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Classical analog of quantum contextuality in spin-orbit laser modes
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We experimentally observed the violation of Kujula–Dzhafarov noncontextuality inequalities by nonseparable
spin-orbit laser modes. Qubits are encoded on polarization and transverse modes of an intense laser beam. A
spin-orbit nonseparable mode was produced by means of a radial polarization converter (S plate). Our results
show that the quantum contextuality can be emulated by nonseparable spin-orbit modes in an intense laser beam.
Additionally, an improvement in the nonseparable mode preparation allowed us to observe a greater violation of
the Clauser–Horne–Shimony–Holt inequality for such system. The results are in very good agreement with the
theoretical predictions of quantum mechanics.
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I. INTRODUCTION

In a famous paper, Kochen and Specker (KS) [1] chal-
lenged certain realistic models for quantum mechanics [2].
In it, they showed that a realistic theory that reproduced the
outcomes of sets of observable properties had to be contextual,
independently of the state of the quantum system. To do
this, they produced a set of operators such that the observed
properties of certain subsets of commuting operators (defining
different experimental contexts) was inconsistent with the
properties of the whole set, under the assumption that quan-
tum properties do not change with context. For a three-level
system, Klyachko, Can, Binicioglu, and Shumovsky proposed
a state-dependent contextuality inequality [3]. Experimental
studies of quantum contextuality were performed by using
different systems, such as neutrons [4], ion traps [5], nuclear
magnetic resonance [6], and photons [7–9].

Of course, entanglement and contextuality are related.
Cabello discussed the link between Bell-type inequalities
and noncontextual theories [10]. Entanglement and contextual
quantum behavior of spin and orbital angular momentum was
observed for twin photons [11].

In quantum computation, contextuality is an important in-
gredient in computation using states with only real amplitudes
(rebits) [12] and in computation based in measurements [13].
For computation based on correlation, contextual correlations
are an important ingredient for the deterministic evaluation of
nonlinear Boolean functions [14]. The reliability of this com-
putation was investigated and it was showed that, for bipartite
systems, Clauser–Horne–Shimony–Holt (CHSH) correlation
[15] is a sufficient condition for reliable computation [16].
Recent work presented the noncontextual wirings, a compo-
nent that provide a class of contextuality-free operations [17],
a very important feature for quantum computation.

Contextuality, according to Kochen and Specker [1], is
the impossibility of consistently assigning values to physi-
cal properties associated with observables in a way that is

independent of the experimental setup. As KS demonstrated,
for any quantum system with dimension three or greater, it
is possible to find a set of observables (in their example,
117 observables) corresponding to 0 or 1 eigenvalues (yes-no
questions) that must be contextual. Cabello later provided a
simpler example of a contextual set of 18 observables in a
Hilbert space of dimension four [18]. The idea of the KS
proof is the following: Imagine we have an observable P1

that is simultaneously measured with P2, P3, and P4 in one
experimental setup (context 1), but is also measured in another
experiment with observables P5, P6, and P7 (context 2). The
assumption that all such quantum observables Pi have the
same truth value in all contexts leads to a logical contradic-
tion. Therefore, it is not possible to consistently assign to a
property Pi in one context the same truth value in another
context for all properties in the set. In other words, the algebra
of quantum observables leads to contextuality.

For systems with deterministic inputs and random outputs,
Kujala, Dzhafarov, and Larsson proposed a definition and
measurement for contextuality [19]. A study on two binary
systems, including entangled half-spin particles, based on
Ref. [19], provided a set of four bound inequalities, called
here Kajula–Dzhafarov (KD) inequalities, that are necessary
and sufficient to verify contextuality [20]. Violation of at least
one of them constitute a sufficient condition to attest that the
system is contextual. Here, we use KD inequalities to verify
the contextuality in spin-orbit laser modes.

Linear optical systems have been largely used to explore
quantum features by encoding qubits in degrees of freedom
of the electromagnetic field. Two-particle entanglement was
simulated by two polarized laser beams at different frequen-
cies [21]. The Stokes parameter and Poincaré sphere can
be directly related to the Bloch sphere of a single qubit
[22]. The Jones matrix formalism [23] allow us to manipu-
late polarization in the same way as quantum operators on
qubits. An analogy between classical polarization optics and
two-level quantum systems was established [24]. First-order
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transverse modes present the same structure of polarization
transformations and an analog of the Poincaré sphere can be
constructed [25]. Polarization and transverse modes of a laser
beam (spin-orbit modes) can be used to produce the so-called
nonseparable modes [26], which present the same mathe-
matical structure of two-qubit entanglement. It was showed
that such modes violated the Clauser–Horne–Shimony–Holt
(CHSH) inequality [27–29]. By encoding qubits in amplitude
and phase modulation in a laser beam, a Bell-like inequality
was also violated [30]. Other classical laser beam systems
were also used to explore the CHSH inequality [31,32] and the
Wright inequality [33]. Classical vector beams were used to
simulate the behavior of entangled states, showing the strong
analogy between classical nonseparable modes and quantum
entangled states [34]. Classical hypercorrelation in wave op-
tics was used to construct an analogy of quantum superdense
coding [35]. A tripartite system was investigated by adding
a propagation path in spin-orbit-mode degrees of freedom,
also violating the quantum-like Mermin’s inequality [36]. The
entanglement generated by system-environment interaction
was recently emulated by spin-orbit modes [37]. Several
other tasks such as quantum cryptography [38–40], quantum
gates and algorithms [41–43], quantum games [44,45], and
teleportation [46–48] were investigated by using intense laser
beams and linear optical circuits. The results of such studies
hold strong mathematical analogies with the predictions of
quantum mechanics and can bring interesting perspectives to
optical coherence and polarization theory [49–58]. Of course,
such intriguing results awaken discussions about its physical
means. For instance, Ref. [59] states that the boundary be-
tween classical and quantum physics is not under conflict once
the analogy between nonseparable modes and entangled states
is due to mathematical formalities. Here, we are interested in
the significance of nonseparable modes in the optical field
and how it can be used. As a practical consequence of this
established field of investigation, the well succeeded applica-
tion of nonseparable classical states on polarization metrology
was reported [60]. On the other hand, an improvement in the
BB84 quantum cryptography protocol was proposed by using
the transverse mode as an additional degree of freedom to
eliminate the need for a shared reference frame between Alice
and Bob’s laboratory [38]. This proposal was experimentally
investigated by using a classical laser beam and the results
showed a clear accordance with that predicted by quantum
mechanics [39].

Contextuality was also investigated in a classical system
by exploring a linear optical setup [61,62]. The polarization
and path propagation of a laser beam were used to encode the
analog of a tripartite system, called classical trit, to investi-
gate the KCBS inequality. As a result, this system provided
classical states that violated the KCBS inequality, showing an
analogy with contextual quantum systems.

In this work we explored spin-orbit laser modes to in-
vestigate the existence of contextuality in bipartite systems
by means of the Kujala–Dzahafarov (KD) inequality. Our
results show that the maximally nonseparable spin-orbit mode
violates the KD inequality, a necessary condition to char-
acterize such a system as presenting contextuality. We also
revisited the experiment of violation of the CHSH inequality
for spin-orbit modes [27] by improving mode preparation

in order to achieve a higher violation of CHSH inequality.
Despite nonseparable modes, which emulate entangled states,
do not present spatial separation, this classical optical analogy
also allows us to investigate some mathematical properties
of entanglement with simple and inexpensive experiments
and can be a useful tool for testing some quantum infor-
mation protocols. Then, contextuality can be studied in a
straightforward and simple way. The article is organized as
follows: Section II presents the CHSH and Kujala–Dzhafarov
inequalities for spin-orbit modes. The experimental setup and
procedures are presented in Sec. III. Section IV contain results
and discussions. In Sec. V we summarize our work.

II. SPIN-ORBIT LASER MODES AND QUANTUM-LIKE
INEQUALITIES

In this section we explore the analogy between Bell’s
inequalities for quantum mechanics and their classical coun-
terpart, known as spin-orbit inequalities [27,35,36]. Following
Ref. [63], the vector structure of electromagnetic field is
common to quantum mechanics and classical optics, since
the degrees of freedom of the electromagnetic field in a laser
beam can be described by a vector product. In this way, we
explore the vector nature of polarization and spatial modes
(Hermitian–Gaussian mode of first order) to combine them
and build the so-called spin-orbit mode.

The linear polarization vector can be described by the
unit vectors êV for vertical polarization and êH for horizontal
polarization. The first-order of Hermitian–Gaussian modes,
HG01(�r ) and HG10(�r ), can be described by direction of
transverse mode, vertical and horizontal. Therefore, {êH , êV }
and {HG10(�r ),HG01(�r )} form a basis to describe the polar-
ization and transverse mode states, respectively.

When the electromagnetic field can be written as a product
between the transverse structure and a polarization vector
[ �E(�r ) = ψ (�r )ê], we have the so-called separable mode,
which is analogous to the product state in quantum mechanics.

The most general vector of the spin-orbit laser mode can
be written as

�E(�r ) = c1HG01(�r )êV + c2HG01(�r )êH + c3HG10(�r )êV

+ c4HG10(�r )êH , (1)

where ci , with i = 1, 2, 3, and 4, are the complex numbers
satisfying the normalization condition. Here, normalization
means that the sum of the intensity of each term divided by
the total intensity is equal to one. The values of complex
coefficients ci can be chosen to obtain a nonseparable mode,
which is nonfactorable. We can write the spin-orbit laser
modes as the radial (�±) and azimuthal (�±) polarization
beams:

�+(�r ) = 1√
2

[HG10(�r )êH + HG01(�r )êV ], (2)

�−(�r ) = 1√
2

[HG10(�r )êH − HG01(�r )êV ], (3)

�+(�r ) = 1√
2

[HG10(�r )êV + HG01(�r )êH ], (4)

�−(�r ) = 1√
2

[HG10(�r )êV − HG01(�r )êH ]. (5)

062116-2



CLASSICAL ANALOG OF QUANTUM CONTEXTUALITY IN … PHYSICAL REVIEW A 98, 062116 (2018)

FIG. 1. Transverse structure of maximally nonseparable laser
modes. The intensity has a donut shape. The arrows represent the
polarization. �± are the laser modes known as possessing radial
polarization and �± the azimuthal polarization.

As can be seen, this state cannot be written as the product
of polarization and a first-order Hermitian–Gaussian mode.
Therefore, the maximally nonseparable mode in Eqs. (2)–(5)
present a vector structure that is similar to entangled states and
can be associated with Bell’s basis. Indeed, {�±,�±} form
an orthonormal mode basis. Figure 1 presents the transverse
structures of the maximally nonseparable modes. The arrows
distributed in the donut transverse structure illustrate radial
and azimuthal polarization.

This analogy enables us to use the definition of the analog
to quantum concurrence C to quantify the nonseparability
[26]. For a general mode, described by Eq. (1), we can define

C = 2|c1c4 − c2c3|. (6)

Note that, for a maximally nonseparable mode, Eqs. (2)–(5),
C = 1, which is equivalent to the concurrence for the maxi-
mally entangled states of the Bell basis. In analogy to product
states, C = 0 for any separable mode. Consequently, due to
such an analogy, quantum-like inequalities for spin-orbit laser
modes can be written and experimentally tested.

A. Clauser–Horne–Shimony–Holt inequality

Following Ref. [27], we use the same argument of Clauser,
Horne, Shimony, and Holt in quantum mechanics [15] to
demonstrate the spin-orbit inequality. For instance, we define
the rotated basis of polarization and transverse modes, so that

êα+ = (cos α)êV + (sin α)êH ,

êα− = (sin α)êV + (cos α)êH ,

HG+(�r ) = (cos β )HG01 + (sin β )HG10(�r ),

HG−(�r ) = (sin β )HG01 − (cos β )HG10(�r ). (7)

Equation (2) can be rewritten in the rotated basis as

�+(�r ) = 1√
2

cos(β − α)[HG+(�r )êα+ + HG−(�r )êα−]

+ sin(β − α)[HG−(�r )êα+ − HG+(�r )êα− ]. (8)

Defining I±± as the normalized squared amplitude of each
term of Eq. (8), the normalized intensity of each compo-
nent plays the role of probabilities in a quantum mechanics
scenario. As Eq. (8) is normalized and the base vectors are
unitary, we can shown that [27]

I++(α, β ) + I+−(α, β ) + I−+(α, β ) + I−−(α, β ) = 1. (9)

In addition, the quantity M (α, β ) can be defined as [27]

M (α, β )=I++(α, β ) + I−−(α, β ) − I+−(α, β ) − I−+(α, β ),
(10)

and it is easy to show that

M (α, β ) = cos[2(β − α)], (11)

which has the same result as the quantum-mechanical corre-
lations for a two-level system. The next step is to derive a
Bell-type inequality for spin-orbit modes, given by

S = M (α1, β1) + M (α1, β2) − M (α2, β1) + M (α2, β2),

(12)

where αk and βk , with k = 1, 2, are two distinct angles. Again,
as in quantum mechanics, for separable modes, −2 � S � 2,
but for nonseparable modes the Bell-type inequalities can be
violated. For a set of angles, α1 = π/8, α2 = 3π/8, β1 = 0,
and β2 = π/4, we obtain the maximum violation predicted
by the inequality, S = 2

√
2. This inequality can be maximally

violated by all modes presented in Eqs. (2)–(5).

B. Kujala–Dzhafarov inequality

Satisfaction of the CHSH inequalities is a necessary and
sufficient condition for the existence of a joint probability
distribution for all experimental outcomes. However, as it is
well known, they rely on a major assumption; namely, that the
nonsignaling condition is valid. Yet, due to many experimental
factors, photon-correlation experiments often exhibit some
form of violation of the nonsignaling condition [64], with
this condition being satisfied recently only in loophole-free
Bell-type experiments [65,66].

Let us consider the standard Bell–Einstein–Podolsky–
Rosen (Bell-EPR) setup, where we have two settings for Alice
and Bob’s detectors, and four random variables representing
the outcomes of measurements, often labeled A1, A2, B1,
and B2, for Alice and Bob, respectively. It is a consequence
of probability theory that 〈A1〉 and 〈A2〉 are independent of
whether they were measured in conjunction with B1 or B2.
However, if the nonsignaling condition does not hold, this
means that the intensity at the detector is not independent
of the choices of the other detectors, and there is no possi-
bility of having random variables (and therefore an underly-
ing joint probability distribution) for A1, A2, B1, and B2, .
Consequently, the use of the CHSH inequalities to determine
contextuality (through the nonexistence of a joint probability
distribution) is inadequate, because a joint probability already
does not exist. Therefore, to examine contextuality, we need a
different set of inequalities from CHSH.

Dzhafarov and Kujala [20] provided a consistent frame-
work within classical probability theory to describe general
systems that are contextual. Here we focus on the Bell-EPR
setup to present their approach and inequalities. Since, be-
cause of violations of nonsignaling, the statistical distribution
of property A1 when measured with B1 is different from when
it is measured with B2, we label its corresponding random
variable as A11 for the latter and A12 for the former, with
the first index indicating that we are measuring A1 and the
second index indicating the context B1 or B2, respectively.
With such indexing, we have eight random variables, instead
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of the original four; namely, A11, A12, A21, A22, B11, B12, B21,
and B22. The nonsignaling condition would be represented, in
this notation, by the requirement that p(Aij = Aij ′ ) = 1 and
p(Bij = Bij ′ ) = 1 for i, j, j ′ = 1, 2 and j �= j ′.

Of course, because they are measured together, the random
variables Aij and Bjk are jointly distributed. Furthermore,
under no additional assumptions, Aij and Bkl are not jointly
distributed, but it is always possible to create a new set of
jointly distributed random variables A′

ij and B ′
kl such that all

the stochastic properties of Aij and Bkl are reproduced. Such
a new set of random variables is called in probability theory
a “coupling,” since it connects variables from two different
contexts as a single joint probability distribution.

Because such couplings always exist (in fact an infinite
number of them), providing a coupling is not sufficient to
tell us whether the physical system is contextual. To ad-
dress the question of contextuality, we need to look at all
possible couplings under some additional condition. Let us,
for example, consider A11 and A12, which are two random
variables measured in different contexts and therefore not
jointly distributed. When constructing a coupling, we can
make whatever assumptions we want about the connection
between those two variables. But if we want to think of them
as the same property being measured in different contexts, we
should try to construct a coupling such that the probability that
they are the same is maximal—being one is not a possibility,
since their distributions are different due to artifacts that may
cause a violation of the nonsignaling violations. We can also
take the same approach when trying to find a coupling that
involves all variables. This constraint, i.e., the requirement
that the coupling be compatible with the maximal probability
that a random variable representing a property in one context
is equal to the same property in another context, is called
“multimaximal coupling” [67]. Now, even though a coupling
always exist that reproduces the marginals, a multimaximal
coupling does not always exist, which means that a joint
probability distribution with a multimaximal coupling does
not exist. When this is the case, the system is said to be
contextual.1

For the standard Bell-EPR case, with the notation shown
above, we are now in a position to write a set of inequal-
ities that, if satisfied, guarantee that the system is noncon-
textual. Given the random variables Aij , Bkl , this system
is noncontextual if and only if it satisfies the following
inequalities:

SKD1 = |〈A11B11〉 + 〈A12B12〉 + 〈A21B21〉 − 〈A22B22〉|
� 2(1 + �0), (13)

SKD2 = |〈A11B11〉 + 〈A12B12〉 − 〈A21B21〉 + 〈A22B22〉|
� 2(1 + �0), (14)

1Kaszlikowski and Kurzynski [68] point out that violation of the
nonsignaling condition is already a form of context dependency,
which they call strong contextuality, whereas the contextuality re-
sulting from a lack of a joint they call hidden contextuality, or simply
contextuality.

SKD3 = |〈A11B11〉 − 〈A12B12〉 + 〈A21B21〉 + 〈A22B22〉|
� 2(1 + �0), (15)

SKD4 = |−〈A11B11〉 + 〈A12B12〉 + 〈A21B21〉 + 〈A22B22〉|
� 2(1 + �0), (16)

where �0 is given by

�0 = 1
2 (|〈A11〉 − 〈A12〉| + |〈A21〉 − 〈A22〉|
+ |〈B11〉 − 〈B21〉| + |〈B12〉 − 〈B22〉|). (17)

Notice that these inequalities are the same as CHSH if
we set Aij = Aik , Bij = Bik , and they are a generalization of
CHSH for a system that violates the no-signaling condition.
We can see that the terms on the right-hand side of �0 are,
intuitively, a measure of how different the expectations of each
random variable are from one context to the other, and �0

is the cumulative sum of all such possible terms; the more
no-signaling violation, the greater the value of �0. �0 has
a very important role, because it changes the bounds of the
inequalities that define the existence of a joint probability dis-
tribution under the assumption of a multimaximal coupling.

Considering a spin-orbit modes system, we can write the
mean values of KD inequalities as a combination of nor-
malized intensity I±±(αi, βj ) in the same way presented for
CHSH inequality. For the calculation of �0, the average 〈Ai,j 〉
and 〈Bi,j 〉 are given by

〈Ai,j 〉 = I++(αi, βj ) − I−−(αi, βj ) + I+−(αi, βj )

− I−+(αi, βj ) (18)

and

〈Bi,j 〉 = I++(αi, βj ) − I−−(αi, βj ) − I+−(αi, βj )

+ I−+(αi, βj ), (19)

respectively. The average of the joint measurements are ob-
tained by

〈Ai,jBi,j 〉 = I++(αi, βj ) + I−−(αi, βj ) − I+−(αi, βj )

− I−+(αi, βj ), (20)

where i = 1, 2, and j = 1, 2 in Eqs. (18)–(20). It is worth
mentioning that the construction of KD inequalities use the
same basis that one uses to construct the CHSH inequality. In
addition, for spin-orbit modes we can verify KD inequalities
with the same normalized intensities used for a CHSH exper-
iment. Then, the same apparatus can be used to study both
CHSH and KD inequalities. The experimental investigation
of both of them is presented in the next section.

III. EXPERIMENTAL VIOLATION OF QUANTUM-LIKE
INEQUALITIES WITH SPIN-ORBIT MODES

The experimental study of the inequalities discussed in the
previous section by using spin-orbit modes was performed
following the proposal presented in Ref. [27], by improving
the mode generation. The two-qubit system was encoded in
polarization and transverse mode of a laser beam. The first
qubit was encoded in polarization, where horizontal (H) and
vertical (V) polarizations represent the basis states |0〉P and
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TABLE I. Codification of qubits on the polarization and trans-
verse mode HG of a laser beam.

Optical modes basis Logical computational basis

êH HG10 = |Hh〉 |00〉
êH HG01 = |Hv〉 |01〉
êV HG10 = |V h〉 |10〉
êV HG01 = |V v〉 |11〉

|1〉P , respectively. The second qubit was encoded in first-order
Hermite–Gauss modes. Thereby, we have the HG10, named h,
and the HG01, named v, representing the basis states |0〉M and
|1〉M , respectively. Table I summarizes the codification. Note
that we are using brackets notation to represent the laser beam
modes due the analogy between laser modes and quantum
states [24,27,34,35,63].

The experimental setup is illustrated in Fig. 2. The state
preparation starts with a diode-pumped solid-state (DPSS)
laser beam (532 mm, 1.5 mW, vertically polarized) illumi-
nating an S-wave plate (SP). This device can be adjusted to
produce directly the maximally nonseparable mode

|�−〉 = 1√
2

(|Hh〉 − |V v〉), (21)

which is an analog of a two-qubit entangled state; namely, a
maximally nonseparable state [27]. By introducing the PBS1

in the laser path, the component |Hh〉 is transmitted, and
we have the analog of a product state; namely, a separable
mode [27]. The preparation stage finishes with a spatial filter
(SF) used to perform a mode clean in order to improve the
mode fidelity. The mode preparation is the main experimental
improvement introduced here in comparison with Ref. [27].

The Bell-like measurement was performed by using a half-
wave plate (HWP@ αi /2) and a Dove prism (DP@βj /2) to
chose the measurement basis (êα±, HGβ±), which are the
orientations of the Bell basis measurement. The half-wave
plate changes the polarization states and the Dove prism
allowed us manipulate the transverse spatial mode. Therefore,
after the combined action of these two devices, the spin-orbit
mode can be written as

|�〉 = 1√
2

[cos (β − α)|Hh〉 + cos (β − α)|V v〉

+ sin (β − α)|V h〉 − sin (β − α)|Hv〉]. (22)

Preparation

Measurement

HWP@SP

DP@ BS

BS

PZTTZT
PBS PBS

MZIM

BSB

PBS

I++I-- I-+ I+-

SF

i
SFSF HWWP@@

FIG. 2. Experimental setup for the CHSH and Kujala–Dzhafarov
inequality. SP stands for S-wave plate, HWP for half-wave plates, DP
for Dove prism, BS for beam splitter, and PBS for polarizing beam
splitter.

The projective measurements start with a Mach–Zehnder
interferometer with an additional mirror (MZIM) [69]. The
MZIM performs a parity selection on the spin-orbit mode by
adjusting the phase difference between interferometer arms,
here implemented by a piezoelectric ceramic (PZT). Thereby,
we have the even modes (|Hh〉 and |V v〉) and the odd modes
(|Hv〉 and |V h〉) leaving the MZIM in different outputs.
After the MZIM, output polarizing beam splitters (PBS2 and
PBS3) project the four components in a bulkhead and the
four intensities are registered simultaneously with a charge-
coupled device (CCD) camera. Odd modes arrive in PBS2, the
component with the horizontal polarization |Hv〉 (associated
with the I+− intensity) is transmitted, and the component with
the vertical polarization |V h〉 (I−+) is reflected. Even modes
arrive in PBS3 and the component with the horizontal polar-
ization |Hh〉 (I++) is transmitted while the component with
the vertical polarization |V v〉 (I−−) is reflected. Note that,
to calculate M(αi, βj ), 〈Ai,j 〉, 〈Bi,j 〉, and 〈Ai,jBi,j 〉 we take
the normalized intensities I±±, obtained by integrating the
intensity distribution of each outputs’ images divided by their
sum. To verify the violation of CHSH and Kujala–Dzhafarov
inequalities we take the angle set that corresponds to the max-
imal violation of CHSH inequality: α1 = π/8, α2 = 3π/8,
β1 = 0, and β2 = π/4.

IV. RESULTS AND DISCUSSIONS

We performed the experiment by preparing two initial
states: a maximally nonseparable mode and a separable mode,
as described in Sec. III. By using the sets (αi, βj ) for maxi-
mal violation of the CHSH inequality, we register the four
intensities for each combination. Figure 3 shows the resulting
intensities for the maximally nonseparable mode. The outputs
of the measurement setup are identified by the respective in-
tensity labels I++, I+−, I−+, and I−−. Each row is equivalent
to the simultaneously captured images for a combination of
(αi, βj ). We can observe a good visibility. We found 90% for

I-+ I+- I++ I--

( , )

( , )

( , )

( , )

FIG. 3. Resulting images for maximally nonseparable mode.
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I-+ I+- I++ I--

( , )

( , )

( , )

( , )

FIG. 4. Resulting images for separable modes.

the combinations with β1. For the combinations containing
β2, where the DP is rotated, the visibility is worse (85%).
The rotated DP slightly affects the polarization in a such
way to transform a |Hh〉 into |V h〉 and |V v〉 into |Hv〉
mode components, making it hard to align the MZIM and
consequently arrive at a better visibility.

Figure 4 shows the resulting intensities for the separable
mode |Hh〉, obtained by including the PBS1 in the laser path.
The notations for intensities and angles are the same. The
visibility of the MZIM for the separable mode is superior to
the maximally nonseparable case once the mode has only the
|Hh〉 component. Combinations with β2 have also a worse
visibility (around 88%) compared with those containing β1

(95%). The normalized image intensities were used to calcu-
late the inequalities described in the previous section.

A. Clauser–Horne–Shimony–Holt inequality
with spin-orbit modes

Table II presents both theoretical and experimental results
for the calculation of M (αi, βj ) and S. Theoretical values

TABLE II. Results for CHSH inequality measurement for max-
imally nonseparable and separable modes. Theoretical results were
obtained from entangled and product quantum states. The exper-
imental results were obtained from normalized intensity measure-
ments of Figs. 3 and 4.

Maximally nonseparable Separable

Theory Experiment Theory Experiment

M (α1, β1) 0.707 0.679 0.707 0.665
M (α1, β2) 0.707 0.583 0.000 0.000
M (α2, β1) −0.707 −0.679 −0.707 −0.661
M (α2, β2) 0.707 0.562 0.000 0.000
S 2.828 2.503 1.414 1.326

TABLE III. Results of theoretical expected value of SKD for
entangled state (Theory) and the obtained results for spin-orbit
modes (Experiment).

Theory Experiment

SKD1 0.000 0.021
SKD2 2.828 2.503
SKD3 0.000 0.022
SKD4 0.000 0.213

were obtained from the calculations of M by using maximally
entangled and product quantum states. Experimental values
were obtained from the calculations of Eqs. (11) and (12). For
the maximally nonseparable mode we observed a violation
of S = 2.503, which is an important improvement compared
with the result of Ref. [27]. By comparing theoretical and ex-
perimental M (αi, βj ) values we observe a more accentuated
difference for the combinations containing β2 due the limited
visibility of the MZIM.

For the separable mode the nonviolation of CHSH inequal-
ity were observed with S = 1.326. This result are more close
to the theoretically calculated once we have a better visibility
in the MZIM.

B. Kujala–Dzahafarov inequality for spin-orbit modes

By using the normalized image intensities in Eq. (17)
we obtained �0 = 0.143. Therefore, the bound value of the
Kujala–Dzahafarov inequalities [Eqs. (13)–(16)] is SKD <

2(1 + �0) = 2.286. Table III presents the theoretical ex-
pected value of SKD for the entangled state and the obtained
results for spin-orbit modes calculated from Eqs. (13)–(16).
As can be seen, SKD2 = 2.503 > 2.286. This is a sufficient
condition to infer the contextuality of spin-orbit modes.
We notice a very good agreement between the quantum-
theoretical prediction for the entangled state and the exper-
imental results for nonseparable spin-orbit modes of a laser
beam.

The contextuality in this scenario reveals the conflict be-
tween nonseparable modes and noncontextuality theory in
correlations between these degrees of freedom of a laser
beam. This is analogous to the conflict between quantum
mechanics and noncontextual realism. This result reinforces
the idea that we can use such systems to explore mathematical
properties of quantum systems, such as entangled states. Once
the spin-orbit mode of an intense laser beam presents an
analogous mathematical structure to quantum systems it can
be used to emulate an ensemble of quantum measurements
with single-photon experiments [27,35–37,43,57].

The revisitation to the experiment of violation of the
CHSH inequality for spin-orbit modes, beyond showing an
improvement in the violation, provides evidence, from direct
experimental measurements, of the relation between Bell in-
equalities and noncontextuality discussed in Ref. [70].

V. CONCLUSIONS

We have experimentally demonstrated the violation of the
Kujala–Dzhafarov noncontextuality inequalities for spin-orbit
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modes of an intense laser beam. A nonseparable mode was
prepared by a radial polarization converter, and we also
showed an improvement of the violation of the CHSH in-
equalities by the nonseparable spin-orbit mode. Considering
the relevance of contextuality in different scenarios, such as
universal quantum computation [71], spin-orbit modes were
shown to be an appropriate platform for the experimental
investigation of contextuality. We presented a quantum-like
contextuality that can be directly compared with the quantum
version that applies to single photons prepared in an entangled
state of transverse and polarization degrees of freedom. In
the genuine quantum case, photon detection gives dichotomic
results, H/V or +/−, and intensities were mapped to prob-
abilities associated with these possible outcomes. Therefore,
the results obtained in the classical framework are comparable

to the ensemble of quantum measurements but not to the
individual events with discrete outcomes, which belong to the
realm of the quantum nature of light.
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2016, edited by J. de Barros, B. Coecke, and E. Pothos, Lecture
Notes in Computer Science Vol. 10106 (Springer, Cham, 2017).

[69] H. Sasada and M. Okamoto, Phys. Rev. A 68, 012323 (2003).
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