies a crucial task. However,
when given a fixed copy number M and dimension d, the con-
struction of M-copy CSS could be achievable. Assume that
the POVM {Ôr}Rr=1, or more specifically, the states |φr〉〈φr |,
are randomly given; then one only needs to find out a set
of positive numbers {cr}Rr=1 to satisfy the completeness rela-
tionship (4). This simplifies the CSS construction to solving
d+

M (d+
M + 1)/2 linear equations with R unknown variables. By

increasing R, which is the total number of POVMs contained
in CSS, these equations will be heavily under-determined so
that there are enough free parameters to make the R unknown
variables all positive. However, it remains a complicated task
when M is very large and decreasing the number of equations
should be considered. It is proved in [8] that by applying a
set of rotations |φm

r 〉 = exp (iX̃θm)|φr〉, where operator X̃ and
constant θm are carefully chosen, one can decrease the number
of equations to d+

M , that is, as long as the diagonal elements
in (2) are satisfied, the off-diagonal elements are satisfied as
well.

V. CONCLUSION

In conclusion, we have studied the CQSR protocol mean-
ing the quantum state reconstruction method in the absence
of a quantum channel and provided a physical realizable
measurement-and-prepare scheme which achieves the optimal
mean fidelity. The measurement bases of an optimal CQSR
must take the form of M-copy CSS. The universal case is
also taken into consideration, and we prove that to make the
fidelity uniform for arbitrary input, one only needs to further
require the bases to be (M + 1)-copy CSS. Two examples
for qudit and qubit are given to show the applicability of our
method. We expect that CQSR may stimulate investigations
on quantum information distribution and concentration.
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APPENDIX

1. Single-copy outcome in quantum state reconstruction

After the quantum state distribution process, the single-
copy state of the outcome ρ̃ is

ρ̃ (1) = TrM−1[E (ρ)]

=
∑
�m,�n

A �m�n
R∑

r=1

d+
McrTr[|φr〉〈φr |⊗M | �m〉〈�n|]|φr〉〈φr |

=
∑
�m,�n

A �m�n
R∑

r=1

d+
Mcr

d−1∑
α,β=0

|α〉〈β|,

Tr[|φr〉〈φr |⊗M | �m〉〈�n|]Tr[|φr〉〈φr ||β〉〈α|]

=
∑
�m,�n

A �m�n
d−1∑

α,β=0

|α〉〈β|Tr

[
(| �m〉 ⊗ |β〉)(〈�n| ⊗ 〈α|)

×
R∑

r=1

d+
Mcr |φr〉〈φr |⊗M+1

]
.

Then we take into account the CSS relation (4) in the main
text, and note that IM+1

+ = ∑C(�s )=M+1
�s |�s〉〈�s|, we have

ρ̃ (1) = d+
M

d+
M+1

∑
�m,�n

A �m�n
d−1∑

α,β=0

|α〉〈β|

×Tr

[
(| �m〉 ⊗ |β〉)(〈�n| ⊗ 〈α|))

C(�s )=M+1∑
�s

|�s〉〈�s|
]

= d+
M

d+
M+1

∑
�m,�n

A �m�n
d−1∑

α,β=0

|α〉〈β|

×
C(�s )=M+1∑

�s

√
mβ + 1√
M + 1

√
nα + 1√
M + 1

δ�s, �m+ �βδ�s,�n+�α

=
d−1∑

α,β=0

∑
�m,�n

A �m�nδ �m+ �β,�n+�α
√

(mβ + 1)(nα + 1)

M + d
|α〉〈β|.

(A1)

The Kronecker-δ requires when α �= β, we have mβ + 1 = nβ

and nα + 1 = mα , and when α = β, we have �m = �n. Then the
above equation takes a more concise form,

ρ̃ (1) =
d−1∑
α=0

∑
�m

mα + 1

M + d
A �m �m|α〉〈α|

+
∑
α �=β

∑
�m,�n

√
mαnβ

M + d
A �m�n|α〉〈β|. (A2)

By tedious but straightforward calculations, we obtain
Eq. (12) in the main text:

ρ̃ (1) = M

M + d
ρ (1) + 1

M + d
I. (A3)

2. Two-copy CSS for d-dimensional case

Next we will prove that

Q̂ = 1

d(d + 1)

⎛⎝∑
j

|j 〉〈j |⊗2 +
d∑

k=1

d−1∑
t=0

∣∣ψ (k)
t

〉〈
ψ

(k)
t

∣∣⊗2

⎞⎠
= I2

+/d+
M. (A4)

In fact, direct calculation gives

〈j1j1|Q̂|j2j2〉 = 1

d(d + 1)

×
(

d∑
k=1

d−1∑
t=0

〈j1j1|
(∣∣ψ (k)

t

〉〈
ψ

(k)
t

∣∣)⊗2|j2j2〉
)

= 1

d(d + 1)

1

d

d∑
k=1

d−1∑
t=0

ω2t (j2−j1 )+k(sj2 −sj1 ),

〈j1, j2|Q̂|jj 〉 = 1

d(d + 1)

×
(

d∑
k=1

d−1∑
t=0

〈j1, j2|
(∣∣ψ (k)

t

〉〈
ψ

(k)
t

∣∣)⊗2|jj 〉
)

= 1

d(d + 1)

1

d2

×
d∑

k=1

d−1∑
t=0

ωt (2j−j1−j2 )−k(sj1 +sj2 −2sj ),

〈j1, j2|Q̂|j3, j4〉 = 1

d(d + 1)

×
d∑

k=1

d−1∑
t=0

〈j1, j2|
(∣∣ψ (k)

t

〉〈
ψ

(k)
t

∣∣)⊗2|j3, j4〉

= 1

d(d + 1)

√
2

d2

×
d∑

k=1

d−1∑
t=0

ωt (j3+j4−j1−j2 )−k(sj1 +sj2 −sj3 −sj4 ).

We can verify that only 〈jj |Q̂|jj 〉- and 〈j1, j2|Q̂|j1, j2〉- type
elements are nonzero, which indicates Q̂ is diagonalized. Fur-
ther direct calculation proves that the diagonal elements corre-
sponding to these two types have the same value 2/d(d + 1),
i.e., Q̂ = I2

+/d+
2 .

3. Necessary condition for M-copy universal optimal estimation

Now we prove the necessity for the measurement basis to
be (M+1)-copy CSS. Suppose that there exists a set of states
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which forms an optimal estimation measurement operator,

R∑
r=1

cr |ψr〉〈ψr |⊗M+1 = IM+1
+ /d+

M+1 + P̂ .

Operator P̂ lies in symmetric subspace HM+1
+ because the left-

hand side of the equation belongs to the symmetric subspace.
We prove that there must be P̂ = 0. The output single-copy
state is

ρ̃ (1) = M + 1

M + d
ρ (1) + 1

M + d
I

+
d−1∑
k,l=0

|k〉〈l|Tr[(ρ ⊗ |l〉〈k|)P̂ ]. (A5)

To make sure that for arbitrary input the fidelity is optimal, the
second term must always be equal to 0, that is,

�lk = Tr[(ρ ⊗ |l〉〈k|)P̂ ] = 0, ∀ρ ∈ H⊗M
+ , |k〉, |l〉 ∈ H.

This condition is satisfied only when P̂ = 0. The following
part gives a detailed proof.

Since P̂ ∈ HM+1
+ , we apply the following expansion form

of the operator:

P̂ =
C(�r )=C(�s )=M+1∑

�r,�s
Prs |�r〉〈�s|. (A6)

First consider the diagonal elements Prr . Suppose that rk �= 0,
choose ρ = |�r − �k〉〈�r − �k|, and (A6) gives

0 = �kk = Prr × rk

M
⇒ Prr = 0, (A7)

that is, the diagonal elements are all zeros.
Then consider the off-diagonal elements Prs , suppose

rk �= 0, sl �= 0, and for simplicity, let �m = �r − �k, �n = �s − �l.
For state ρ = 1

λ2
1+λ2

2
(λ1| �m〉 + λ2e

iφ|�n〉)(λ1〈 �m| + λ2e
−iφ〈�n|),

where λ1, λ2, φ are non-negative real numbers, φ ∈ [0, 2π ].
Then (A6) gives

�kl = 1

λ2
1 + λ2

2

(
λ2

1A + λ2
2B + λ1λ2(Ceiφ + De−iφ )

) = 0,

which is satisfied for arbitrary λ1, λ2, φ. Here

A = Tr[(| �m〉〈 �m| ⊗ |l〉〈k|)P̂ ], (A8)

B = Tr[(|�n〉〈�n| ⊗ |l〉〈k|)P̂ ], (A9)

C = Tr[(|�n〉〈 �m| ⊗ |l〉〈k|)P̂ ], (A10)

D = Tr[(| �m〉〈�n| ⊗ |l〉〈k|)P̂ ]. (A11)

Then we have A = B = C = D = 0, and C = 0 gives
√

rksl

M + 1
Prs = 0 ⇒ Prs = 0, (A12)

that is, the off-diagonal elements are also zeros. There-
fore P̂ = 0, which indicates that the quantum estimation
is universal only when its measurement bases are (M+1)-
copy CSS.
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