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Witnessing bipartite entanglement sequentially by multiple observers
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We investigate sharing of bipartite entanglement in a scenario where half of an entangled pair is possessed
and projectively measured by one observer, called Alice, while the other half is subjected to measurements
performed sequentially, independently, and unsharply, by multiple observers, called Bobs. We find that there
is a limit on the number of observers in this entanglement distribution scenario. In particular, for a two-qubit
maximally entangled initial shared state, no more than 12 Bobs can detect entanglement with a single Alice
for arbitrary, possibly unequal, sharpness parameters of the measurements by the Bobs. The number of Bobs
remains unaltered for a finite range of near-maximal pure initial entanglement, a feature that also occurs in the
case of equal sharpness parameters at the Bobs. Furthermore, we show that for nonmaximally entangled shared
pure states, the number of Bobs decreases with the amount of initial entanglement, providing a coarse-grained
but operational measure of entanglement.
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I. INTRODUCTION

Entanglement of a compound quantum system can be seen
as growing out of the fact that the best possible knowledge
of an entire system is not contained in the best possible
knowledge of its subparts, even for pure states [1,2]. This
bizarre phenomenon marks the counterclassical nature of
quantum correlation and its role in the context of information
theory can hardly be overemphasized. On the one hand,
manifestation of entanglement leads to a paradigm shift of our
understanding of physical laws by rejecting a local realistic
description of nature, the Bell theorem [3]. On the other hand,
entanglement is the key resource for tasks which cannot be
performed by classical resources [4].

As with other resources, such as energy and information,
one would like to have a quantitative theory of entanglement
providing specific rules of detection, manipulation, and quan-
tification [4]. From the perspective of experimentally ascer-
taining whether a state is entangled, entanglement witnesses
(EWs) [5–15] play an important role, since they require only
a few local measurements provided some prior knowledge of
the state is available.

Undoubtedly, even partial preservation of entanglement in
a shared state in spite of a few cycles of local operations
performed by the sharing parties can be important for infor-
mation processing schemes in which entanglement is utilized
as a resource. The question that we are going to address in
this paper is exactly along these lines. In this respect, Silva
et al. [16] explored a fundamental question in the domain of
violation of local realism: Can the violation of local realism
of an entangled pair be distributed among particles with
multiple observers that act sequentially and independently of
each other? In this context, when Alice possesses half of an
entangled pair and several Bobs measure sequentially and
independently on the other half, it was shown [16,17] that
not more than two observers can demonstrate violation of the

Clauser-Horne-Shimony-Holt (CHSH) inequality (see also
[18,19]). One may recall here the concept of monogamy of
quantum correlations [20,21] and entanglement splitting [22],
both dealing with shareability of bipartite quantum correla-
tions in different cuts of multiparty settings. Note, however,
that the scenario considered in this paper is bipartite. Quantum
steering [23–25] of a single system by multiple observers
has also been demonstrated recently [26], going beyond the
monogamy restriction on steering [27].

In the present work we inquire about the maximal number
of observers, called Bobs, possessing half of an entangled pair
and measuring sequentially and independently, who can detect
entanglement (instead of Bell CHSH inequality violations
considered in previous works [16]), while the other half is
possessed by another observer, called Alice. The success of
sequential measurements in preserving entanglement depends
on the fuzziness present in each measurement apparatus. For
a maximally entangled initially shared state of two spin- 1

2
systems, we find that at most 12 Bobs can detect entangle-
ment with Alice provided the sharpness parameter of each
measurement apparatus used by the Bobs is allowed to be
different. Interestingly, we observe that the maximum num-
ber of Bobs who can successfully detect entanglement after
sequential and independent measurements remains unaltered,
even when the shared initial state is not maximally entangled
but pure and has entanglement above 0.942 ebits. This result
implies that for the protocol at hand, nonmaximally entangled
states can be as useful as maximally entangled states (for
similar findings, see [28–30]). It is to be noted, however,
that maximally entangled states do have a unique behavior
among all shared states in an overwhelmingly large number
of phenomena and protocols [4]. We also observe that the
maximum number of Bobs witnessing entanglement with a
single Alice decreases with a decrease of the amount of
entanglement of the initially shared state. Just like in the
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near-maximal range of entanglement, a constant number of
Bobs, viz., 11, will be able to detect entanglement with Alice
if the initial pure state entanglement lies between 0.871 and
0.932 ebits. This feature of a continuous range of entangle-
ment for a certain constant number of Bobs remains for lower
values of initial entanglement also. Therefore, the number of
successful Bobs demonstrating entanglement detection in this
scenario turns out to be an operational, albeit coarse-grained,
measure of entanglement. It may be mentioned here that quan-
tification of entanglement from an operational perspective is
an important task as it potentially has practical ramifications.
If we assume that all the measurements performed by the
Bobs are equally weak, the maximal number that can identify
entanglement turns out to be 5 for a shared state having
entanglement not less than 0.924. The scenario of different
sharpness parameters used by different Bobs can appear when
the Bobs are situated in different laboratories but have near-
noiseless quantum channels between them. On the other hand,
a plausible scenario where the Bobs use the same sharpness
parameter for their measurements is when they act in the same
laboratory (with the same apparatus) but at different times.

We arrange the paper in the following way. In Sec. II
we briefly discuss detection of entanglement through witness
operators and the unsharp measurement formalism. In Sec. III
we describe the scenario of the distribution of the resource
state that we consider in this paper. In Sec. IV we demonstrate
our results. We summarize in Sec. V.

II. GATHERING THE TOOLS

In this section we briefly describe the idea of entanglement
witnesses and unsharp measurements.

A. Entanglement witnesses

An important problem in quantum information is the de-
tection of entanglement in the quantum state. Any (linear)
observable which has at least one negative eigenvalue and
a non-negative average on all product states can be used to
detect entanglement. These observables have been called (lin-
ear) entanglement witnesses [5–7,9–15] and provide a useful
method for experimental detection of entanglement. More
precisely, an entanglement witness is a Hermitian operator,
denoted by W , that satisfies the following:

∃ at least one ρ /∈ S such that Tr(Wρ) < 0

while ∀ρs ∈ S, Tr(Wρs ) � 0. (1)

Here S is the set of separable states. The existence of such
an operator is a consequence of the Hahn-Banach theorem
on normed linear spaces [31]. For every entangled state there
exists an entanglement witness. Note, however, given an en-
tangled state, finding an optimal witness operator may not be
an easy task [14,32,33].

In practice, if entanglement is required as a resource for
a chosen information processing task, it is a particular en-
tangled state that is aimed at, for implementing the task.
To confirm the entanglement present in such a state, one is
usually interested in performing the detection process using
local measurements. Suppose the state that is required in an

information processing task is the two-party state |ψ+〉〈ψ+|,
where |ψ+〉 = 1√

2
(|01〉 + |10〉). The preparation procedure

may infuse some noise and the resultant state shared between
the two parties may turn out to be

ρ = p|ψ+〉〈ψ+| + (1 − p)σ, (2)

where σ is a two-qubit density matrix and p is such that ρ

is positive semidefinite. Here σ represents the noise infusion
and 1 − p represents the strength of the noise. Suppose that
‖σ − 1

4I ⊗ I‖ � d, where d � 0 and I is the identity operator
on the qubit Hilbert space. If d = 0, then the noise is said to
be white, but in general d may not be zero. A witness operator
that confirms the entanglement in |ψ+〉 reads [13]

W0 = |φ+〉〈φ+|TA

= 1
4 (I ⊗ I + σz ⊗ σz − σx ⊗ σx − σy ⊗ σy ). (3)

It was shown that W0 is also optimal for |ψ+〉, in the sense
that 〈ψ+|W0|ψ+〉 = minW∈M〈ψ+|W |ψ+〉, where M is the
collection of all witnesses for states on C2 ⊗ C2 [34]. The
witness W0 remains optimal for the state ρ in Eq. (2), pro-
vided d = 0 [13]. The advantage of this witness operator
is that to implement it in a laboratory, the observers, who
may be spatially separated, have to perform three correlated
local measurements in the bases corresponding to the Pauli
operators {σx, σy, σz}.

A pure bipartite state can always be written, up to local
unitaries, in the form |ψ〉 = a|01〉 + b|10〉, where a and b

are real and a2 + b2 = 1. The entanglement content of this
state can be quantified by the local von Neumann entropy
H (a2) = −a2 log2 a2 − b2 log2 b2. For this state, the optimal
entanglement witness remains the same as before, i.e., it is
W0 [13]. It may be noted that entanglement witnesses are
used not only for the detection of entanglement, but also for
its quantification. It was shown in [35] that any measured
negative expectation value of a witness can be turned into
a nontrivial lower bound on generic entanglement measures
(see also [36–38]).

B. Unsharp measurements

The quantum theory of measurement is counterclassical in
the sense that in order to obtain information about the state,
disturbance of the state becomes unavoidable, unless the state
is diagonal in a measurement basis. A von Neumann–type
measurement [39], dubbed a strong measurement, transforms
the initial state of the system into one of the eigenstates of
the measured observable, assuming the measurement to be
of rank-1 and repeatable. This type of measurement typically
yields a large amount of information about the measured
system and leads to output states about which we have the
maximum information that is quantum mechanically acces-
sible (see [40] in this regard). On the other hand, there
exist measurement schemes, such as weak measurements
[41], which provide less information about the system while
affecting it only weakly. It is important to mention here
that we consider weak measurements without the associated
pre- and postselection procedures. More specifically, we em-
ploy the unsharp measurement formalism, which is a spe-
cial subset of general positive-operator-valued measurements
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(POVMs) [42]. In a practical situation, e.g., in a laboratory,
measurements are almost always imprecise. This means that,
for example, for a spin measurement, the pointer states of
the apparatus corresponding to orthogonal spin states are
not perfectly distinguishable. There is therefore the possibil-
ity of a nonzero overlap between such pointer states. This
fuzziness of the apparatus states is captured by an unsharp
measurement. It should be noted that the terminology that
we are using here identifies nonorthogonal POVM elements
with pointer states that are not completely distinguishable.
It is also possible to consider distinguishable pointers in a
larger Hilbert space, via the Naimark theorem [43,44]. For
two-outcome measurements on the quantum spin- 1

2 space,
the notion of unsharp measurement can be captured by the
operator Eλ

±|n̂ = (I ± λn̂ · 
σ )/2, where 
σ = (σx, σy, σz), n̂ is
a three-dimensional unit vector, and λ ∈ (0, 1] [45]. Here λ

plays the role of the parameter that quantifies the sharpness
of the measurement. Indeed, for λ = 1, Eλ

±|n̂ correspond to
projectors. Note that Eλ

+|n̂ and Eλ
−|n̂ are positive operators

that add up to the unit operator. Thus the set of effects
Eλ

n̂ = {Eλ
+|n̂, E

λ
−|n̂} constitute a POVM. It is interesting to

know that the elements of the POVM can be written as linear
combinations of sharp projectors with white noise:

Eλ
±|n̂ = λP ±

n̂ + 1 − λ

2
I. (4)

Here P ±
n̂ are the projectors corresponding to the sharp mea-

surement of a quantum spin- 1
2 system in the direction n̂, so

P ±
n̂ are projectors of eigenvectors of n̂ · 
σ . Unsharp measure-

ments have variously been referred in the literature as fuzzy,
imprecise, or weak measurements [42,46].

Rule for determining postmeasurement state

In our subsequent analysis, the state of the system after
performing the measurements is required in order to evaluate
the statistics of the sequential measurements. Under unsharp
measurements, the postmeasured state is given, within the
generalized von Neumann–Lüders transformation rule [47],
as

ρ → 1

p̃

√
Eλ

±|n̂ρ
√

Eλ
±|n̂, (5)

with probability p̃ = Tr(
√

Eλ
±|n̂ρ

√
Eλ

±|n̂). This transformation

rule generalizes the projection postulate of sharp measure-
ments.

III. SCENARIO

Let us now describe the scenario in which we work in this
paper, for the distribution of the entanglement in the resource
state and the corresponding arrangement in the laboratories
hosting the state. A two-qubit entangled state is initially
shared between two parties. One of the qubits is possessed by
Alice, who always performs projective measurements, while
the other qubit is possessed by n Bobs, say, B1, B2, . . . , Bn,
who measure sequentially and independently (see Fig. 1). We
now briefly describe the operational implications for the con-
ditions of sequentiality and independence of the measurement
strategy.

FIG. 1. Different Bobs appear at the same scene (laboratory)
to perform measurements on the same quantum particle on the
Bob part of the Alice-Bob partition. The laboratory of Alice is
spatially separated from that of the Bobs. In the schematic diagram,
time separation is depicted along the horizontal axis, while space
separation is represented along the vertical one.

Sequentiality. The first Bob measures weakly with sharp-
ness parameter λ1. After B1’s measurement, the qubit comes
into possession of the second Bob, B2, who measures on it
with sharpness parameter λ2. Similarly, the other Bobs, viz.,
B3, B4, . . . , Bn−1, perform their measurements when they get
the particles, with their corresponding sharpness parameters,
determined by their apparatuses, except the last Bob Bn, who
measures sharply, i.e., with a unit sharpness parameter, so that
the corresponding measurement is projection valued. Such a
scenario can occur when either after measurement each Bob
sends his measured state via a noiseless channel to the next
Bob or B1, B2, . . . , Bn perform measurements in the same
laboratory but in different times. In each step, Alice and Bob
examine whether the state is entangled or not.

Independence. We adopt the scenario where the Bobs
measure independently, which means that none of the Bobs
are aware of the measurement settings of the others and hence
the choice of a Bob’s measurement, say, Bi , does not depend
on the choices of previous measurements performed on the
second particle by B1, B2, . . . , Bi−1. The state possessed by
a certain Bob is obtained by averaging over all the measure-
ments and outcomes performed by all the previous Bobs.

It is important to stress here that the ordering of the
measurement performed by Alice and the measurements of
the Bobs is not important because the measurement of Alice
commutes with the measurements performed by Bobs. How-
ever, the ordering between the measurements performed by
the Bobs is significant. For the purpose of the treatment of
the problem, we will assume that Alice performs her sharp
measurement after the measurements of all the Bobs have
been completed.

Let us now discuss the modification of the witness operator
[see Eq. (3)] which needs to be affected due to the fact that
unsharp measurements are being performed by the Bobs.

Modification of the witness operator due to unsharp
measurements

The joint probabilities for the shared state due to a
sharp (projection) measurement by Alice and an unsharp
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measurement by one of the Bobs, in an intermediate stage of
the measurement process, is of the form

Tr
[
ρ
(
P i

n̂ ⊗ Eλ
j |m̂

)]
, (6)

where ρ is the average output state from the previous stage of
the measuring process, i, j = ±, P i

n̂ is a projection operator
corresponding to the projection measurement by Alice, and
Eλ

j |m̂ is a POVM element corresponding to the POVM by
the Bob of this stage. The expectation value in the state ρ

corresponding to this joint measurement is given by

Tr
[
(P +

n̂ − P −
n̂ ) ⊗ (

Eλ
+|m̂ − Eλ

−|m̂
)
ρ
]
. (7)

Note that P +
n̂ − P −

n̂ is just n̂ · 
σ . Let us denote it by σn̂.
Let us also denote Eλ

+|m̂ − Eλ
−|m̂ by σλ

m̂. Then we have
〈σn̂ ⊗ σλ

m̂〉 = λ〈σn̂ ⊗ σm̂〉. Noting this relation and recall-
ing that W0 = 1

4 (I ⊗ I + σz ⊗ σz − σx ⊗ σx − σy ⊗ σy ) was
used [see Eq. (3)] as the witness for the state |ψ+〉〈ψ+|, when
λ = 1, we propose the substitution 〈σn̂ ⊗ σm̂〉 → λ〈σn̂ ⊗ σm̂〉,
in the case of a general λ, so that the effective entanglement
witness in this case becomes

Wλ
0 = 1

4 (I ⊗ I + σz ⊗ λσz − σx ⊗ λσx − σy ⊗ λσy ).

(8)

We see that for all separable states ρs ,

Tr
(
Wλ

0 ρs

) = Tr[(λW0 + 1
4 (1 − λ)I ⊗ I)ρs]

= λTr(w0ρs ) + 1
4 (1 − λ)Tr(ρs )

� 0 since λ � 1. (9)

IV. SHARING OF ENTANGLEMENT BY MULTIPLE BOBS

A. Maximally entangled initial state

Suppose that the maximally entangled pure state |ψ+〉 is
shared between two spatially separated laboratories. An en-
tanglement witness for this state is given by W0 = |φ+〉〈φ+|TA

[see Eq. (3)].
Corresponding to the measurement by Alice and B1, the

entanglement witness W
λ1
0 acquires the expectation value

Tr
[|ψ+〉〈ψ+|Wλ1

0

] = 1
4 (1 − 3λ1). (10)

It is clear from this expression that λ1 > 1
3 is required for

detecting entanglement by B1, using the witness operator
W

λ1
0 . Note that this value is lower than the threshold value

of sharpness parameter required to demonstrate violation
of Bell’s inequality (which requires λ1 > 1√

2
) [16,17]. This

difference between the thresholds of the violation of Bell’s
inequality and entanglement detection may be expected as
violation of local realism has been argued to require stronger
quantum correlations than just entanglement. In particular,
Bell inequalities typically form nonoptimal witnesses [13,48].
Such an argument was put forth by using the Werner state
[48], i.e., the state in Eq. (2) for d = 0, which is entangled
for 1

3 < p � 1, while it violates the Bell inequality only for
1√
2

< p � 1.
Let us now explore if there is the possibility for subse-

quent observers at the laboratory of B1, viz., B2, B3, . . ., to
share residual entanglements with Alice that can be detected

through entanglement witnesses. Note that the possibility for
this to happen has been created because of the fact that B1

has performed an unsharp measurement. Sharp measurements
by both Alice and B1 would have resulted in a product state
between the two laboratories. Note that we are considering
only rank-1 measurements here, in the case of sharp (projec-
tion) measurements. Note also, and this we have discussed
in Sec. III, that Alice’s sharp measurement does not preclude
B2’s ability to share entanglement with Alice.

As all the Bobs are ignorant about what measurements
were performed by previous Bobs in a given run of experi-
ment, we have to average over the previous Bob’s input and
output to obtain the state shared between Alice and the Bob
of the current stage of the experiment. After performance of
B1’s unsharp measurement, the average state is given by

|ψ+〉〈ψ+| → ρ
λ1
1 = 1

3

∑
i,n̂

√
E

λ1
i|n̂|ψ+〉〈ψ+|

√
E

λ1
i|n̂, (11)

where i = ± and n̂ = x̂, ŷ, ẑ. After some algebra, we obtain

ρ
λ1
1 = 1

4 [pρψ+ + (1 − p)I ⊗ I], (12)

where p = 1
3 (1 + 2

√
1 − λ2

1).
In the next stage of the protocol, B2 measures unsharply

on his part of ρ
λ1
1 with sharpness parameter λ2, to check

with Alice as to whether the state is entangled, by using the
entanglement witness W

λ2
0 . The reason for using the same

form of the entanglement witness as in the first stage (when
B1 is operating) is because the state shared by Alice and B2,
before their measurements, is in the Werner form [13] and
W

λ2
0 is an optimal EW operator for ρ

λ1
1 . With this state and

these measurements, one obtains

Tr
[
W

λ2
0 ρ

λ1
1

] = − 1
4

[
1 − (

1 + 2
√

1 − λ2
1

)
λ2

]
. (13)

Now if λ1 = 1
3 in the first stage, then to detect entanglement

in the second stage, the sharpness parameter λ2, of B2, must
be greater than 0.3465 (correct up to four significant figures).
This implies that B2 has to measure with more precision
than B1 to detect entanglement. If both B1 and B2 are to
detect entanglement in their respective stages, then we must
have λ1 = 1

3 + ε1, with ε1 > 0 (but ε1 � 2
3 ), and we must

correspondingly choose a λ2 for B2 so that − 1
4 {1 − [1 +

2
√

1 − ( 1
3 + ε1)2]λ2} < 0.

Now in order to obtain the limit on the number of Bobs
who can detect entanglement with a single Alice, we adopt
the following procedure. In a similar way as described above,
B3 measures on the average state obtained after measurements
of B1 and B2. There is also a threshold value of λ3 which
is greater than λ1 and λ2. In general, for a number n of
Bobs, one can find the condition of detection of entanglement
by all the subsequent Bobs. The corresponding threshold
values would be increasing, i.e., λ1 < λ2 < · · · < λn. This
process of choosing further Bobs can continue, with each Bob
being able to detect entanglement in the average shared state
obtained from the previous stage, as long as λn ≯ 1. From
this condition, one can find the maximum number of Bobs
sharing entanglement with a single Alice so that the shared
entanglement can be detected through EWs.
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For the maximally entangled state |ψ+〉 shared initially
between Alice and B1, we find that n = 12, i.e., at most
12 Bobs, acting sequentially, can detect entanglement with
a single Alice. The bound on the number of Bobs in this
case is significantly larger than the number of Bobs who
can demonstrate violation of the CHSH inequality. Note that
the average state becomes separable after 12 Bobs have per-
formed sequential measurements with threshold values of the
sharpness parameters.

B. Nonmaximally entangled pure initial state and an
operational entanglement measure

In the preceding section we found the limit on the number
of observers witnessing entanglement with single Alice for a
maximally entangled initial state. Now one may ask, if the
initial entanglement is not maximal but all other situations
remain the same, how many Bobs can detect entanglement
with Alice. We restrict the study to pure shared states and
then the von Neumann entropy of the local density matrix
is a good measure of entanglement [49]. If the number of
Bobs scales with entanglement of the initially shared state,
then we can have an operational measure of entanglement,
via this corridor. We find that this is exactly the case, albeit
in a coarse-grained form. On the way, we also find that the
maximum number of Bobs who can detect entanglement,
which is initially pure, with Alice remains unchanged for a
finite range of near-maximal local von Neumann entropy. It
may be noted that any two-qubit state with maximal local von
Neumann entropy is local unitarily equivalent to the singlet
state 1√

2
(|01〉 − |10〉).

For any pure bipartite state |ψ〉 = a|01〉 + b|10〉, the op-
timal entanglement witness remains the same as before, i.e.,
it is W0 [13]. Suppose now that B1 measures weakly, with
the sharpness parameter λ1. Correspondingly, the expectation
value of W

λ1
0 is given by

E1 = 1
4 [1 − (1 + 4ab)λ1]. (14)

Similarly, for the case when B1 and B2 measure weakly with
sharpness parameters λ1 and λ2, respectively, we get

E2 = Tr[Wλ2
0 ρλ1

a ]

= 1
4

[
1 − 1

3 (1 + 4ab)
(
1 + 2

√
1 − λ2

1

)
λ2

]
, (15)

where ρλ1
a is the average state after B1 performs his mea-

surement on |ψ〉. Note that ρλ1
a = ρ

λ1
1 for a = b = 1√

2
. Here

it should be mentioned that unlike the case of a maximally
entangled initial state, here the average state after weak mea-
surement performed by a Bob becomes a mixed entangled
state with colored noise. Even for this entangled state, W0

remains a useful entanglement witness [13], although it is
nonoptimal. We however continue to use the entanglement
witness W0, which is optimal for any state in the class a|00〉 +
b|11〉. For n Bobs measuring sequentially and independently,
generalizing the above results, we find that

En = 1

4

[
3n−1 − 1

3n−1
(1 + 4ab)λn�

n−1
i=1

(
1 + 2

√
1 − λ2

i

)]
,

(16)

FIG. 2. Conceptualization of a coarse-grained operational entan-
glement measure. We consider the scenario where the two sepa-
rated laboratories share a pure two-qubit state. The horizontal axis
represents the entanglement of the initial state, as measured by the
von Neumann entropy E of one of the local states and is measured
in ebits. The vertical axis counts the number of Bobs n who can
succeed in detecting entanglement with Alice and is dimensionless.
The monotonic nature of the function plotted implies that it can act
as an entanglement measure, and it is clearly operationally defined.
However, the steps in the function points to a coarse-grained nature
of the measure. The existence of a step of finite (i.e., nonzero)
length on the extreme right implies that the maximal number of Bobs
remains fixed for a certain range of E .

where n = 1, 2, 3, . . .. The result for the maximally entangled
state is obtained by setting a = b = 1√

2
in Eq. (16).

We present our result in Fig. 2, which indicates how many
Bobs can detect entanglement with a single Alice, for a given
pure initial shared state. It is clear from the figure that as
the amount of local von Neumann entropy in the initial pure
state decreases, the number of Bobs also decreases. It should
also be noted that except for a zero-measure set of values of
local entropy, for initial states having amounts of local entropy
close to each other, the number of successful Bobs remains
the same. Specifically, Fig. 2 shows that for each n, there
exists a continuous range of values of the local von Neumann
entropy of the initial pure state such that n Bobs can detect
entanglement with Alice. For example, we observe that at
most 12 Bobs can detect entanglement with a single Alice if
the local entropy of the pure initial state is more than 0.94
ebits. Therefore, the number of Bobs defines a coarse-grained
but operational measure of entanglement. This measure can
also be extended to mixed entangled initial states.

It may be interesting to note that a coarse-grained measure
of entanglement could still, in principle, provide an important
place for the singlet (or any state that is local unitarily con-
nected with the singlet). This is what happens, for example,
in deterministic dense coding [50] which has the same coarse-
grained feature, but the maximal value is still reserved for the
singlets or its local unitary cousins.

C. Equivalent measurement devices for all Bobs

We have until now been working in the scenario where
the sharpness parameters of the measurement apparatuses
of the different Bobs could be different. In this section we
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FIG. 3. Case of equal sharpness for all the observers on one side.
The x axis labeled λ represents the common sharpness parameter of
all the Bobs involved. The y axis stands for the maximal number of
Bobs n who are able to detect entanglement with a single Alice. Both
axes are dimensionless. Circles and dashes exhibit the cases when
the initial shared pure state is maximally entangled [E (|ψ〉) = 1] and
not maximally entangled [E (|ψ〉) = 0.914], respectively. Red, blue,
green, violet, and orange colors correspond to the number of Bobs
n = 1, 2, 3, 4, 5, respectively.

consider a situation which in some instances can be more
realistic than the one considered before. Precisely, Bobs are
now constrained to use measurement devices with the same
amount of sharpness. This means the apparatus specifications
are such that the associated sharpness parameters are the same
for all the Bobs, i.e., comparing with the previous case, here
we set λ1 = λ2 = · · · = λn = λ (say). In this case, it is clear
from the previous result that the common sharpness parameter
λ should be 1

3 , or greater, so that at least one Bob can succeed
in detecting entanglement.

For a maximally entangled shared initial state, we find
that at most five Bobs can detect entanglement with a single
Alice. In Fig. 3 we consider a maximally and, separately, a
nonmaximally entangled pure state and provide the number
of Bobs who can detect entanglement with Alice, under the
restriction that all the Bobs use measuring apparatuses with
the same value of sharpness λ. Interestingly, there arises an
optimal range of the common sharpness parameter for which
the number of Bobs is the highest. For a maximally entangled
initially shared pure state, five Bobs can witness entanglement
when λ ∈ [0.45, 0.62] approximately. On the other hand, if
the initial shared pure state is a nonmaximally entangled |ψ〉
with E (|ψ〉) ≈ 0.918, then the maximal number of Bobs who
can detect entanglement is four and this happens when λ ∈
[0.42, 0.75] approximately. Just like in the preceding section,
we continue to use the witness W0 for the state a|00〉 + b|11〉
with colored noise, which is obtained after the second Bob
has performed his weak measurement. Note that for any
given value of entanglement in the initial state there is a
specific value of the maximum number of Bobs who can
detect entanglement with Alice, and this maximum is attained
in a certain range of the sharpness parameter. As shown in
the case of different measuring apparatuses, we also report
here that five Bobs can detect entanglement not only for the
maximally entangled initial state but for pure initial states with
E � 0.924.

D. Quantum discord of the final output state

We want to explore here whether there is any quantum
correlation remaining after the last Bob’s successful detection
of entanglement with Alice. Such a quantum correlation of
course has to be independent of entanglement. It is known
that quantum discord [51–54] is a kind of quantum correlation
which persists even in systems without entanglement. Let us
consider the maximally entangled state |ψ+〉 for which 12
Bobs measure on their part of the subsystem with threshold
values of sharpness parameters. We find that the postmea-
surement averaged state, obtained after the 12th Bob has
performed his measurement, possesses a nonzero quantum
discord whose value is 0.0192 bits. It is interesting to note,
therefore, that although there is no residual entanglement, in
the postmeasurement averaged state, some nonclassical corre-
lation persists, which can be quantified by quantum discord.

V. CONCLUSION

We considered the scenario where half of an entangled
pair is possessed by an observer, called Alice, and the other
half is sequentially and independently measured by several
observers, called Bobs. This scenario was considered by Silva
et al. [16] in the context of probing violation of local realism
by Alice with each of the Bobs separately, and it was shown
that not more than two Bobs can demonstrate violation of the
Clauser-Horne-Shimony-Holt inequality with a single Alice.

Here we have considered the problem of detection of
entanglement in the same scenario and have found that for a
maximally entangled shared state, at most 12 Bobs can detect
entanglement with a single Alice, provided the measurements
performed by the Bobs are weak or unsharp. The maximum
number of Bobs remains invariant over a continuous range
of near-maximal entanglement (up to 6% lower than max-
imal) in the initial pure shared state. We also showed that
the maximum number of Bobs decreases with a decrease
of entanglement content of the initially shared state, turning
this number into an operational measure of entanglement. We
observed that although there is no entanglement in the average
state after the 12th Bob has performed his measurement,
the state still possesses quantum correlations in the form of
quantum discord.

We also considered a more realistic scenario invoking the
same sharpness parameter for measurement devices for all the
Bobs. In this case, for maximal entanglement in the initial
state, there is a range of the common sharpness parameter for
which at most five Bobs can witness the entanglement with a
single Alice. For any other value of entanglement in the initial
pure state, there is an optimal number, less than or equal to
5, of Bobs and this optimality occurs in a particular range
of the associated sharpness parameter. Again, the maximal
number of Bobs remains unchanged for a continuous range
of near-maximal initial pure entanglement.
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