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Pseudo-magnetic-field and effective spin-orbit interaction for a spin-1/2 particle
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By considering the spin connection, we deduce the effective equation for a spin-1/2 particle confined to
a curved surface with the nonrelativistic limit and in the thin-layer quantization formalism. We obtain a
pseudo-magnetic-field and an effective spin-orbit interaction generated by the spin connection. Geometrically,
the pseudo-magnetic field is proportional to the Gaussian curvature and the effective spin-orbit interaction is
determined by the Weingarten curvature tensor. In particular, we find that the pseudo-magnetic-field and the
effective spin-orbit interaction can be employed to separate the electrons with different spin orientations. All
these results are demonstrated in two examples: a straight cylindrical surface and a bent one.
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I. INTRODUCTION

During the last decade, inspired by the technical progress
in the fabrication of low-dimensional nanostructures [1–6],
there have been many theoretical and experimental studies
on the dynamics in low-dimensional curved spaces, involving
condensed matter [7–10], optics [11–13], and magnetism
[14,15]. Due to the appearance of curvature, physical quan-
tities of the particle in the low-dimensional curved space may
lose some symmetries associated with space coordinates, such
as translational symmetry and rotational symmetry, manifest-
ing novel and abundant properties different from flat cases.
To obtain the curvature effects by theory, a dimensionally
reduced method called the thin-layer procedure (TLP) or con-
fining potential approach was introduced by Jensen and Koppe
[16] and da Costa [17]. By applying the approach to scalar
fields, the well-known geometric potential appears naturally
in the effective low-dimensional Hamiltonian. Later, TLP has
been applied to electromagnetic fields for two-dimensional
(2D) [11] and quasi one-dimensional (1D) [18] curved geome-
tries. Compared with the case of scalar fields, the connections
of vector fields contribute the spin-orbit interaction (SOI) to
the effective Hamiltonian as an extra geometric effect, which
causes the optical spin Hall effect (SHE) [19–25].

Certainly, people want to use the explicit SOI Hamiltonian
for spinor fields on curved surface. Traditionally, in planar
two-dimensional electron gas (2DEG) systems, there are two
main types of SOI: the Rashba SOI and the Dresselhaus
SOI, which originate from the inversion asymmetry of the
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confining potential [26] and the lack of bulk inversion asym-
metry [27], respectively. For both of these, the intrinsic or
external electric field are considered necessary to generate
the SOI. Previous investigations [28–30] have tried to give a
theoretical description of the SOI in curved 2DEG systems by
writing the electric-field-induced SOI Hamiltonian in three-
dimensional (3D) curvilinear coordinates and using the TLP
to get the effective Hamiltonian. These models are capable
of describing the part of the SOI generated by electric field,
but miss the effective SOI induced by the curvature, which
originates from the spin connection.

The spin connection, emerging naturally in the covariant
derivative of a spinor field, guarantees that a covariant deriva-
tive of a spinor still transforms like a spinor. In the language of
quantum field theory, it can also be viewed as a non-Abelian
gauge field generated by local Lorentz transformations [31].
In the 2D curved space, the motion of a fermion should
embody the effect of this gauge field [32]. Several studies
have considered the contribution of the spin connection to the
dynamics on curved surfaces [33–35]; however, the explicit
effective SOI Hamiltonian from curvature has not be given.
In addition, it has been found that the SOI from electric
fields can also be reformulated in terms of non-Abelian gauge
fields [36–39]. The coincidence implies that, for a spinor field,
curvature may, in a sense, induce an effective electric field.
Therefore, in this paper, we start from the Dirac equation in
a curved space and try to give a full description about the
dynamics of a nonrelativistic spin-1/2 particle constrained to
a curved surface.

Another aim of this paper concerns the gauge potential
from higher dimensions. Reference [40] emphasizes that a
gauge potential is present when the space of states associated
with directions normal to the surface is degenerate. In our case
the spin degeneracy naturally satisfies the requirement, thus a
gauge-potential effect is expected. We show that this effect
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is a pseudo-magnetic field. It has been proven theoretically
[41,42] and experimentally [43] that a strained graphene
sheet can generate a large pseudo-magnetic field, which is
explained as a geometry-induced gauge-field effect in the low-
energy effective Dirac equation. The pseudo-magnetic field
does not couple with the electric charge but induces Landau
levels like a real magnetic field. For a real magnetic field B,
the Landau quantization results in energy quantum h̄ωc with
the cyclotron frequency ωc = eB/m. Naively speaking, if the
energy quantum of a planar rotor h̄2

2mR2 (R is the rotation
radius) is considered as one of the Landau levels induced by a
pseudo-magnetic field B, we may in magnitude arrive at B ∼

h̄
2eR2 ∼ h̄K

2e
(K is the Gaussian curvature). In the following we

demonstrate this conjecture in a strict way and furthermore
show that the pseudo-magnetic field couples with the normal
spin component in curved 2DEG systems.

This paper is organized as follows: In Sec. II we briefly
give the nonrelativistic limit form of the Dirac equation in
a curved space. In Sec. III, we use the confining potential
approach to get an effective equation for a nonrelativistic
spin-1/2 particle constrained to a curved surface and analyze
the effective SOI and pseudo-magnetic field. In Sec. IV,
we explore the effective SOI and pseudo-magnetic field in
straight and bent cylindrical surfaces. In Sec. V, we extend
the theory to include the model electric and magnetic field.
Finally, we present our conclusion in Sec. V.

II. NONRELATIVISTIC LIMIT OF DIRAC
EQUATION IN CURVED SPACE

In this section, we briefly review the derivation of the
nonrelativistic limit form of the Dirac equation in a curved
space and compare it with the ordinary Schrödinger equa-
tion. Before the derivation, we would like to introduce the
meaning of indices used in the following. The Greek letters
{μ, ν, . . . } and {α, β, . . . } run from 0 to 3, denoting curved
and flat spacetime indices, respectively; the capital Latin
letters {A,B, . . . } and {I, J, . . . } run from 1 to 3 and denote
curved- and flat-space indices, respectively, and the lowercase
letters {a, b, . . . } and {i, j, . . . } run from 1 to 2 and denote
curved and flat 2D space indices, respectively.

In a curved spacetime the Dirac equation can be described
by [44]

(ih̄γ μ∇μ − mc)� = 0, (1)

where ∇μ denotes the covariant derivative with ∇μ = ∂μ −
�μ, wherein �μ is the spin connection, and γ μ stand for the
gamma matrices in a curved spacetime that are expressed as

γ μ = Eμ
α γ α, (2)

by γ α , the usual gamma matrices in a flat spacetime. Here Eμ
α

are vierbeins with the definition

Eμ
α = ∂qμ

∂xα
, (3)

where qμ describe the coordinate variables in a curved space-
time, and xα desribe those in a flat spacetime. By virtue of the
vierbeins Eμ

α , Gμν can be given by

Gμν = Eμ
α Eν

βηαβ, (4)

where Gμν is the inverse metric tensor in a curved space-
time, while ηαβ is that in a flat spacetime with ηαβ =
diag(1,−1,−1,−1). And the spin connection �μ can be
expressed as

�μ = − 1
4ωμαβ�αβ, (5)

where �αβ = [γ α, γ β ]/2 are the generators of the Lorentz
group in the spinorial space, and

ωμαβ = Eν
α

(
∂μEνβ − �κ

μνEκβ

)
, (6)

with �κ
μν being the Christoffel symbol.

For investigating the specially geometric effects, in the
present paper we just consider the space curved without time,
so we can write ds2 in the following form:

ds2 = G00dq0dq0 − GABdqAdqB, (7)

where G00 = 1. As a result, the vierbein Eα
μ can be simplified

as

Eα
μ =

(
1 0

0 EI
A

)
. (8)

In this case, the time component of spin connection �0 natu-
rally vanishes, the space components of the gamma matrices
γ A in the Dirac representations are represented as

γ A =
(

0 σ IEA
I

−σ IEA
I 0

)
, (9)

and the space components of the generator �IJ are

�IJ =
[
iεIJKσK 0

0 iεIJKσK

]
, (10)

where σ I are the usual Pauli matrices and εIJK is the Levi–
Civita symbol.

For the convenience of description, we write the wave func-
tion � in Eq. (1) in the following form with two components:

� =
[
χ

φ

]
, (11)

where χ and φ stand for the positive- and negative-energy
solution, respectively. According to the above discussions, the
Dirac equation (1) can be rewritten as[

(ih̄/c)∂t − mc −σ · P

σ · P (−ih̄/c)∂t − mc

][
χ

φ

]
= 0, (12)

where σ · P = −ih̄σAD̄A = −ih̄σKEA
K (∂A + �̄A), wherein

�̄A is the spin connection consisting of two components; that
is,

�̄A = i
4ωAIJ εIJKσK. (13)

From Eq. (12), by eliminating φ, we obtain

(E − mc2)χ = σ · P
1

E + mc2
σ · Pχ, (14)

where E is the total energy. By defining Es = E − mc2

and keeping the lowest term in the expansion of 1
E+mc2 with

062112-2



PSEUDO-MAGNETIC-FIELD AND EFFECTIVE SPIN- … PHYSICAL REVIEW A 98, 062112 (2018)

Es � mc2, we obtain the nonrelativistic equation

Esχ = 1

2m
σ · Pσ · Pχ. (15)

In a curved space, the covariant derivative of the Dirac
matrices is

γ B
;A = ∂Aγ B + �B

CAγ C − [�A, γ B]. (16)

According to the “tetrad postulate” of van Nieuwenhuizen
[45], the curved-space gamma matrices are covariantly con-
stant, which means γ B

;A = 0. Accordingly, the Pauli matrices
in the curved space satisfy the equality

∂AσB + [�̄A, σB ] = −�B
CAσC, (17)

and then we can deduce the expression

1

h̄2 σ · Pσ · Pχ = − 1√
G

D̄A(
√

GGABD̄B )χ + 1

4
R̄χ, (18)

where R̄ is the Ricci scalar.
Thus the nonrelativistic equation for a spin-1/2 particle in

a curved space should be described by

− h̄2

2m

[
1√
G

D̄A(
√

GGABD̄B ) − 1

4
R̄

]
χ = Esχ, (19)

where D̄A is a new gauge covariant derivative with D̄A =
∂A + �̄A. It is interesting that the equation (19) has the
same form of the Schrödinger equation in an externally
applied electromagnetic field. The difference is that, in the
Schrödinger equation, the gauge structure is determined by the
externally applied electromagnetic field with U(1) symmetry,
while in Eq. (19) the gauge structure is constructed by the spin
connection �̄A. Under the SU(2) rotations of the direction σK ,
T = e

i
4 εIJKσKγIJ , the wave function χ and the spin connection

�̄A transforms as

χ → χ ′ = T χ,

�̄A → �̄′
A = T �̄AT † + T ∂AT †,

(20)

where 1
4εIJKγIJ plays the role of rotation angle. It is obvious

that �̄A transforms as a gauge field in the adjoint representa-
tions of SU(2).

III. EFFECTIVE EQUATION IN CURVED
TWO-DIMENSIONAL SPACE WITH SPIN CONNECTION

The required effective equation of a spin-1/2 particle
confined to a curved surface is derived in this section. To
do this, the thin-layer quantization approach [16,17,46] is
suitable. According to the fundamental framework [46], the
metric tensors gab on a curved surface S and GAB in the
corresponding 3D immediate neighborhood space should be
first considered. If the surface S can be described by r =
r(q1, q2), the corresponding 3D space could be done by R =
r(q1, q2) + q3n̂(q1, q2). Subsequently, the associated metric
tensors gab and GAB can be defined by gab = ∂ar · ∂br and
GAB = ∂AR · ∂BR, which satisfy the relation

Gab = gab + [αg + (αg)T ]abq3 + t (αgαT )ab(q3)2,

Ga3 = G3a = 0, G33 = 1, (21)

where the Weingarten curvature matrix is

αab = ∂ar · ∂bn̂. (22)

For the convenience of statement, we refer to the coordi-
nate system (q1, q2) as a surface frame (SF), and the coordi-
nate system (q1, q2, q3) as an adapted frame (AF), where q3 is
the coordinate variable in the n̂ direction. From Eq. (21), the
relation between the determinants G and g can be calculated
as G = f 2g, where f = 1 + Tr(αab)q3 + det(αab)q2

3 is called
the rescaled factor. Under the rescaled transformation, an new
wave function ψ is introduced and the Hamiltonian in Eq. (19)
[40,47,48] can be expressed as

ψ = f
1
2 χ, (23)

and

H ′ = f
1
2

[
− h̄2

2m
√

G
D̄A(

√
GGABD̄B )

]
f − 1

2 + h̄2R̄

8m
. (24)

The introduction of the confining potential plays an es-
sential role in the thin-layer quantization scheme. The con-
fining potential raises the energy of normal excitations far
beyond the energy scale associated with motion tangent to the
surface and entirely determines the separation of the normal
and tangent dynamics. By introducing the confining potential
Vc(q3), we can deduce (the calculation details are shown
in the Appendix) the effective Hamiltonian and the normal
component [47] as below:

Heff + HN = lim
q3→0

[H ′ + Vc]

= − h̄2

2m

[
1√
g

Da (
√

ggabDb ) − K

2

]

− h̄2

2m

−i√
g

[
Sabσa∂b + 1

2
∂b(σaSab )

]

− h̄2

2m
∂2

3 + Vc, (25)

where Da denotes a gauge covariant derivative with Da =
∂a + iσ3wa , wherein wa can be taken as a gauge potential with
wa = 1

4εijωaij , K is the Gaussian curvature, and Sab is the
coupling tensor defined by Sab = εacαb

c . As a consequence,
the effective surface dynamics is

Heffχt = (H0 + Hso)χt = Etχt , (26)

and the normal dynamics as(
− h̄2

2m
∂2

3 + Vc

)
χr = Erχr . (27)

In Eq. (26) the effective Hamiltonian Heff has two compo-
nents: H0 is

H0 = − h̄2

2m

[
1√
g

Da (
√

ggabDb ) − K

2

]
, (28)

and Hso describes the SOI on the curved surface S in the
following form

Hso = − h̄2

2m

−i√
g

[
Sabσa∂b + 1

2
∂b(σaSab )

]
. (29)
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Notice that the geometric potential − h̄2

2m
(−K

2 ) in Eq. (28)

is strikingly different from the well-known form − h̄2

2m
(M2 −

K ) [17]. The well-known geometric potential is completely
determined by the reduced commutation relation [49], while
the appearance of the spin connection �̄A in the gauge covari-
ant derivative D̄A leads to the term − h̄2

2m
�̄a�̄

a appearing in

Eq. (28) as an additional term − h̄2

2m
( K

2 − M2). In other words,
the presence of the spin degree of freedom can influence the
geometric effects of the curved surface [33]. Besides, the term
h̄2R̄
8m

has no contribution to the scalar potential because the
Ricci scalar vanishes in the thin-layer procedure.

Furthermore, note that the gauge potential wa and the
effective SOI Hso are present in the effective Hamiltonian Heff

due to the appearance of the spin connection. Mathematically,
the spin connection is determined by the derivative operators
and the rotation transformation of the spin orientation in
different adjacent local positions. Therefore, the geometry of
the curved surface can be used to deform the forms of the
pseudo-magnetic field defined by the gauge potential wa and
the effective SOI. The two geometric effects will be further
discussed below.

A. Pseudo-magnetic field

It is easy to prove that the effective dynamics (26) still
possesses the invariance of a rotational transformation, T3 =
eiσ3θ with θ = 1

4εij γij . Under the rotational transformation T3,
wa transforms as a gauge potential; that is,

wa → w′
a = T3waT †

3 + T3∂aT †
3 . (30)

In terms of the gauge potential w, the pseudo-magnetic field
can be defined by

B = − h̄

e
∇(2D) × w = h̄K

2e
, (31)

where ∇2D × w = −K
2 and the curl operator is defined in

2D spaces. In the calculation we have utilized the formula
R1212/g = −K , where Rabcd is the Riemann curvature ten-
sor. We notice that in Ref. [42] the pseudo-magnetic field
calculated for curved graphene systems is twice this result.
The reason is that the spin connection used in Ref. [42]
is twice ours. According to the pseudo-magnetic field (31),
we estimate the value for a bubble with radius r ∼ 1 nm as
B ∼ 328 T, which is also in agreement with the result given
experimentally in graphene systems [43].

Obviously, in Eq. (31) the gauge field is totally determined
by the Gaussian curvature. As a consequence, we can provide
a required gauge potential for spin-1/2 particles confined to
a curved surface by designing the geometry of the surface.
For example, in an orthogonal curvilinear coordinate system
(q1, q2), we can choose w1 = − 1

2

∫ √
gKdq2 and w2 = 0.

It is well known that the external magnetic field breaks
the time-reversal symmetry; however, this does not happen
for the pseudo-magnetic field. This conclusion can be tested
by obtaining the commutator [T ,H0] = 0, where the time-
reversal operator T is chosen as T = iσyC with C being
the complex-conjugation operator. A physical interpretation
is that the pseudo-magnetic field couples with the matrix σ3

rather than a scalar constant, hence under time inverse, the

pseudo-magnetic field is reversed spatially or changes its sign
accordingly, keeping the total system invariant. The largeness
and time-reversal symmetry of pseudo-magnetic field may
help to manufacture materials with topological properties. On
the one hand, the application of quantum Hall effect requires
large magnetic field, on the other hand, the time-reversal
symmetry protects the robustness of the quantum spin Hall
edge state [50]. Hence by bending the 2D materials properly,
topological states may emerge.

Another interesting property of the pseudo-magnetic field
is about the topology in a real space. According to Gauss–
Bonnet theorem, for a surface S without a boundary, we have

1

2π

∫
S

KdA = 2(1 − g), (32)

where g is the genus of the surface. Straightforwardly, the
pseudo-magnetic flux is

� =
∫

S

BdA = 2(1 − g)�0, (33)

where �0 = h
2e

is the magnetic flux quantum. This result
shows that the pseudo-magnetic flux for a closed surface is
a topological invariant, which is independent of its geometric
details. For example, the pseudo-magnetic flux for a sphere
and a torus is 2�0 and 0, respectively, no matter how their
size and shape change continuously.

Particles with opposite charge will be separated by the
Lorentz force when they are moving in a magnetic field,
which is known as the Hall effect. In the presence of the
pseudo-magnetic field, the spin-1/2 particles with different
spin orientations in the normal direction should also be sep-
arated by a Lorentz-like force. The phenomenon is the spin
Hall effect, which will be found in a bent cylindrical surface.

B. Effective spin-orbit interaction

In Eq. (29), the second term is not negligible as it makes
sure that the Hamiltonian is Hermitian. The expression is
similar to that of the SOI caused by an electric field E [51];
namely,

H̃so = ih̄2e

4m2c2
[σ (E × ∇) − σ (∇ × E)/2], (34)

where the second term provides the Hermiticity of the Hamil-
tonian. However, we cannot simply refer to this effective spin-
orbit interaction as the effect induced by a “pseudo-electric
field,” since in general the coupling tensor Sab is anisotropic.
Specifically, when α1

1 = α2
2 , the Hamiltonian has the form of

a linear Rashba spin-orbit interaction, and if α2
1 = α1

2 , the
Hamiltonian contains the form of linear Dresselhaus spin-
orbit interaction. In the case where the surface has the sym-
metry α1

1 = α2
2 , we can define a pseudo-electric field which is

oriented to the normal direction; that is,

E = 2mc2α1
1

e
. (35)

As the situation in the planar 2DEG, this pseudo-electric
field results in spin Hall effect. We have mentioned that the
pseudo-magnetic field also leads to the spin Hall effect, thus
it is worthwhile to compare the two effective interactions. It is
convenient to follow the previous research and reexpress the
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SOI as a non-Abelian gauge field, which is exactly (Aso)a in
Eq. (A6). Using Eqs. (17) and (A5), we obtain the curl

∇(2D) × ( Aso) = −K

2
σ3 + Fa (q1, q2)σa

= σ3∇(2D) × w + Fa (q1, q2)σa, (36)

where Fa (q1, q2) is a vector function of the coordinates.
Interestingly, the part of this curl that is coupled with σ3 is
equal to the curl of the gauge field w. For the spin orientations
normal to the surface, the effective SOI seems to provide an
effective field which is identical to the pseudo-magnetic field.
That is to say, the effective SOI and the pseudo-magnetic field
may contribute exactly the same forces for the spin Hall effect.
We will demonstrate this conjecture on a bent cylindrical
surface. Besides, we have to emphasize that, although the
pseudo-magnetic field and the effective SOI show common
effects on the normal spin component, they are not equivalent
for the dynamics of spin components tangential to the surface.

To estimate when the effective SOI can be ignored, we
need to compare the coupling strengths between the effective
SOI and intrinsic SOI of specific materials. It is found that, if
the two coupling strengths are commensurable, the curvature

radius should be

r ∼ h̄2

2mα̃
≈ 3.79 × 10−20 eV m2

ζ α̃
, (37)

where ζ = m/me with m being the effective mass and me the
electron rest mass. For instance, the intrinsic SOI coupling
constant of InGaAs [52] is α̃ = (3 ∼ 4) × 10−11 eV m, and
ratio ζ = 0.041, then r = 23 ∼ 31 nm. This result show that
the effective SOI cannot be neglected as the curvature radius
reaches the nanoscale.

IV. STRAIGHT AND BENT CYLINDERS

In this section, using the previous results, we investigate
two simple examples: a straight cylindrical surface and a bent
cylinder.

A. Straight cylinders

In a cylindrical coordinate system (ρ, θ, z), as shown in
Fig. 1(a), the effective equation for a straight cylinder is

ih̄∂tψt = − h̄2

2m

[
∂2
z + 1

ρ2

(
∂2
θ + iσz∂θ

)]
ψt, (38)

-2
k

z

0

2

4

6

8

10
without spin connection

-20 2 0 2
k

z

with spin connection

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

(b) (c)

(d)

(a)

FIG. 1. (a) Illustration of a cylinder. (b) Energy dispersion diagram without considering the spin connection. (c) Energy dispersion diagram
with the consideration of the spin connection. (d) Conductance of a cylinder with (solid line) and without (dash line) the consideration of the
spin connection at zero temperature.
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where the spin-orbit coupling term −i h̄2

2mρ2 σz∂θ is just con-
tributed by the spin connection. In this simple geometry, the
pseudo-magnetic field disappears because of the vanishing
of the Gaussian curvature, but the effective SOI still exist,
showing the difference between the pseudo-magnetic field and
the effective SOI.

Neglecting the spin-orbit coupling term, as what we used
to do, in the θ direction, the corresponding energy spec-
trum and wave functions are Ẽn = n2 h̄2

2mρ2 and |n,±〉 = u±einθ ,

respectively, where u+ = (1, 0)T and u− = (0, 1)T are the
eigenstates of the Pauli matrix σz and the magnetic quantum
number n = 0,±1,±2, . . . , as shown in Fig. 1(b). In this
case only the ground-state energy is twofold degenerate, and
the other excited energies are fourfold degenerate. While if
we take into account the spin connection contribution, the
energy levels become En = h̄2

2mρ2 (n2 ± n) [Fig. 1(c)]. With the
shift of energy levels, the degeneration becomes different. As
the mathematical relation (n ± 1)2 ∓ (n ± 1) = n2 ± n, all
energy levels are fourfold degenerate, including the ground-
state energy, whose eigenstates are expressed as |0,+〉, |0,−〉,
|1,−〉, | − 1,+〉. In fact, the corresponding Hamiltonian in

Eq. (38) can be written as H = p2
z

2m
+ 1

2mρ2 Ĵ
2
z − h̄2

8mρ2 , where

the total angular momentum Ĵz = L̂z + ŝz = −ih̄∂θ + h̄
2 σz,

and the well-known geometric potential − h̄2

8mρ2 is recovered.
Hence we ought to apply new quantum numbers j± = n ±
1/2 and eigenstate notation |j±,±〉 to describe the system,
which acts as replacing the orbital angular momentum with
the total angular momentum in the Hamiltonian without spin
connection contribution. Indeed, including the spin connec-
tion makes the model more symmetric and physically sound.
Experimentally, the conductance in a cylindrical 2DEG may
manifest the existence of the effective SOI. As shown in
Fig. 1(d), the step-like structures of the conductance show an
apparent difference between considering and neglecting the
effective SOI at zero temperature.

B. Bent cylinders

To investigate the combined effect of both the pseudo-
magnetic field and the effective SOI, we consider a bent
cylindrical surface [Fig. 2(a)], which can be described in the
curvilinear coordinate system (θ, s), where θ is the angle
around the cylinder’s axis, and s the arc length of the axis.
The corresponding Hamiltonian is written as

H0 = − h̄2

2mρ2

R

R + ρ cos θ
∂θ

(
R + ρ cos θ

R
∂θ

)

− h̄2

2m

R2

(R + ρ cos θ )2

[
∂s − iσ3

2R
sin θ

][
∂s − iσ3

2R
sin θ

]

+ h̄2

4m

cos θ

ρ(R + ρ cos θ )
, (39)

and

Hso = ih̄2

2m

R

ρ(R + ρ cos θ )

(
cos θ

R + ρ cos θ
σθ∂s − 1

ρ
σs∂θ

)
,

(40)

FIG. 2. (a) A bent cylindrical surface. The Gaussian curvature
K > 0 at the outer points, and K < 0 at inner points. (b) The outer
part of the bent cylindrical surface, θ ∈ [−θ0, θ0], where θ0 is small.
The yellow arrow denotes the incident charge current, and the red
and blue arrows denote the currents with spin orientation pointing
inwards and outwards, respectively. (c) The inner part of the bent
cylindrical surface, θ ∈ [π − θ0, π + θ0].

where ρ is the radius of the cylinder, and R the curvature
radius of the axis. By using the Heisenberg equation of
motion, we obtain

ih̄θ̇ = [θ,H0 + Hso], (41)

where

[θ,H0] = h̄2

mρ2

[
∂θ − ρ sin θ

2(R + ρ cos θ )

]
, (42)

and

[θ,Hso] = ih̄2

2m

R

ρ2(R + ρ cos θ )
σs. (43)

To reveal the effect of the pseudo-magnetic field, we give
the boundary condition that θ ∈ [−θ0, θ0] and R � ρ, where
θ0 is small so that sin θ ≈ 0, cos θ ≈ 1, as shown in Fig. 2(b).
In addition, a charge current is injected along the axis s with
the wavelength λ < ρ. In this condition, the force in the θ

direction associated with σ3 is dominantly determined by the
current. We prefer calculating the force generated from the
pseudo-magnetic field and the effective SOI separately. For
the pseudo-magnetic field,

θ̈(pm) = 1

ih̄
[θ̇ , H0] ≈ h̄psR cos θσ3

2m2ρ2(R + ρ cos θ )2 , (44)

where ps = −ih̄∂s is the momentum operator along the axis
s. For the effective SOI, we find

θ̈(so) = 1

ih̄
[θ̇ , Hso] ≈ h̄psR cos θσ3

2m2ρ2(R + ρ cos θ )2
. (45)

Here the relation ∂θ (σθ ) = ρσ3 is utilized. As predicted in
Sec. III B, the forces from the pseudo-magnetic field and the
effective SOI are equal. Hence the total force

Fθ = mρ2(θ̈(pm) + θ̈(so) ) ≈ 2σ3eBvs, (46)

where B = h̄
2e

cos θ
ρ(R+ρ cos θ ) and vs = ps/m. It is found that this

geometry-induced force is in a form similar to the Lorentz
force, leading to the spin Hall effect. In the representation of

062112-6



PSEUDO-MAGNETIC-FIELD AND EFFECTIVE SPIN- … PHYSICAL REVIEW A 98, 062112 (2018)

σ3, spin-up particles and spin-down particles are acted on by
the force in opposite direction, respectively, or equivalently,
the particles in the two different spin states feel the pseudo-
magnetic field in different directions, that is parallel and
antiparallel to the normal direction. The same phenomenon
appears when θ ∈ [π − θ0, π + θ0] [see Fig. 2(c)], only here
the Gaussian curvature is negative, which induces opposite
forces for the inward and outward spin orientations compared
with the case where θ ∈ [−θ0, θ0].

V. CONCLUSION

In this paper, we started from the Dirac equation in curved
space and performed the nonrelativistic limit and thin-layer
procedure to obtain the effective dynamics for a spin-1/2
particle constrained to an arbitrary curved surface. We have
shown that an effective SOI, a 2D gauge field, and a scalar
potential appear in the effective equation as contribution of
the spin connection. The effective SOI and the gauge field
are associated with the spin orientation parallel and orthog-
onal to the surface, respectively. Furthermore, we have found
that the pseudo-magnetic field generated by the gauge field
is proportional to the Gaussian curvature, which makes the
corresponding flux for a closed surface a topological invariant.
The effective spin-orbit coupling strength is determined by
the Weingarten curvature tensor, being comparable with the
intrinsic SOI strength of semiconducting materials when the
curvature radius is on the nanoscale.

To manifest the effect of the pseudo-magnetic field and
the effective spin-orbit interaction, we have proposed two
different geometries; namely, a straight and a bent cylinder.
In the straight cylinder, energy-level shifts due to the effective
SOI have been displayed and, accordingly, we suggest a
conductance experiment to demonstrate the existence of this
interaction. In the bent cylinder, Lorentz-like force from the
pseudo-magnetic field and spin-orbit force from the effec-
tive SOI have been found equal and lead to the spin Hall
effect.

Our model gives a lucid picture of a spin-1/2 particle
moving in a 2D curved space with confinement and is well
suited to the study of 2DEG systems with curved features. It
shows that, by bending the 2D semiconducting materials on
the nanoscale, the effective SOI and pseudo-magnetic fields
from the spin connection could be locally enormous, which
are easier to control than the external electric and magnetic
field. This implies new possibilities in constructing materials
with topological properties.
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APPENDIX: SEPARATION OF NORMAL AND
TANGENTIAL DYNAMICS

Because of the spin connection and the Ricci scalar con-
tained Eq. (24), the process of taking the limit q3 → 0 is
more complex than for the scalar Schrödinger equation. We
make some preparations for this purpose. In AF , the vierbein
components EI

A are determined by the choice of the flat-space
coordinates xI . For convenience, we will choose xI as the
local flat-space coordinates, which make the components have
the form [35,53]

EI
A =

(
Ei

a 0

0 1

)
. (A1)

The inverse of EI
A is then

EA
I =

(
Ea

i 0

0 1

)
. (A2)

In SF , we can also define vielbeins ei
a to satisfy the relation

gab = ei
ae

j

bδij . From Eq. (21), it is easy to find the relation
between Ei

a and ei
a; that is,

Ei
a = ei

a + q3α
b
ae

i
b. (A3)

For the inverse ones, up to the first order in q3, it is given by

Ea
i = ea

i − q3α
a
be

b
i + O[(q3)2]. (A4)

In addition to the difference between Ei
a and ei

a , the Christof-
fel symbols and spin connections in AF and SF also possess
different forms. To distinguish these geometric quantities,
we mark those in AF with a bar. For example, in AF ,
�̄c

ab = 1
2Gcd (∂bGda + ∂aGdb − ∂dGab ), while in SF , �c

ab =
1
2gcd (∂bgda + ∂agdb − ∂dgab ).

Using Eq. (21), we find

�̄c
ab = �c

ab + O(q3),

�̄b
3a = �̄b

a3 = αb
a − q3(αgαT )ba + O[(q3)2],

(A5)
�̄3

ab = −αab − (αgαT )abq3,

�̄A
33 = �̄3

3A = �̄3
A3 = 0.

Then, by using Eq. (13) and (A3)–(A5), we calculate the spin
connection in AF and obtain

�̄a = �a + i(Aso)a + O(q3),

�̄3 = O[(q3)2], (A6)

where �a = iσ3wa = i
4σ3ε

ijωaij and (Aso)a = 1
2
√

g
εcbσbαac,

which can be viewed as spin connections in SF and a non-
Abelian spin-orbit gauge field, respectively. Equation (A6)
is the most important step in the separation of tangential
and normal dynamics. It is clear that the spin connection is
decomposed into two parts: one is associated with the normal
component of Pauli matrices, and the other one couples with
the tangential components.

Besides, we have to deal with the scalar potential R̄
8m

carefully. The Ricci scalar can be calculated according to the
formula

R̄ = GABR̄AB = GabR̄ab + R̄33, (A7)
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where R̄AB is the Ricci tensor. In a pure two-dimensional space, or SF , the Ricci scalar R = gabRab is exactly twice the Gaussian
curvature; however, in AF , this is not right even at q3 = 0. We will show this below.

First, we find

R33 = −�b
3a�

a
b3 − ∂3�

a
3a = O(q3), (A8)

then the term

GabR̄ab = gabRab + gab
(
∂3�

3
ba − �c

b3�
3
ca − �3

bc�
c
3a + �3

ab�
c
3c

) + O(q3)

= 2K − 2K + O(q3) = O(q3). (A9)

Therefore, in the limit q3 → 0 the scalar potential h̄2R̄
8m

in

Eq. (19) vanishes instead of being h̄2K
4m

.

So far, we are ready to take the limit q3 → 0 in Eq. (24) and
separate the equation into tangential and normal components.
Substituting the results above, we obtain Eq. (25).
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