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The density matrix of a nonrelativistic quantum system, divided into N subsystems, is rewritten in terms
of the set of all partitioned density matrices for the system. For the case where the different subsystems are
distinguishable, we derive a hierarchy of equations of motion linking the dynamics of all the partitioned density
matrices, analogous to the “Schwinger-Dyson” hierarchy in quantum field theory. The special case of a set
of N coupled spin-1/2 “qubits” is worked out in detail. The equations are then rewritten in terms of a set of
“entanglement correlators,” which comprises all the possible correlation functions for the system—this case is
worked out for coupled spin systems. The equations of motion for these correlators can be written in terms of a
first-order differential equation for an entanglement correlator supervector.
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I. INTRODUCTION

In both physics and chemistry, the study of quantum-
mechanical phenomena requires a definition of various sta-
tistical measures of correlation, between different subsystems
of a given physical system. Typically one is interested in two
cases:

(i) We have an isolated system, and want to understand
the internal correlations between its different parts, and their
respective dynamics. Figure 1(a) shows a quantum system
S with degrees of freedom divided into N subsystems σj ,
with j = 1, 2, . . . N . We wish to characterize the dynamics
of S in terms of the dynamics of the correlations over the N

subsystems [1].
(ii) Our system S is coupled to an “environment” E , and

we may wish to integrate out, or average over, at least some
of the environmental degrees of freedom [2]. In Fig. 1(b) we
show S coupled to E , which can itself be subdivided into M

subsystems. Now we want to characterize the behavior of both
S and E in terms of both the internal correlations between
their separate subsystems, and also the correlations between
subsystems of S and E . If we average wholly or partially over
the environmental degrees of freedom, we would still like to
be able to characterize the behavior of S .

Our two goals in this paper will be to give a proper char-
acterization of these correlations, and of their dynamics. Now,
in much of the quantum information literature, such questions
have been formulated in terms of entanglement measures, in
work extending over decades—on entanglement and separa-
bility [3–7], on measures of multipartite entanglement [8–10],
on its detection [11,12], and on “disconnectivity” [13]. How-
ever, this line of inquiry leads to apparently insurmountable
complexity when N is large; and it also leads to ambiguity, in
that many different entanglement measures can be used.

We will instead argue for a description entirely in terms
of the set of density matrices for all possible partitions [14]
of the original system (which could be S or S + E). We
will also derive the coupled dynamics of all the partitioned
density matrices, as well as for a set of objects which we call
“entanglement correlators.”

To see what we are talking about, suppose that N = 3.
Then we can write ρS as

ρS = ρ̄1ρ̄2ρ̄3 + ρC
123 + ρ̄1ρ̄

C
23 + ρ̄2ρ̄

C
13 + ρ̄3ρ̄

C
12, (1)

where the ρ̄j are reduced density matrices for the subsystem
j , and the ρC

ij and ρC
123 are density matrices describing the

correlations between the subsystems (including all the dif-
ferent kinds of multipartite entanglement between them). We
can also make a list of all the different possible correlators
for this system, and assemble them into one object—we will
show how this can be done in a way which exhibits all the dif-
ferent kinds of entanglement in terms of these entanglement
correlators.

Once this is done, we proceed to the crucial task of finding
the coupled equations of motion for all of the different reduced
density matrices, and for the related entanglement correlators.
Our results—in a way to be explained—are analogs to the
“Schwinger-Dyson” hierarchy of coupled field correlators in
either relativistic quantum field theory [15] or nonrelativistic
N -particle theory [16] (which reduce in the classical limit to
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy [17] of equations of motion).

The Schwinger-Dyson and BBGKY hierarchies have
played a central role in high-energy physics and condensed-
matter theory—we wish to show, in this and subsequent
papers, that the equations of motion found in this paper will
be just as useful for the dynamics of quantum information
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FIG. 1. Partitioning of systems into cells: in (a) we show an iso-
lated quantum system S partitioned into N = 6 subsystems, labeled
by j = 1, ·, N ; in (b) we have a central system S made up of N = 4
subsystems, labeled by j = 1, ·, N , coupled to an environment E
consisting of M = 4 subsystems, labeled by k = 1, ·, M .

processing systems. Thus we focus in this paper on nonrel-
ativistic systems, in which the subsystems are distinguish-
able. As our primary example we will choose systems of N

“qubits,” or spin-1/2 systems.
In the present paper we deal with isolated systems, and in

a following paper [18] we will deal with systems coupled to
a bath (where several new issues of principle arise). From
a purely physical point of view, the present paper is more
relevant to the dynamics of entanglement, whereas the second
paper will focus more on the dynamics of “disentanglement”
(including what is usually called “decoherence”).

We stress that in this paper we only derive the equa-
tions of motion, but do not try to solve them explicitly. To
do this requires picking a specific Hamiltonian, and then—
since any hierarchy of equations of motion is generally
unsolvable—it needs some approximation scheme. However
what we have done is define an “entanglement correlator
supervector,” which has as coordinates a list of all possible
correlation functions that can be defined between all of the
different operators which exist for a given system. The first-
order differential equation of motion of this vector, written
in matrix form, has sparse matrices, and is thus simple to
solve.

In other papers we will discuss specific applications to
(i) the quantum Ising [19] and central spin systems [20,21];
and (ii) relativistic quantum fields, where we reformulate the
present work in terms of path integrals and “composite field
correlators” [22].

The plan of this paper is as follows. In Sec. II, we describe
any nonrelativistic many-body quantum system S in terms of
a sum over all the different possible partitions of n specific
subsets of S , of functions defined for each of these partitions.
These different parts are assumed distinguishable. We then
write this sum in terms of a complete set of “entangle-
ment correlated density matrices” for the system. Then, in
Sec. III, we show how this works for an N -qubit system,

doing this for a pair and a triplet of qubits as well as for
general N .

Moving on to dynamics, in Sec. IV we derive a hierarchy
of coupled equations of motion for the partitioned density ma-
trices over the different subsystems, with the only assumption
being pairwise interactions between these subsystems; then
we give results for the specific example of an N -qubit system.
In Sec. V, we connect all of this with the measurement of
physical quantities, using the entanglement correlator super-
vector described above.

We have tried to keep technical details to a minimum in
the main body of the paper (and stressed simple examples for
the same reason). Accordingly, lengthy derivations have been
relegated to several appendixes.

II. PARTITIONED DENSITY MATRICES AND THEIR
CORRELATIONS

In what follows we first define a set of correlated density
matrices in terms of the full (unreduced) density matrix of
the entire system S we are dealing with. To make intuitively
clear what these correlated density matrices are, we discuss
in some detail the example of a system partitioned into
four subsystems. Then we give a general expression for the
correlated density matrices for some part An of the entire
system containing n subsystems; and we discuss one of the
key defining properties of the entanglement correlated density
matrices.

A. Definition of correlated density matrices

Consider a system S as in Fig. 1(a), made up of some
number N of distinguishable disjoint subsystems (which we
will often call “elementary cells,” or “cells” for short). We
may then enumerate all possible different ways of partitioning
S into groups of subsets—this list constitutes a set PS . As an
example, in Fig. 2(a) we show the 15 different partitions for
the case N = 4. We can also enumerate all possible subsets
of S , giving another set PS ; using again the case N = 4, we
show the 16 different subsets for this case in Fig. 2(b).

Clearly the two sets PS and PS are not the same. In the
general case where we have N elementary cells, The set PS of
all partitions of S then contains BN members, where BN is the
Bell number [23]. We will label the different partitions by pμ,
with μ = 1, 2, . . . BN , noting that one of the partitions pμ con-
tains only S itself. The number BN grows superexponentially
with N (we have B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52,
and already B15 ∼ 1.4 × 109). We will not, in this paper, need
to know anything more about BN .

The set PS of all different subsets of S is usually called
the “power set” of S . If S again has N members, then PS has
2N members; these are easily enumerated. We will label the
members of PS by aα , where aα = 1, 2, . . . 2N , for a set S
containing N members.

Notice that any given partition of S is made up of a specific
group of subsets of S [thus, e.g., the partition (12|3|4) of
a set S of four members—depicted as the second of the 15
members of the partitions of this set in Fig. 2—is made up of
the subsets (12), (3), and (4) of S]. We can write this statement
as pμ =∏aα∈pμ

aα .
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FIG. 2. Two ways of dividing a set S of n = 4 cells; each cell
is denoted by a black dot. In (a) The different partitions are shown;
there are B4 = 15 of these, where Bn is the Bell number. In (b) the
16 different subsets of S are shown. Note that the last four terms in
(b) will not contribute to the correlated part of the density matrix in
(17), since there is no correlated part of a single cell reduced matrix
[cf. Eq. (6)].

With these distinctions in mind, we would like in what
follows to find an expression for the total density matrix
of the system in terms of all the different reduced density
matrices for the different subsets of S , and of all the different
entanglement correlated density matrices.

We will give a precise definition of these entanglement cor-
related density matrices below. The reduced density matrices
are defined in the usual way, i.e., we define the reduced density
matrix ρ̄aα

for some specific subset aα of S as the partial
trace of the full density matrix over the other subsystem cells
i �∈ aα . We shall write this definition as

ρ̄aα
≡ tr

S\{aα}
ρS , (2)

where S\{aα} denotes the set containing all cells except those
in the subset aα; here and from now on a bar over a density
matrix indicates it is a reduced density matrix.

We can then write the full density matrix in the form

ρS =
∑
A⊆S

⎛
⎝∏

j �∈A
ρ̄j

⎞
⎠ρ̄C

A, (3)

that is, as the sum over all subsets A of S (including the sets
∅ and S) of a “correlated part” ρ̄C

A multiplied by the reduced
density matrices ρ̄j on those remaining individual cells not

contained in A. The above expression should be read with the
following conventions:

ρ̄C
∅

= 1, (4)∏
j∈∅

ρ̄j = 1, (5)

ρ̄C
i = 0, (6)

i.e., we have that (i) the correlated part of the density matrix
ρ̄C
∅

over a set containing no cells is 1; (ii) the product of the
reduced density matrices taken over no cells is taken to be 1;
and (iii) the correlated part of the density matrix for a single
cell is 0.

We notice immediately that the number of terms contribut-
ing to the correlated part of the density matrix must be less
than 2N , the number of members of the power set PS ; we shall
actually find below that it is 2N − N .

To see how these definitions and conventions work, let us
consider as an example some system with a number N > 3
cells. Now suppose we look at what the terms in the sum
(3) look like, in three different cases, viz., (i) where A = ∅,
(ii) where A = {1, 2, 3}, and (iii) where A = S . We then find,
in these cases, that

ρS =
∏
i∈S

ρ̄i (A = ∅), (7)

ρS =
⎛
⎝ ∏

i �∈{1,2,3}
ρ̄i

⎞
⎠ρ̄C

123 (A = {1, 2, 3}), (8)

ρS = ρ̄C
S (A = S ), (9)

respectively.
There are two properties of the entanglement correlated

parts ρ̄C
A that make them useful. First, Eq. (3) is a linear

expansion of the full density matrix in terms of the ρ̄C
A .

Second, we will take it as one of the defining conditions for
the entanglement correlated density matrices that if we trace
any single cell out of ρ̄C

A we get zero; i.e., we have for any
i ∈ A that

tr
i

ρ̄C
A = 0 (∀i ∈ A). (10)

Now Eqs. (3) and (10), taken together, define the correlated
parts ρ̄C

A uniquely. However, we need to unpack these equa-
tions to see what they really mean; and we would also like to
have an explicit expression for ρ̄C

A . In what follows we first
see how to understand (3) with simple examples; and we then
find the desired expression for ρ̄C

A .

B. A four-cell example

The kind of thing we are talking about can be simply under-
stood by looking at a system S composed of four subsystems.
In what follows we do this, and introduce a diagrammatic
representation of the results. We will also see how the expan-
sion over entanglement correlators can be related to one over
“cumulant density matrices.”
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1. Expansion over entanglement correlators

Let us begin by looking at only two subsystems (what we
will call a “two-cell” system). The total density matrix ρS for
S is then

ρS ≡ ρ12 = ρ̄1ρ̄2 + ρC
12 (11)

where ρ̄1 and ρ̄2 are the reduced density matrices for subsys-
tems 1 and 2, respectively, and ρC

12 is that part of ρS in which
there are correlations between the two subsystems. We write
ρS = ρ12 here to indicate the system now is just made up of
two subsystems 1 and 2.

Notice that (11) actually defines what we mean by ρC
12, i.e.,

we have defined ρC
12 as

ρC
12 = ρ̄12 − ρ̄1ρ̄2 (12)

in terms of ρS , ρ̄1, and ρ̄2. The generalization of (11) to a
three-cell system is simple, and was given already above, in
Eq. (1) of the Introduction.

A system consisting of four subsystems, whose partitions
were already shown in Fig. 2, turns out to be more interesting.
Then (3) reads

ρ1234 = ρ̄1ρ̄2ρ̄3ρ̄4 + ρ̄C
12ρ̄3ρ̄4 + ρ̄C

13ρ̄2ρ̄4 + ρ̄C
14ρ̄2ρ̄3

+ ρ̄C
23ρ̄1ρ̄4 + ρ̄C

24ρ̄1ρ̄3 + ρ̄C
34ρ̄1ρ̄2 + ρ̄C

123ρ̄4

+ ρ̄C
234ρ̄1 + ρ̄C

134ρ̄2 + ρ̄C
124ρ̄3 + ρC

1234. (13)

Let us first notice how we get the lower reduced density
matrices from this. We can immediately trace out cell 4, to
get ρ̄123; then, because tr

4
ρ̄C

14 = tr
4
ρ̄C

24 = · · · = tr
4
ρ̄C

124 = · · · =
tr
4
ρ̄C

1234 = 0, we have

ρ̄123 ≡ tr
4
ρ1234 = ρ̄1ρ̄2ρ̄3 + ρ̄3ρ̄

C
12 + ρ̄2ρ̄

C
13 + ρ̄1ρ̄

C
23 + ρ̄C

123

(14)

which is just Eq. (1). We can then trace out cell 3, as well, to
get

ρ̄12 ≡ tr
{3,4}

ρ1234 = ρ̄1ρ̄2 + ρ̄C
12 (15)

which is just Eq. (11).
Analogous expressions exist for ρ̄C

23 and ρ̄C
13; substituting

these into expression (14) and rearranging we then find

ρ̄C
123 = ρ̄123 − ρ̄12ρ̄3 − ρ̄13ρ̄2 − ρ̄32ρ̄1 + 2ρ̄1ρ̄2ρ̄3, (16)

so that finally we get an expression for the fourth-order
correlated part of the density matrix as

ρ̄C
1234 = ρ1234 − ρ̄C

123ρ̄4 − ρ̄C
234ρ̄1 − ρ̄C

134ρ̄2 − ρ̄C
1234ρ̄3

+ ρ̄C
12ρ̄3ρ̄4 + ρ̄C

13ρ̄2ρ̄4 + ρ̄C
14ρ̄2ρ̄3 + ρ̄C

23ρ̄1ρ̄4

+ ρ̄C
24ρ̄1ρ̄3 + ρ̄C

34ρ̄1ρ̄2 − 3ρ̄1ρ̄2ρ̄3ρ̄4. (17)

At this point it is very useful to introduce a diagrammatic
representation for the various functions involved. We repre-
sent the different cells or subsystems with “bullets” (i.e., by
the symbol •), and the reduced density matrix for a group of
cells is shown by linking these cells with a thick line. Then,
for example, the expression ρ̄134ρ̄2 is represented as shown in
Fig. 3(a).

FIG. 3. Diagrammatic representation of some of the terms in the
four-cell density matrix. Cells are indicated by black dots, ordered
from 1 to 4, starting from the top left corner. In (a) we show the term
ρ̄134ρ̄2 appearing in Eq. (17), in (b) we show the term ρ̄C

134ρ̄2, also
appearing in Eq. (17), and in (c) we show the term ρ̄CC

134 ρ̄2, appearing
in Eq. (19). Heavy lines indicate a reduced density matrix, double
light lines an entanglement correlated density matrix, and single light
lines a cumulant density matrix.

We now represent the entanglement correlated density
matrices, like ρ̄C

12, ρ̄
C
123, . . ., by double lines linking the cells.

Then, in the four-cell example, we have for the relation
between the full density matrix ρ1234 and the entanglement
correlated density matrices ρC , given above in (13), the dia-
grammatic representation shown in Fig. 4.

Before continuing with the analysis, we emphasize two
things about these results:

(i) We are not summing over different partitions to get
these results, but over different subsets of the four-site system,
i.e., over the power set.

(ii) The number of different terms shown in Fig. 4 is
not 24 = 16, as one might naively expect for the power set
of our four-site system. Instead it is 24 − 4 = 12. This is
because, as already noted above, the four subsets made from
single individual sites gives no contribution—the correlated
part of a single site density matrix is zero, as specified in
Eq. (6). Thus, since the number of terms missing is N , we
expect a total number of diagrams 2N − N to contribute to the
expansion (3).

2. Expansion over cumulant matrices

As just noted, the expansion (3) is not an expansion over
the different partitions of the total set S , but over the power
set. However one can also do an expansion defined directly
in terms of these partitions, rather than by the zero trace
condition in Eq. (10).

Suppose we take the set PS of all partitions of S , and then
for each one of these partitions we factorize the result into
reduced density matrices for single cells uncorrelated with the
rest, and a set of “cumulant reduced density matrices” ρCC for
the other cells. The expansion of the total density matrix in
terms of these cumulant matrices then has the same structure
as a cumulant expansion of a joint probability function or

FIG. 4. Diagrammatic representation of the expansion of ρ1234

into density matrices for the four subsystems, as expressed in
Eq. (13). We use the same symbols as those in Fig. 3. The terms
shown here correspond to the first 12 terms shown in Fig. 2(b).
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FIG. 5. Diagrammatic representation of the expansion of the
four-cell density matrix into the B4 = 15 different cumulant density
matrices for the subsystems, given in Eq. (19).

functional; i.e., we can write

ρS =
∑

pμ∈PS

∏
A∈pμ

ρ̄CC
A . (18)

Equation (18) can be used to inductively to define ρ̄CC
A , with

the convention that for a single elementary subsystem, the
cumulant matrix ρ̄CC

i is defined to be the reduced density
matrix, i.e., ρ̄CC

i ≡ ρ̄i .
The relation between this cumulant expansion and the

power set expansion we are using here, which is given in
terms of entanglement correlated density matrices, is easily
illustrated for the four-cell problem, for which we find the
cumulant expansion

ρ1234 = ρ̄CC
1234 + ρ̄CC

123 ρ̄4 + ρ̄CC
124 ρ̄3 + ρ̄CC

134 ρ̄2 + ρ̄CC
234 ρ̄1

+ ρ̄CC
12 ρ̄CC

34 + ρ̄CC
14 ρ̄CC

23 + ρ̄CC
13 ρ̄CC

24 + ρ̄CC
23 ρ̄1ρ̄4

+ ρ̄CC
13 ρ̄2ρ̄4 + ρ̄CC

14 ρ̄2ρ̄3 + ρ̄CC
12 ρ̄3ρ̄4 + ρ̄CC

24 ρ̄1ρ̄3

+ ρ̄CC
34 ρ̄1ρ̄2 + ρ̄1ρ̄2ρ̄3ρ̄4 (19)

for ρ1234 in terms of the ρCC .
One can of course invert the relation (18) as well. Thus, for

example, the fourth-order cumulant density matrix is given
in terms of the entanglement correlated matrices ρC and the
reduced density matrices by

ρCC
1234 ≡ ρ̄C

1234 − ρC
12ρ

C
34 − ρC

14ρ
C
23 − ρC

13ρ
C
24, (20)

which when expanded out gives

ρCC
1234 ≡ ρ̄1234 − ρ̄C

123ρ4 − ρ̄C
234ρ1 − ρ̄C

134ρ2 − ρ̄C
1234ρ3

− ρ̄C
12ρ̄

C
34 − ρ̄C

14ρ̄
C
24 − ρ̄C

13ρ̄
C
24

+ 2
(
ρ̄C

12ρ̄3ρ̄4 + ρ̄C
13ρ̄2ρ̄4 + ρ̄C

14ρ̄2ρ̄3 + ρ̄C
23ρ̄1ρ̄4

+ ρ̄C
24ρ̄1ρ̄3 + ρ̄C

34ρ̄1ρ̄2
)− 6ρ̄1ρ̄2ρ̄3ρ̄4. (21)

We can also illustrate the cumulant expansion diagrammat-
ically. If we represent the cumulant reduced density matrices
ρ̄CC

12 , . . . by single lines between the relevant cells [compare
Figs. 3(b) and 3(c)]. Then, for the relation between the full
density matrix ρ1234 and the cumulant density matrices ρCC ,
we have the diagrammatic representation shown in Fig. 5.

We see that the relationship between the full density matrix
ρS and the cumulant density matrices ρCC is the same as that
in a typical cumulant expansion, and so can be derived in the
usual way for any value of n.

Let us summarize what we have learned from this exam-
ple of four cells. We have seen how to give an expansion

FIG. 6. A representation of the sets used in Eq. (23). The set An

is a subset of the whole system S , and contains n members. The set
Cm, which contains m members, is a subset of An.

over entanglement correlated matrices ρC , and over cumulant
density matrices ρCC , and that for N cells the number of
each is 2N − N and BN respectively; and we have seen how
to give a diagrammatic representation of all the terms in
each. However, we still do not know how to write explicit
expressions for the ρC ; to this we now turn.

C. General properties of entanglement correlated
density matrices

As we have just seen, the relationship between ρS and the
cumulant density matrices ρCC is relatively straightforward.
On the other hand, the relationship between ρS and the entan-
glement correlated density matrices ρC is not so obvious—we
need a general expression for the correlated part of the total
density matrix. To properly understand things we now turn to
the general case.

What we wish to show now is how, for a general subset
A(n)

α of n cells of a total system S containing N cells, the
correlated part of the reduced density matrix can be written
as a sum over terms involving the reduced density matrices
for all subsets C (m)

μ ⊆ A(n)
α . The notation used here labels the

specific subsets C (m)
μ and A(n)

α by the subscripts μ and α; the
superscripts m and n tell us how many cells are contained in
these subsets. This is illustrated in Fig. 6. The key result we
find can be written as

ρ̄C

A(n)
α

=
n∑

m=2

(−1)(n−m)
∑

C (m)
μ ⊆A(n)

α

⎛
⎝ρ̄Cm

∏
j∈A(n)

α \C (m)
μ

ρ̄j

⎞
⎠

− (−1)n(n − 1)
∏

j∈A(n)
α

ρ̄j , (22)

which says that the entanglement correlated density matrix
ρ̄C

A(n)
α

for the specific set A(n)
α of cells can be written as a

sum over entanglement correlated density matrices for all
the different subsets C (m)

μ of A(n)
α , multiplied by the product

of the reduced matrices for all the cells j that are not included
in the subset C (m)

μ [this being the first term in (22)], minus
a term which is simply the product of all the individual cell
reduced density matrices for all the cells in A(n)

α .
To reduce somewhat the profusion of indices in this ex-

pression, we will henceforth write expressions of this kind
without the Greek indices labeling the specific subsets—thus
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(22) becomes

ρ̄C
An

=
n∑

m=2

(−1)(n−m)
∑

Cm⊆An

⎛
⎝ρ̄Cm

∏
j∈An\Cm

ρ̄j

⎞
⎠

− (−1)n(n − 1)
∏
j∈An

ρ̄j . (23)

The simplest way to demonstrate the result in Eqs. (22)
and/or (23) is to construct an inductive proof—this is done
in Appendix A. This result shows how one can define n-cell
entanglement explicitly in terms of all possible combinations
of m-cell entanglements over the different subsets of the n

cells, ∀m < n, along with products of single cell reduced
density matrices. We shall see in the next two sections how
we can employ Eq. (23) to define a set of correlation functions
which exhaustively characterize all the different kinds of
entanglement that exist at the nth level, i.e., for a set of n

entangled cells.
As noted above, a key property of the entanglement corre-

lation density matrices ρ̄C is that any partial trace over ρ̄C
An

in (23), i.e., one in which we trace out any i ∈ An, gives
zero—compare Eq. (10). In the discussion above, we treated
this equation as a defining property of the ρ̄C . However, one
can also derive the result explicitly from the expression (23).
The derivation is given in Appendix A 2.

Let us now recapitulate. The basic result of this section
is contained in Eq. (22), otherwise written as (23), which
gives a way of decomposing a density matrix for some system
S into a sum over reduced density matrices and correlated
density matrices over all the possible subsystems of S . The
discussion has been rather abstract. In the next section we see
how to understand this result for some simple examples; and
in Sec. IV we see how it may be applied to unravel the coupled
dynamics of all the different subsystems.

III. EXAMPLE: N-QUBIT SPIN SYSTEM

The example of a set of spins is extremely useful in
understanding what is going on in the hierarchy of density
matrices. In what follows we consider a system S of N

spin-1/2 “qubits,” with fixed pairwise interactions between
them. This is a simple toy model for a quantum information
processing system. It is also used to model many real physical
materials devised for quantum information processing, where
a decohering bath also exists—examples abound in solid-state
electronic and nuclear-spin systems [24–27] as well as neutral
cold atoms [28].

In this example, our “elementary cells” become much
simpler—each cell is a single spin-1/2 degree of freedom.
Because these cells are irreducible, i.e., can no longer be split
into a set of smaller “subcells,” we will refer in this case to the
cells as “sites.”

Apart from discussing the general N -qubit case, we also
look in detail at pairs and triplets of spins (N = 2, 3). The
results are useful—in particular, they teach us that the easiest
way to understand the hierarchy of entanglement at the level
of different qubits is just to look at the different partitioned
correlated density matrices.

A. General results for N coupled qubits

In what follows we wish to write some of the results of
the last section for a set of N qubits—these results will hold
regardless of what kinds of interaction may exist between the
qubits, or what external fields may be acting on them.

1. Spin representations

We begin by establishing some notation. In dealing with
a set of N spin halves we write Pauli matrices for each
spin as {σμ

i } (where i ∈ {1, 2, . . . , N} labels the site and
in the “Cartesian” representation μ ∈ {x, y, z} denotes the
Cartesian components). We will also use a “ladder operator”
representation: defining

σ± ≡ 1√
2

(σx ± iσ y ) (24)

we will use barred indices, μ̄ ∈ {+,−, z}, to describe the
different components of the spins in this representation so that

〈σ μ̄〉 =
⎛
⎝〈σ+〉

〈σ−〉
〈σ z〉

⎞
⎠. (25)

Then for a single spin we have the density matrix in the
Bloch representation [29]

ρ = 1
2 (1 + 〈σ 〉 · σ ). (26)

so that trρ2 = 1
2 (1 + 〈σ 〉2), and for a pure state the polariza-

tion 〈σ 〉 sits on the Bloch sphere, with |〈σ 〉| = 1; otherwise
|〈σ 〉| < 1. In the ladder representation this single-spin density
matrix is written

ρ = 1
2

(
1 + 〈σ+

i 〉σ−
i + 〈σ−

i 〉σ+
i + 〈σ z

i

〉
σ z

i

)
. (27)

Notice that in the Cartesian representation the trace
trσμσ ν = 2δμν , so that the coefficient of a given operator

in any operator expansion is the expectation of that opera-
tor. This is no longer true in the ladder representation, i.e.,
trσ μ̄σ ν̄ �= 2δμ̄ν̄ . However if we introduce a notation in which

we distinguish between upper and lower indices, and define
the lowered vector as the Hermitian conjugate of the operator
with raised index, i.e.,

σμ̄ ≡ (σ μ̄)† (28)

so that σ± = σ∓ and σz = σ z, then we have the trace identity:

trσ μ̄σν̄ = 2δμ̄
ν̄ . (29)

In what follows we will denote the eigenstates of σ̂z by |↑〉,
|↓〉, so that

|↑〉〈↑| = 1
2 (1 + σ z), (30)

|↓〉〈↓| = 1
2 (1 − σ z), (31)

and for a pure state at some angle φ in the xy plane,

ρσσ ′ = 1
2 (|↑〉 + eiφ|↓〉)(〈↑| + e−iφ〈↓|)
= 1

2 (1 + cos φσx + sin φσy ), (32)

with σ, σ ′ = ±1 labeling the rows and columns of the density
matrix.
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2. General results for N qubits

We assume a system of N qubits {σ j }, with j =
1, 2, . . . N . Let us write the density matrix for this system S
in the form

ρS = 1

2N

∑
C⊆S

〈∏
i∈C

σ
μi

i

〉∏
i∈C

σ
μi

i , (33)

in which the density matrix contains contributions from all 2N

distinct subsets C of the set S . The contribution to the density
matrix from a given cluster C is determined by the correlation
tensor for those spins contracted into a product of the Pauli
matrices then multiplied by a normalization factor.

Clearly ρS , composed entirely of Pauli matrices, must be
Hermitian. The trace of ρS comes from the contribution in
which C is the empty set (because all the Pauli matrices are
traceless) which is 2−N tr(I ) = 1 as required. One can verify

that tr(σμ
1 ρS ) = 〈σμ

1 〉, etc., by using the relation σ
μ
1 σα

1 =
δμαI1 + iεμαγ σ

γ

1 and using the traceless property of the Pauli
matrices (so that any term in the sum which contains a
Pauli matrix after it has been multiplied by σ

μ
1 gives zero).

In general the density matrix must be positive semidefinite,
although this is a hard condition to get a handle on using the
representation (33), as it depends on the spectrum of ρS . If
ρS represents a pure state then ρ2

S = ρS , which can be used to
derive those relations among the correlation functions which
hold for pure states (see Sec. III B 1 below for examples).
More generally we have

trρ2
S = 1

2N

∑
C⊆S

〈∏
i∈C

σ
μi

i

〉〈∏
i∈C

σ
μi

i

〉
� 1. (34)

As noted above, there are 2N possible C ⊆ S . When one
takes the partial trace of (33) we see that the expression for a
reduced density matrix on a set A ⊂ S containing n spins is
of the same form as (33), viz.,

ρA = 1

2n

∑
C⊆A

〈∏
i∈C

σ
μi

i

〉∏
i∈C

σ
μi

i . (35)

By using the trace identity (29) we also see that the repre-
sentation of the density matrix in terms of barred variables is
just

ρS = 1

2N

∑
C⊆S

〈∏
i∈C

σ
μ̄i

i

〉∏
i∈C

σi μ̄i

= 1

2N

∑
C⊆S

〈∏
i∈C

σi μ̄i

〉∏
i∈C

σ
μ̄i

i , (36)

so that this representation of ρS is identical in form to the
Cartesian representation in (33).

B. Some examples

The following simple examples are useful in that they not
only illustrate much of the general theory discussed so far, but
they also indicate some of the ways in which it can be further
developed.

1. A pair of spins

Consider a pair of spins σ 1, σ 1, for which the density
matrix is [30]

ρ12 = 1

4

⎛
⎝1 +

∑
j=1,2

〈σj μ〉σj
μ + 〈σ1μσ2ν〉σ1

μσ2
ν

⎞
⎠. (37)

We can split this up to a correlated and uncorrelated part,
according to

ρ12 = ρ1ρ2 + ρC
12

= 1

4

∏
j

(1 + 〈σj μ〉σj
μ) + 1

4
〈〈σ1μσ2ν〉〉σ1

μσ2
ν, (38)

where we have defined

〈〈σ1μσ2ν〉〉 = 〈σ1μσ2ν〉 − 〈σ1μ〉〈σ2ν〉. (39)

Now ρ12 is a 4 × 4 Hermitian matrix with unit trace, and
as such has 16 − 1 = 15 free real parameters, viz., three
components of 〈σ 1〉 and 〈σ 2〉 each, and nine components of
〈σ1μσ2ν〉. In the case of a single qubit in a pure state, the spin
had to lie on the Bloch sphere. In the two-qubit case things
are more complicated; for a pure state one requires ρ2

12 = ρ12,
which leads to the following constraints on the correlators:

3 = 〈σ 1〉2 + 〈σ 2〉2 + 〈σ1μσ2ν〉〈σ1
μσ2

ν〉, (40)〈
σ

μ
1

〉 = 〈σμ
1 σ

β

2

〉〈
σ

β

2

〉
, (41)〈

σ
μ
2

〉 = 〈σβ

1 σ
μ
2

〉〈
σ

β

1

〉
, (42)〈

σ
μ
1 σ ν

2

〉 = 〈σμ
1

〉〈
σ ν

2

〉− 1
2εμαλενβγ

〈
σα

1 σ
β

2

〉〈
σλ

1 σ
γ

2

〉
. (43)

This gives 1 + 3 + 3 + 9 = 16 constraint equations on the
correlators for a pure state—obviously only ten of these are in-
dependent, since there is a six-dimensional set of real numbers
which describes the possible pure states (eight real numbers
describe a two-qubit ket |ψ〉, reduced by 2 by the requirements
of normalization and the invariance of ρ12 = |ψ〉〈ψ | under
phase rotations). For the pure state,

|ψ〉 =
∑
σσ ′

aσσ ′eiφσσ ′ |σσ ′〉, (44)

where σ, σ ′ = |↑〉, |↓〉; the normalization condition is then∑
σσ ′ a

2
σσ ′ = 1.

For a general mixed state of two qubits, Eqs. (40)–(43)
are replaced by a set of three independent inequalities, which
ensure the positivity of the density matrix [31]. This reflects
the fact that a mixed state density matrix requires 15 inde-
pendent real parameters (the 16 required to define an arbitary
4 × 4 Hermitian matrix, minus 1 because the matrix must be
traceless) rather than the eight required to define a pure state.

Of particular interest for qubit pairs are “cat states,” which
are fully entangled. An example of such a state is |�C

2 〉 with
the wave function and density matrix given by∣∣�C

2

〉 ≡ 1√
2

(|↑ ↑〉 + eiφ↓↓ |↓ ↓〉), (45)

∣∣�C
2

〉〈
�C

2

∣∣ = 1

4

(
1 + cos φ↓↓

[
σx

1 σx
2 − σ

y

1 σ
y

2

]
+ sin φ↓↓

[
σ

y

1 σx
2 + σx

1 σ
y

2

]+ σ z
1 σ z

1

)
. (46)
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When we come to look at entanglement dynamics, it is then
the correlated part of these functions which will interest us.

Let us now consider the relationship between ρC
12 and the

different types of entanglement. There is some subtlety in
this [3], especially in the case of mixed states. Consider, for
instance, a mixed state which is an incoherent mixture of the
state |↑ ↑〉, with spins polarized in the z direction, and the
state | →→〉, with both spins polarized in the x direction, so
that

ρ12 = 1
2 (|↑ ↑〉〈↑ ↑| + | →→〉〈→→ |)

= 1
4

[
1 + 1

2 (x̂ + ẑ) · (σ 1 + σ 2) + 1
2

(
σx

1 σx
2 + σ z

1 σ z
2

)]
.

(47)

Now ρ12 has nonzero correlation functions; we have〈〈
σx

1 σx
2

〉〉 = 〈〈σ z
1 σ z

2

〉〉 = −〈〈σx
1 σ z

2

〉〉 = −〈〈σ z
1 σx

2

〉〉 = 1
4 . (48)

On the other hand, since ρ12 is an incoherent mixture of
two separable states, it has zero entanglement of formation
[4]. This is not the only measure of entanglement; and for a
general mixed state the formulas for different entanglement
measures may be quite complicated.

This example shows nicely that it makes sense to con-
sider directly the set of correlators, instead of the different
entanglement measures. Because the full set of 15 correlators
completely specifies the density matrix, all information about
entanglement between the pair of qubits is then contained
in these correlators. Since any entanglement witness [6,7,11]
used to detect entanglement is necessarily a Hermitian oper-
ator, it follows that its expectation can also be written as a
weighted sum over the correlators. Thus we can simply use
the correlators themselves as the primary quantities, whose
behavior is to be determined.

2. Three spins

For a system with three spins, the general density matrix is
written as a sum over correlators as

ρ123 = 1

8

⎛
⎝1 +

∑
j

〈σ1μ〉σj
μ +

∑
i<j

〈σiμσj ν〉σi
μσj

ν

+ 〈σ1μσ2νσ3λ〉 σ1
μσ2

νσ3
λ

⎞
⎠. (49)

We now have a number of different types of entangled state.
Consider as an example the three different states

∣∣�a
3

〉 = 1√
2

(|↑ ↑↓〉 + |↓ ↓↓〉), (50)

∣∣�b
3

〉 = 1√
2

(|↑ ↑↑〉 + |↓ ↓↓〉), (51)

and

∣∣�c
3

〉 ≡ 1√
3

∑
σ1,σ2,σ3

|σ1σ2σ3〉δ
⎡
⎣
⎛
⎝∑

j

σj

⎞
⎠+ 1

⎤
⎦

= 1√
3

(|↑ ↓↓〉 + |↓ ↓↑〉 + |↓ ↑↓〉). (52)

For each of these states we can find the nonzero expectation
values for the correlators in the density-matrix representation
(49). Consider first |�a

3 〉, for which

|�a
3 〉 :

〈
σ z

3

〉 = 〈
σ

y

1 σ
y

2

〉 = 〈σx
1 σx

2 σ z
1

〉 = 〈σ z
1 σ z

2 σ z
1

〉 = −1,〈
σx

1 σx
2

〉 = 〈
σ z

1 σ z
2

〉 = 〈σy

1 σ
y

2 σ z
2

〉 = 1. (53)

We see that |�a
3 〉 does not have three-qubit entanglement,

because we can write |�a
3 〉 = 1√

2
(|↑ ↑〉 + |↓ ↓〉) ⊗ |↑〉, and

this is reflected in the fact that the correlated part of the three
point function 〈〈σ1σ2σ3〉〉 = 0 is zero. However it does have
two-qubit entanglement and single qubit polarization.

Now consider the other two states, for which we have∣∣�b
3

〉
:
〈
σ z

1 σ z
2

〉 = 〈
σ z

1 σ z
2

〉 = 〈σ z
1 σ z

3

〉 = 〈σ z
2 σ z

3

〉
= 〈

σx
1 σx

2 σx
3

〉 = 1,〈
σx

1 σ
y

2 σ
y

3

〉 = 〈
σ

y

1 σx
2 σ

y

3

〉 = 〈σy

1 σ
y

2 σx
3

〉 = −1 (54)

for the second state, and∣∣�c
3

〉
:
〈
σ z

i

〉 = 〈
σ z

i σ z
j

〉 = − 1
3 ,

〈
σx

i σ x
j

〉 = 〈σy

i σ
y

j

〉 = 2
3 ,〈

σ z
1 σ z

2 σ z
3

〉 = 1,
〈
σx

i σ x
j σ z

�

〉 = 〈σy

i σ
y

j σ z
�

〉 = 2
3

(for i, j, � distinct ∈ {1, 2, 3}) (55)

for the third state. Both |�b
3 〉 and |�c

3〉 do have three qubit
entanglement, as the correlated three-qubit functions are
nonzero (this is especially obvious in the case of |�b

3 〉, which
is the superposition of two terms, each of which is obtained
from a triple spin flip of the other). Both states also have
two-qubit entanglement, and |�c

3〉 also has single qubit po-
larization. It can be shown that the states |�b

3 〉 and |�c
3〉 are

members of the only two different classes of fully entangled
three-qubit states [8], and all other fully entangled states
can be obtained from them by local operations assisted with
classical communication.

We observe that neither of the states |�b
3 〉, |�c

3〉 has a full
“three-qubit entanglement” in the way that |�C

2 〉 has full “two-
qubit entanglement.” For |�C

2 〉 all the single qubit correlators
are zero, whereas for the three-qubit system it is impossible
for the following three conditions to hold at once:

〈
σ

μ

i

〉 = 0 ∀i ∈ {1, 2, 3}, (56)〈
σ

μ

i σ ν
j

〉 = 0 ∀i �= j ∈ {1, 2, 3}, (57)

ρ123 represents a pure state. (58)

To show this, we note that the first two conditions imply
ρ123 = 1

8 (I + 〈σ1μσ2νσ3λ〉σμ
1 σ ν

2 σλ
3 ). We can then calculate

ρ2
123 and we find that the “σ1σ2σ3” component is

1
32 〈σ1μσ2νσ3λ〉σμ

1 σ ν
2 σλ

3 �= 1
8 〈σ1μσ2νσ3λ〉σμ

1 σ ν
2 σλ

3 , (59)

where the inequality �= holds for any nonzero value of
〈σ1μσ2νσ3λ〉. Thus the state cannot be pure.

3. N-qubit states

There are still simple questions one can ask about N -qubit
states, for example, whether an analog of the statements (56)–
(58) is true when we have N qubits. In other words, one can
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ask whether the N -qubit density matrix

ρ12...N = 1

2N

(
I + 〈σμ1

1 σ
μ2
2 . . . σ

μN

N

〉
σ

μ1
1 σ

μ2
2 . . . σ

μN

N

)
(60)

represents a valid pure state. The answer is that this is true
only if N = 1 or N = 2. For N = 3 we have just seen that
it is not a pure state, and proofs for the nonexistence of pure
states of the form (60) for N � 4 are given in the literature
[10], and references therein.

When we deal with the full complexity of N -qubit states,
it is hard to get very far in their analysis beyond simple
statements of this kind. The number of possible partitions
of the system becomes immense, growing superexponentially
as the Bell number, and to characterize the entanglement
properties is clearly going to be very complicated. There is
a large body of literature on the different types of multipartite
entanglement, along with several reviews [3,9,11].

However, again, even for N spins, any observable witness
we build to diagnose this entanglement can be expressed as
a sum of different clusters of Pauli operators. Thus again
it makes sense to go back to the study the dynamics of
these correlators, in order to understand the dynamics of
entanglement—this is perhaps the main lesson of the exam-
ples just examined. We therefore now turn to this dynamics.

IV. DYNAMICS OF PARTITIONED DENSITY MATRICES

One of our two main objectives in this paper is to derive the
dynamics of the entanglement correlated density matrices. For
a system S made up from N subsystems or cells, this means
finding the equations of motion for each of the reduced density
operators ρ̄A(n)

α
, as well as the correlated density operators

ρ̄C

A(n)
α

,which describe the different subsets ρ̄
(n)
Aα of S . Now,

unless the Hamiltonian for S is trivially noninteracting (i.e.,
it consists of a simple sum of terms over each cell, with no
interactions between the cells), it is clear that these equations
of motion will actually couple the different ρ̄C

A(n)
α

, since any
subset An will have interactions with cells not contained in
that subset (unless of course ρ̄C

An
= S). Thus we will end up

with a set of coupled equations of motion, which takes the
form of a hierarchy of coupled differential equations.

Equations of motion can be of enormous power if they are
solvable. In the next section we will discuss some ways in
which this can be done, and how it will be feasible to give
solutions. However the real demonstration of the usefulness
of the results derived here has to come in the study of specific
models, which is given in other papers [18–20].

In this section we begin by deriving the hierarchy for
a general closed system in which all interactions between
the different cell subsystems are pairwise. Then, in order to
see how things look for a specific example, we derive the
hierarchy for the system of N qubits discussed in the previous
section, with a set of local fields on each qubit as well pairwise
interactions between them.

A. Result for N-partite system

In the most common kind of Hamiltonian in physics, one
has (i) a “free” or trivial part which only acts inside individ-
ual cells, along with (ii) an interacting part which contains

pairwise terms between cells. The Hamiltonian then takes the
form

HS ≡ H 0
S + HI

S =
∑
j∈S

⎛
⎝H 0

i + 1

2

∑
i �=j∈S

Vij

⎞
⎠. (61)

We make no assumptions for the moment about the nature
of the cells, or of the interactions between them, except those
assumptions already noted in the Introduction, viz., that we
refer to distinguishable sets of degrees of freedom for each
cell (so that there are no “exchange terms” between cells), and
the system is assumed nonrelativistic.

The equation of motion for the system density matrix is

ih̄∂tρS = [HS, ρS ]. (62)

Starting from this equation, and taking its trace over all cells
except those contained in An, one can derive an equation of
motion for the reduced density matrix ρ̄An

which takes the
form

ih̄∂t ρ̄An
= [H̄An

, ρ̄An

]+
∑
� �∈An

tr
�

⎛
⎝∑

j∈An

[Vj�, ρ̄An∪{�}]

⎞
⎠, (63)

where we have defined an effective local Hamiltonian (i.e.,
one entirely restricted to An), by

H̄An
=
∑
j∈An

⎛
⎝H 0

i + 1

2

∑
i �=j∈An

Vij

⎞
⎠. (64)

Although Eq. (63) apparently has a fairly simple form, its
derivation is actually quite lengthy, and we have found no way
to shorten it. This derivation appears in Appendix B 1.

We can interpret (63) by noting first that the time evolution
of ρ̄An

is determined both by the local Hamiltonian HAn
,

acting solely on An, and by the effect of interactions on all
possible sets containing An along with one other member.

One can think of the local effective Hamiltonian as one
in which all interaction terms act solely on pairs of cells
within An, i.e., it is an “internal” effective Hamiltonian for
An. The second “interaction” term in (63) is then one in which
Vjl couples ρ̄An

to “larger” reduced density matrices ρ̄An∪{�}
which involve not only all the cells in An but also one other
cell � from S that is outside An; we then sum over all the
different cells {�} that are outside An. That there is only one
other cell involved follows because we have only pairwise
interactions in the original Hamiltonian.

To see how this works let us consider a simple example.
Suppose one has an N -cell system S , and we define a specific
subset A(n)

α of S by removing four designated cells from S (so
that n = N − 4). This example is illustrated in Fig. 7. Writing
out the sum over � in Eq. (63) explicitly we have (omitting the
subscripts on the set variables)

ih̄∂t ρ̄A = [H̄A, ρ̄A] +
∑
j∈A

(
tr
1
[Vj1, ρ̄A∪{1}]

+ tr
2
[Vj2, ρ̄A∪{2}] + tr

3
[Vj3, ρ̄A∪{3}]

+ tr
4
[Vj4, ρ̄A∪{4}]

)
(65)

and we see explicitly how the equation of motion for the
(N − 4)-cell system A(n)

α involves a coupling between the
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FIG. 7. An illustration of the terms in the sum in Eq. (65). The
set A, a subset of the total system S , is shown in blue in (a), along
with four other sets 1,2,3,4 distinct from A. Then in (b) in green we
show the four different sets that can be made from the union of A
and one of the other sets. We have omitted the subscripts on the set
variables.

(N − 4)-cell density matrix ρA(n)
α

and a set of (N − 3)-cell
density matrices ρ̄A(n)

α ∪{�}, with � = 1, 2 . . . 4.
In the next subsection we discuss the example of a spin

system; this will allow us to work out expressions like this
explicitly.

As already noted above, there is a loose analogy here with
the Schwinger-Dyson equations in quantum field theory and
in nonrelativistic many-body theory, in that we end up with
a chain of coupled integrodifferential equations for the ρ̄A(n)

α

(here we restore the indices α and n, to emphasize that we
are dealing in all these equations with a specific subset of S
in which n denotes the number of cells involved, and α is the
specific set of n cells that has been chosen).

B. Hierarchy of equations for reduced density
matrices N spin 1/2’s.

For our set of N spin 1
2 ’s, the {σ i}, the cells again become

individual sites, each with its own spin. We wish to find the
dynamics of the various spin correlators, following the general
theory given in Sec. IV A. For this we need a Hamiltonian for
the N -spin system. The general pairwise interaction Hamilto-
nian for this case is

H =
∑

i

1

2
hi · σ i +

N∑
i=1

∑
j<i

1

2
V

μν

ij σ
μ

i σ ν
j . (66)

In this Hamiltonian each spin feels a local field hj , and we
have a pairwise interaction V

μν

ij between the spins. Commonly
used examples are (i) the quantum Ising model, for which
hi = hox̂ and V

μν

ij σ
μ

i σ ν
j = V zz

ij δμzδνz, and (ii) the nearest-
neighbor Heisenberg model, where hi = h is a uniform ex-
ternal field, and V

μν

ij σ
μ

i σ ν
j = Joδ

μν , with i, j restricted to be
nearest neighbors.

In what follows we first derive the general hierarchy of
equations of motion, and then look at some simple spacial
cases.

1. General form of hierarchy

We derive the equations of motion for the various spin cor-
relators from the reduced density matrix equation of motion

we have found in (63). Again, we pick a specific subset A
of the total N -spin system; we will therefore be interested in
the time evolution of expectation values of products of spin
operators for spins in A.

The result of the calculation can be read off from the
general equation of motion in (63); the commutators are
evaluated in Appendix B 2, and we find

d

dt

〈∏
i∈A

σ
μi

i

〉
=
∑
i∈A

εμiανhα
i

〈
σ ν

i

∏
j∈A\{i}

σ
μj

j

〉

+
∑
i∈A

∑
j∈A\{i}

εμiανV
αμj

ij

〈
σ ν

i

∏
k∈A\{i,j}

σ
μk

k

〉

+
∑
i∈A

∑
� �∈A

εμiανV αλ
i�

〈
σλ

� σ ν
i

∏
j∈A\{i}

σ
μj

j

〉

(67)

in which we see the characteristic form of a coupled hierarchy
of differential equations: the time derivative of the correlator
is given in terms of correlators between spins in A and corre-
lators among all possible subsets of A with one spin removed,
as well as all possible sets made from adding one spin to A.
The local field term mixes up the different correlators between
qubits in the cluster of qubits A, while the interaction terms
“transfers correlations” to clusters which contain either one
less or one more qubit.

The result (67) is still rather forbidding, mainly because
it describes the dynamics of correlators for all of the spins
contained in A. To make it more transparent, we now consider
two special cases of this general result.

2. One- and two-spin correlators

To simplify Eq. (67), we can make the subset A small. We
consider the two simplest cases, where A includes one or two
sites.

Single-site A. Suppose A is just a single spin; without
loss of generality we call this “site 1.” Then there is only
one correlator, given by the expectation value 〈σμ

1 (t )〉; the
equation of motion, read off from (67), is just

d

dt

〈
σ

μ
1

〉 = εμ1αβ

⎛
⎝hα

1

〈
σ

β

1

〉+∑
� �=1

V αλ
1�

〈
σλ

� σ
β

1

〉⎞⎠, (68)

where we recall that V
αβ

ii = 0, i.e., there is no on-site interac-
tion apart from the local field hi , and we note again that the
product over an empty set just gives unity for the third term in
(67). In vector notation Eq. (68) reads

d

dt
〈σ 1〉 = (h1 + Ṽ1) × 〈σ 1〉, (69)

where the total field Ṽ1 acting on σ 1 from all the other spins,
via the interaction, has components

Ṽ α
1 =

∑
� �=1

V αλ
1�

〈
σλ

�

〉
. (70)
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Thus (69) is simply telling us that spin 1 is precessing in a
total field coming from the local external field plus the field
on site 1 generated by all the other spins, via the interaction.

This result is of course well known, and can be derived
trivially starting directly from the Hamiltonian. The second
term in (69) can be thought of as a “Hartree” mean-field
interaction term.

Two-site A. Slightly less trivial is the result we get when
A incorporates a pair of sites, which we call site 1 and site 2.
We are then interested in the dynamics of the pair correlator
〈σμ1

1 σ
μ2
2 〉, and we find

d

dt

〈
σ

μ1
1 σ

μ2
2

〉 = ∑
j �=j ′=1,2

εμj αβ

⎡
⎣hα

j

〈
σ

β

j σ
μj ′
j ′
〉+ V

αμj ′
12

〈
σ

β

j

〉

+
∑
� �=1,2

V αλ
j�

〈
σλ

� σ
β

j σ
μj ′
j ′
〉⎤⎦, (71)

where
∑

j �=j ′=1,2 means that we sum over both j and j ′, with
the restriction that j �= j ′. This result contains both the fields
we already saw for the single-site correlator (but now acting
on both spins) plus a term, the second term on the right-hand
side in (71) above, which accounts for the interaction between
the two spins.

We can now see intuitively how the results will develop
as one goes to correlators including larger numbers of spins
in A. It is also interesting to see how things simplify if we
look at a very small total system. Thus, e.g., suppose system S
comprises only N = 2 spins. Then the subsystem A is just the
whole system, and we expect the result to be trivial. Writing
out all terms explicitly, we have

d

dt

〈
σ

μ1
1 σ

μ2
2

〉 = εμ1αβ
(
hα

1

〈
σ

β

1 σ
μ2
2

〉+ V αμ2
o

〈
σ

β

1

〉)
+ εμ2αβ

(
hα

2

〈
σ

β

2 σ
μ1
1

〉+ V αμ1
o

〈
σ

β

2

〉)
, (72)

where we have written V12 = Vo for the interspin interaction;
the role of the effective fields acting on the one- and two-spin
correlators is now transparent.

3. Analogy to Schwinger-Dyson hierarchy

The Schwinger-Dyson hierarchy [15,16] exists in both
relativistic and nonrelativistic forms—it is an infinite chain
of coupled equations of motion for n-point correlators, whose
specific form depends on the interactions in the theory being
treated. Its general form is similar to the classical BBGKY
hierarchy [17].

To see how this relates to what we have done, consider
the Schwinger-Dyson hierarchy for a simple scalar field La-
grangian of form

L = 1
2φK̂−1

o φ − V (φ), (73)

where K̂o is the free field propagator. Here x is a space-time
coordinate, and to be definite let us assume a simple local
“pairwise” interaction of the form

V (φ) = g

4!
φ4(x). (74)

Then the Schwinger-Dyson hierarchy for the n-point correla-
tion functions Gn({xj }), with j = 1, . . . n, is given by

K−1
o (x, x)Gn(x, x ′

1, . . . , x
′
n−1)

− g

6
Gn+2(x, x, x, x ′

1, . . . , x
′
n−1)

= ih̄

n−1∑
j=1

δ(x − x ′
j )G̃n−2({x ′

j }), (75)

where K−1
o (x, x ′) = 〈x|K̂−1

o |x ′〉. If we multiply (75) through
by K̂o, we have

Gn(x, x ′
1, . . . , x

′
n−1)

+ g

6

∫
d4z Ko(x − z)Gn+2(zzz, x ′

1, . . . , x
′
n−1)

+ ih̄

n−1∑
j=1

Ko(x − x ′
j )G̃n−2({x ′

j }) = 0. (76)

In both of these equations we define the “reduced” correla-
tor G̃n−2({x ′

j }) by

G̃n−2({xj }) = Gn−1(x ′
1, . . . x

′
j−1, x

′
j+1, . . . , x

′
n−1) (77)

from which the external legs with coordinates x ′
j and x ′

n have
been removed.

The hierarchical form of Eq. (76), in which correlators Gn

are coupled to both higher and lower correlators, is very clear.
Physically, one describes this equation by saying that if we
have an excitation propagating from x ′

j to x in the presence of
a set of mutually interacting excitations propagating between
the points x ′

1, . . . x
′
j−1, x

′
j+1, . . . , x

′
n−1, then it can do so with

or without interacting with the other excitations.
Mathematically, we see that the main differences between

the Schwinger-Dyson hierarchy and the one we have derived
here are as follows:

(i) Here we are not dealing with the propagation of cor-
relators like Gn between different space-time intervals, but
instead with time-local correlators in which space does not
appear (in its place we have cell or site indices i, j, . . . ).

(ii) In contrast with field theory where equations simplify
because the variables are indistinguishable, the variables con-
sidered here on different cells or sites are distinguishable,
and each such variable has to be identified explicitly in the
equations of motion. This makes the equations more complex.

One can of course integrate equations like (63), (65), or
(67), over time—in analogy with the passage from (75) to
(76). The resulting form can be seen by choosing simple
examples, such as the spin examples in (69) or (71). The
same interpretation applies—the spins in A can evolve with
or without interacting with other spins outside A.

Such an approach is very useful when dealing with regular
lattices of, e.g., spins; then we can apply decoupling tech-
niques to the resulting hierarchy very similar to those used
for the Schwinger-Dyson equations. An example appears in
Gomez-Leon et al., applied to the quantum Ising model [19].

However, in dealing with the general case, we would like
to develop other approaches, to which we now turn.
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V. ENTANGLEMENT CORRELATORS

The hierarchy of equations just derived has a clear physical
interpretation, and allows us to formulate the idea of different
levels of entanglement. However, these equations of motion
are not all that convenient to solve. We want a more practically
useful formulation.

In what follows we give such a formulation. The basic idea
is fairly simple: we define a “supervector” X(t ), whose com-
ponents are an ordered list of all the different time-dependent
correlation functions. We then derive a linear first-order dif-
ferential equation for the time dependence of this vector. We
then find that the relevant matrix driving the dynamics of the
supervector X is typically sparse, making it straightforward to
diagonalize.

In keeping with the rest of this paper, we do not attempt
to solve the equation of motion for X(t )—this will be done
elsewhere, in studies of specific models.

To more easily explain the development, we do things first
for a simple two-spin problem, and then discuss some aspects
of a general formulation of this kind. In particular, we describe
how one treats a pair of coupled systems, and how to treat
the equation of motion perturbatively, when there is a small
parameter.

A. Example: Entanglement correlator dynamics—two qubits

For an arbitrary quantum system, the set of all possible
observables is usually rather complicated. However in the
case of spin systems, one can make an exhaustive list. For
a single spin τ , the spin dynamics is completely defined by
giving, as a function of time, the expectation values of all three
components 〈τμ(t )〉. For a pair of spins τ 1 and τ 2, 15 different
correlators are required, viz., 〈τ 1(t )〉, 〈τ 2(t )〉, and 〈τ 1 ⊗ τ 2〉,
where this last contains components 〈τμ

1 (t )τ ν
2 (t )〉. For a set of

N qubits, we need 22N − 1 correlators.
To see how the general idea works, we go back to the the

example of two qubits, with Hamiltonian

H =
2∑

a=1

1

2
ha · τ a + 1

2
Vμντ

μ
1 τ ν

2 (78)

in which the orientation of the two static fields h1, h2 is
arbitrary. This is just the Hamiltonian (66), for a pair of spins.

Now, suppose we arrange the all the information contained
in the two-qubit density matrix [compare Eq. (37)] in the form
of a 15-component “supervector” X in the “space of possible
correlators,” according to

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

X5

X6

X7

X8
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
τ x

1

〉〈
τ

y

1

〉〈
τ z

1

〉〈
τ x

2

〉〈
τ

y

2

〉〈
τ z

2

〉〈
τ x

1 τ x
2

〉〈
τ x

1 τ
y

2

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
⎛
⎝ 〈τ 1〉

〈τ 2〉
〈τ 1 ⊗ τ 2〉

⎞
⎠. (79)

We can then rewrite the hierarchy of equations of motion for
the two-qubit density matrix in the form

d

dt
X = MX (80)

or, written out explicitly, in the block structure

d

dt

⎛
⎝ 〈τ 1〉

〈τ 2〉
〈τ 1 ⊗ τ 2〉

⎞
⎠ =

⎛
⎝ L1 0 U1,p

0 L2 U2,p

Up,1 Up,2 Lp

⎞
⎠
⎛
⎝ 〈τ 1〉

〈τ 2〉
〈τ 1 ⊗ τ 2〉

⎞
⎠.

(81)

Looking first at the diagonal matrix elements of M, we see
that L1, L2 are 3 × 3 matrices which give an infinitesimal
rotation of 〈τ 1〉, 〈τ 2〉 around the applied fields. The 9 × 9
matrix Lp rotates the pair correlator 〈τ 1τ 2〉 around the applied
fields, and can also be written as a rank-4 tensor [the lowered
indices in the following expressions are understood to be
contracted to the right in Eq. (81)]. Thus we have

Lμ
1 ν = hλ

1ε
μ

λν, (82)

Lα
2 β = h

γ

2 εα
γβ, (83)

Lμα
p νβ = Lμ

1 νδ
α

β + δμ
νL

α
2 β. (84)

Turning now to the nondiagonal interaction matrices, we have
terms U1,p,U2,p which are 3 × 9 matrices, and which create
single qubit coherences from the pair correlator; the corre-
sponding terms Up,1,Up,2 are 9 × 3 matrices which create
pair coherences from the single qubit coherences. All of these
interaction matrices may be represented as rank-3 tensors:

U1,p
μ

νβ = Vλβεμλ
ν, (85)

Up,1
μα

ν = Vλ
αεμλ

ν, (86)

U2,p
α

νβ = Vνγ εαγ
β, (87)

Up,2
μα

β = V μ
γ εαγ

β. (88)

We see that the matrix M is fully antisymmetric and has
eigenvalues which are either zero or pure imaginary. One can
divide these into two classes, as follows:

(i) There are at least three zero eigenvectors of M, which
are linear combinations of the eigenstates |n〉〈n| of the Hamil-
tonian (the dimensionality of the system of equations is one
less than the number of components of the density matrix,
because the equations automatically preserve the trace of the
density matrix).

(ii) The other eigenvalues of M occur at every difference
En − Em in the eigenvalues of the Hamiltonian and their
eigenvectors are off-diagonal elements of the density matrix
|n〉〈m|.

In general we can define a set of Green functions {gij }
with i, j ∈ {1, 2, p} for the solution to the equations of motion
(81), so that the solution to the equations of motion for the
vector X can be written

X(t ) = G(t )X(0), (89)
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FIG. 8. Graphical representation of a term in the expansion of
G(t ) as an exponential power series [cf. Eq. (92)]. In this term all the
entries in the matrix M appear [these entries are given in Eq. (81)].
The correlators 〈τ 1〉, 〈τ 2〉, and 〈τ 1 ⊗ τ 2〉 are shown as red vertices,
the interaction matrices U1,p , U2,p , Up,1, and Up,2 are shown as
directed lines, and the rotation matrices L1, L2, and Lp are shown
as undirected lines.

where the total propagator has the block form

G(t ) =
⎛
⎝g11(t ) g12(t ) g1p(t )

g21(t ) g22(t ) g2p(t )
gp1(t ) gp2(t ) gpp(t )

⎞
⎠. (90)

A formal solution for this Green function is found by Laplace
transforming; writing f (z) = ∫∞

0 dt f (t )e−zt , we have

G(z) = [zI − M]−1 (91)

so that G(z) has poles at along the imaginary axis at all the
differences between the energy eigenvalues ±i�E as well as
a pole at zero with a degeneracy of at least 4.

In the time domain the Green function is just

G(t ) = exp (Mt ) =
∞∑

n=0

Mntn

n!
. (92)

This series can be represented graphically (see Fig. 8). We
define a graph whose vertices are the possible correlators,
having (directed) links between them which represent the
block components of M. Then we an nth-order term in the
sum is represented by a “walk” (i.e., sequence of n hops)
across n links between nodes; multiplying each term by tn/n!
we get the Green function.

It is important to get an idea of what these expressions look
like in practice. Suppose we look first at a very simple case,
where the Hamiltonian is

H = 1
2 [�1τ

x + �2σ
x + ωτzσ z] (93)

having energy eigenvalues ±ε1,±ε2 with

ε1 = 1
2

√
ω2 + (�1 + �2)2, (94)

ε2 = 1
2

√
ω2 + (�1 − �2)2. (95)

The 225 elements in the 15 × 15 matrix M can now be
written out directly, using Eqs. (82)–(85). The large majority
of the elements are zero; the nonzero eigenvalues of M for

this case are

ω10 = (ε1 − ε2), (96)

ω20 = ε1 + ε2, (97)

ω30 = 2ε1, (98)

ω21 = 2ε2. (99)

The different components of G(t ), i.e., the nine different
matrix Green functions given in Eq. (90) are then multi-
periodic functions containing these four frequencies. Their
explicit expressions are of course quite lengthy to write out;
in Appendix C the explicit results for G(z) are written in full.

The general two-qubit Hamiltonian (78) is not much more
complicated than this. In particular, the matrix M has the key
property that it is rather sparse, i.e., most elements are still
zero. To see this, we write the interaction tensor in diagonal
form, i.e., Vμα = Vxxx̂μx̂α + Vyyŷμŷα + Vzzẑμẑα; note that
there is always a coordinate system where Vμα is of this form,
which can be obtained using the singular value decomposition
of Vμα . Then the submatrices which make up M can be written
out explicitly. For the two local terms we have

L1 =
⎛
⎝ 0 −hz

1 h
y

1

hz
1 0 −hz

1

−h
y

1 hz
1 0

⎞
⎠, (100)

L2 =
⎛
⎝ 0 −hz

2 h
y

2

hz
2 0 −hz

2

−h
y

2 hz
2 0

⎞
⎠, (101)

and for the pairwise term we have

Lp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −hz
2 h

y

2 −hz
1 0 0 h

y

1 0 0
hz

2 0 −hx
2 0 −hz

1 0 0 h
y

1 0
−h

y

2 hx
2 0 0 0 −hz

1 0 0 h
y

1

hz
1 0 0 0 −hz

2 h
y

2 −hx
1 0 0

0 hz
1 0 hz

2 0 −hx
2 0 −hx

1 0
0 0 hz

1 −h
y

2 hx
2 0 0 0 −hx

1

−h
y

1 0 0 hx
1 0 0 0 −hz

2 h
y

2

0 −h
y

1 0 0 hx
1 0 hz

2 0 −h
y

2

0 0 −h
y

1 0 0 hx
1 −h

y

2 hx
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(102)

Finally, for the interaction terms we have

U1p =
⎛
⎝0 0 0 0 0 −Vzz 0 Vyy 0

0 0 Vzz 0 0 0 −Vxx 0 0
0 −Vyy 0 Vxx 0 0 0 0 0

⎞
⎠, (103)

U2p =
⎛
⎝0 0 0 0 0 Vyy 0 −Vzz 0

0 0 −Vxx 0 0 0 Vzz 0 0
0 Vxx 0 −Vyy 0 0 0 0 0

⎞
⎠, (104)

Up1 = − UT
1p, (105)

Up2 = − UT
2p. (106)

By making ha = x̂�a , and using a purely longitudinal cou-
pling, we get back the simpler Hamiltonian in (93). In any
case, we see that most elements in these matrices are zeros.

More generally, so long as there are only local fields and
pairwise interactions, it is evident that the “sparseness” of the
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matrix M will increase rapidly with the number of qubits. We
will see in future papers that this makes them very useful in
practical problems involving many interacting qubits.

B. Remarks on a general formulation

Let us now consider how this might go for more compli-
cated systems. The generalization of the two-spin results to
N spins is clear—now the supervector X has dN = 22N − 1
entries, growing very rapidly with N .

More generally one may have to deal with systems in the
thermodynamic limit, having an infinite number of degrees of
freedom. Moreover, most degrees of freedom in Nature are
usually described by continuous variables, and this automat-
ically leads to an infinite set of possible correlators (such as
the set 〈x〉, 〈x, x ′〉, 〈x, x ′, x ′′〉, . . . , etc., for a single coordinate
degree of freedom), and, as noted in the Introduction, the
system may be composed of indistinguishable particles.

We will not deal with all these complications here, but
it is still useful to understand some more general features
of problems involving distinguishable spins. In what follows
we look at two key questions, viz., (i) how do things work
when we have two coupled spin systems, and (ii) if there is a
small parameter in the problem, how do we make perturbation
expansions for the entanglement correlators?

1. Two coupled systems

The special case of two separate but coupled systems is
of interest for several reasons. Most notably, it forms the
basis for a discussion of a central system coupled to some
environment; and it is also useful when one comes to analyze
how entanglement develops between any pair of systems.

Consider a pair of systems S1 and S2, which may or may
not interact, and which are in general entangled. We again
define an abstract supervector ξ which contains all possible
correlators for the pair of systems, in the form

ξ =
⎛
⎝X1

Y

X2

⎞
⎠, (107)

where X1 is the vector containing all the correlators of opera-
tors acting on S1 alone, X2 likewise for S2, and Y refers to all
“joint” operators, acting on both systems together.

As an example one can consider a pair of qubit systems,
one containing n1 spins {τ i}, and the other n2 spin-1/2
degrees of freedom {σ j }, with the total number of spins being
N = n1 + n2. We then have

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
τα

1

〉〈
τα

2

〉
...〈

τα
1 τ

β

2

〉
〈
τα

1 τ
β

3

〉
...〈

τα
1 τ

β

2 τ δ
3

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
σα

1

〉〈
σα

2

〉
...〈

σα
1 σ

β

2

〉
〈
σα

1 σ
β

3

〉
...〈

σα
1 σ

β

2 σ δ
3

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(108)

for the supervectors of S1 and S2 respectively; the supervector
Y on the other hand has the entries

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
τ

μ
1 σα

1

〉〈
τ

μ
1 σα

2

〉
...〈

τ
μ
2 σα

1

〉〈
τ

μ
2 σα

2

〉
...〈

τ
μ
1 τ ν

2 σα
1

〉
...〈

τ
μ
1 σα

1 σ
β

2

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (109)

The number of components of these different vectors are then
given by

dX1 = 22n1 − 1, dX2 = 22n2 − 1,

dY = (22n1 − 1)(22n2 − 1),

dX1+X2 ≡ dN = 22N − 1, (110)

where N = (n1 + n2). Let us now take the Laplace transform
of ξ (t ), defined as before by

ξ (z) =
∫ ∞

0
dte−zt ξ (t ). (111)

The equations of motion can then be written in the following
form:

ξ (z) = G(z)ξ (0), (112)

where ξ (0) is the initial value of ξ and G(z) is a matrix, whose
inverse has the following block structure:

G(z)−1 =

⎛
⎜⎝

g−1
1 (z) −V1M 0

−VM1 g−1
M (z) − VMM −VM2

0 −V2M g−1
2 (z)

⎞
⎟⎠,

(113)

where the “mixed” propagator gM in the middle matrix ele-
ment MMM is given by

g−1
M (z) = g−1

1 (z)I2 + g−1
2 (z)I1 − zI1I2. (114)

In these equations Xj (z) = gj (z)X(0) is the solution to
the equations of motion for the individual system j (with
j = 1, 2) in the absence of any coupling between them; Ij

is the identity acting on system j , and the interaction matrix
V has the form, in the same dN -dimensional space,

V =
⎛
⎝ 0 V1M 0
VM1 VMM VM2

0 V2M 0

⎞
⎠. (115)

The elements of the submatrices of V can be obtained as
needed by reading them off from the equations of motion (for
which of course we require a specific Hamiltonian).

In general the G(z) will have poles at z = i(ωn − ωm)
for all n,m where ωn is the nth energy eigenvalue of the
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Hamiltonian. The pole at z = 0 will be of at least order
2n1−n2 − 1, with larger orders occurring when the system has
degenerate energy levels.

When the systems are large it does not make sense to
be enumerating all the poles and their residues. Instead we
simply define a spectral function which gives us the density
of the poles along the imaginary axis; we write

A(ω) = 1

2π
[G(iω + ε) − G(iω − ε)], (116)

where we choose ε to be small but still larger than the typical
separation between poles. For sufficiently large systems the
poles will become so close that we can treat them as defining
a branch cut along the imaginary axis, with magnitude A(ω).

2. Perturbation expansions

Suppose we have solved the full hierarchy in some specific
case, and we add a small term to the Hamiltonian—this
could be, e.g., to each of the bath spin local fields, or to the
interaction between the central systems and the bath spins.
The question is how a perturbation theory will be structured.

We do not give a full treatment here, since it is rather
messy. The simplest case is the one in which we treat the
interaction term V as a perturbation. We can then write an
equation for the full Green function G(z) as an expansion
about the V = 0 Green function G0(z), where in this case one
has

G0(z) ≡
⎛
⎝g1(z) 0 0

0 gM(z) 0
0 0 g2(z)

⎞
⎠. (117)

A Dyson series for G(z) may then be obtained in through
the usual manipulations,

G(z) = [
G−1

0 (z) − V
]−1

(118)

= G0(z)
∞∑

n=0

[VG0(z)]n, (119)

where the matrix being raised to the nth power is just

VG0(z) =

⎛
⎜⎝

0 V1MgM(z) 0

VM1g1(z) VMMgM(z) VM2g2(z)

0 V2MgM(z) 0

⎞
⎟⎠. (120)

Note that care needs to be taken when this expansion is
performed near the high-order poles of G0(z), to ensure that
the corrections are still small.

VI. SUMMARY

The results in this paper have been rather formal. Our main
goal was to derive a closed set of equations of motion for
the partitioned density matrices, and find coupled equations of
motion for all the different correlation functions that exist for
the system. This we have done, for the case of nonrelativistic
N -body quantum systems with distinguishable degrees of
freedom.

Application to the particular case of interacting qubits
brings out a number of interesting features. We see that
the use of the entanglement correlators is in many ways

a more transparent way of characterizing multipartite en-
tanglement than the entanglement measures that have been
discussed in the literature. When things are rewritten in terms
of supervectors of entanglement correlators, one finds that the
resulting matrix equations of motion involve sparse matrices,
making them practically useful.

The application to real physical systems requires solutions
to the equations of motion. As always, such solutions require
approximation techniques; in the paper we simply sketched
how perturbation expansions work, leaving aside the main
approximation techniques for future papers, since they need
to be developed for specific models.

As already noted in the Introduction, we wanted in this
work to understand how multipartite entanglement and its
dynamics can be formulated for N -body systems, including
quantum information processing systems, without getting lost
in entanglement measures. Our results can be applied immedi-
ately to treat the dynamics of spin systems, and elsewhere we
have done this for the quantum Ising model [19]. The results
can also be applied directly to a variety of quantum magnetic
systems, to spins in semiconductors, and to ions interacting in
ion traps.

However the most interesting application may be to the
dynamics of both entanglement and decoherence in systems
coupled to an environment. A key goal of future work will
be to analyze such problems. One very useful model in this
regard is the “central spin” model [21], in which a qubit
couples to a spin bath, and generalizations of it in which the
central system comprises many qubits, or is some other sort
of central system. The work done here can be adapted very
simply to these models.

Another useful model is the “spin-boson” model [32],
where a central qubit couples to an oscillator bath (with
analogous generalizations to other kinds of central systems).
To deal with models like this we need to adapt the work done
here to systems of indistinguishable degrees of freedom.

Finally, one can generalize this work to relativistic quan-
tum fields (which of course involves indistinguishable field
excitations). A scheme for this has been developed recently
[22], and applied to the problem of soft photon and soft
graviton emission in linearized quantum gravity, where it is
relevant to the black-hole information problem, and to infor-
mation loss during scattering processes between interacting
quantum fields.
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APPENDIX A: PROPERTIES OF ENTANGLEMENT
DENSITY MATRICES

We In this appendix we prove two properties of the en-
tanglement density matrices that were quoted without proof
in Sec. II C. We use the same notation as that defined in this
section.
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1. Proof of Eq. (23)

We wish here to prove the result given in Eq. (22) [or,
equivalently Eq. (23)] for the entanglement correlated density
matrices. We do this by induction. The n = 2 case comes from
tracing out all of S except i and j from the equation for the
density matrix (3), so that

ρ̄ij = ρ̄i ρ̄j + ρ̄C
ij ⇒ ρ̄C

ij = ρ̄ij − ρ̄i ρ̄j (A1)

as required. Now we make the inductive assumption that for
all k < n and Bk ⊂ An we have

ρ̄C
Bk

=
k∑

m=2

(−1)(k−m)
∑

Cm⊆Bk

⎛
⎝ρ̄Cm

∏
j∈Bk\Cm

ρ̄j

⎞
⎠

− (−1)k (k − 1)
∏
j∈Bk

ρ̄j . (A2)

Substituting Eq. (A2) into

ρ̄An
=
∏
j∈An

ρ̄j + ρ̄C
An

+
n−1∑
k=2

∑
Ck⊆An

⎛
⎝ ∏

j∈An\Ck

ρ̄j

⎞
⎠ρ̄C

Ck
(A3)

then gives an expression of the form

ρ̄C
An

= ρ̄An
+

n−1∑
�=2

∑
F�⊂An

ξ�ρ̄F�

∏
i∈An\F�

ρ̄i + ξ0

∏
iAn

ρ̄i . (A4)

This is because terms in (A3) contain one ρ̄C
Ck

multiplied by
the single cell reduced density matrices for the rest of the cells,
and terms in (A2) contain one reduced density matrix over a
larger set multiplied by single cell reduced density matrices,
and all subsets of the same size appear symmetrically in (A3)
and (A2). Thus the final expression is a sum over terms which
are the product of a single reduced density matrix over a set
F� ⊆ An multiplied by single cell reduced density matrices
with a coefficient depending only on the size � of the set F�.
Now we need to find ξ� and ξ0.

To find ξ� we note that every Bk ⊇ F� (Bk ⊂ An) gives a
contribution −(−1)k−� to ξ�, so there are n−�Ck−� such Bk’s
for a given k; thus the coefficient is

ξ� = −
n−1∑
k=�

(−1)k−�(n−�Ck−�) = −
n−�−1∑
p=0

(−1)p(n−�Cp )

= −
n−�∑
p=0

(−1)p(n−�Cp ) + (−1)n−�(n−�Cn−�)

= −(1 − 1)n−� + (−1)n−�

= (−1)n−� (A5)

as required.
To find ξ0 we note that there is a contribution −1 from the

first term in Eq. (A3) as well as a contribution (−1)k (k − 1)
from every Bk with n − 1 � k � 2. There are nCk different
Bks for each k, so that

ξ0 = −1 +
n−1∑
k=2

(−1)k (k − 1)(nCk )

= (−1)n+1(n − 1) (A6)

as required; this completes the proof.

2. Proof that any partial trace of ρ̄C
An

is zero

In the main text we took the result in Eq. (10) to be a
defining property of the partial trace. However, one can also
derive the result explicitly from expression (23). We now show
this.

Let us begin with (23) of the main text, viz.,

tr
i
ρ̄C
An

=
n∑

m=2

(−1)(n−m)
∑

Cm⊆An

tr
i

⎛
⎝ρ̄Cm

∏
j∈An\Cm

ρ̄j

⎞
⎠

− (−1)n(n − 1)
∏

j∈An\i
ρ̄j (A7)

with the notation as before.
We start by noting that

tr
i

⎛
⎝ρ̄Cm

∏
j∈An\Cm

ρ̄j

⎞
⎠ =

{
ρ̄Cm

∏
j∈(An\i)\Cm

ρ̄j i �∈ Cm

ρ̄Cm\i
∏

j∈An\Cm
ρ̄j i ∈ Cm

(A8)
It then follows that we can write

n∑
m=2

(−1)(n−m)
∑

Cm⊆An

tr
i

⎛
⎝ρ̄Cm

∏
j∈An\Cm

ρ̄j

⎞
⎠

=
∑

�∈An\i
tr
i
ρ̄i�(−1)n−2

∏
j∈An\{i,�}

ρ̄j

+
n−2∑
m=2

∑
Cm⊆(An\i)

(−1)mtr
i
(ρ̄Cm

ρ̄i − ρ̄Cm∪{i})
∏

j∈(An\i)\Cm

ρ̄j

=
∑

�∈An\i
(−1)n−2

∏
j∈An\{i}

ρ̄j

= (n − 1)(−1)n−2
∏

j∈An\{i}
ρ̄j (A9)

so that

tr
i
ρ̄C
An

= (n − 1)(−1)n−2
∏

j∈An\{i}
ρ̄j − (−1)n(n − 1)

∏
j∈An\i

ρ̄j

= 0, (A10)

which is the result we wanted.

APPENDIX B: DERIVATION OF EQUATIONS
OF MOTION HIERARCHIES

In the main text we simply quoted the results for the
equations of motion, for both a general multipartite system,
and also for an N -qubit system. Here we give the derivations
of these results.

1. Equation of motion for N-partite system

Write begin by writing the Hamiltonian as a “free” single-
system part, plus a pairwise interaction term, viz.,

H = H 0 + HI =
∑

j

⎛
⎝H 0

j + 1

2

∑
i �=j

H I
ij

⎞
⎠. (B1)
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FIG. 9. The different classes of interaction involving A. In (i)
we have interactions entirely between cells inside A, in (ii) we have
interactions between cells inside A and cells outside, and in (ii) the
interactions are entirely between cells outside A. The interactions are
denoted by the wavy line.

The equation of motion is then

i∂tρS = [H, ρS ] =
∑
A⊆S

⎡
⎣H ,

⎛
⎝∏

j �∈A
ρ̄j

⎞
⎠ρ̄C

A

⎤
⎦

=
∑
j∈S

⎧⎨
⎩
⎡
⎣H 0

j +
∑

j �=i∈S

1

2
H 0

ij ,

⎛
⎝∏

j �∈A
ρ̄j

⎞
⎠ρ̄C

A

⎤
⎦
⎫⎬
⎭
(B2)

for the part of the above containing the noninteracting part
of the Hamiltonian each j is either in A or not A, for the
interacting part there are three possible situations (see Fig. 9):
Both i, j ∈ A, only one of i or j in A, and both i, j /∈ A. We
can split the sums up accordingly; one has

∑
A

⎡
⎣H,

⎛
⎝∏

j /∈A
ρ̄j

⎞
⎠ρ̄C

A

⎤
⎦ =

∑
A⊆S

⎧⎨
⎩
∑
j∈A

[
H 0

j , ρ̄C
A
]∏

i /∈A
ρ̄i + ρ̄C

A
∑
j /∈A

[
H 0

j , ρ̄j

] ∏
i /∈A∪{j}

ρ̄i

+
∑
j∈A

∑
i∈A\{j}

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k +
∑
j∈A

∑
i /∈A

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k

+ ρ̄C
A
∑
j /∈A

∑
i /∈A∪{j}

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k

⎫⎬
⎭. (B3)

Now we trace out a set C of cells. This gives

tr
C

[
H,
∑
A

ρ̄C
A
∏
i /∈A

ρ̄i

]
=
∑
A

tr
C

∑
j∈A

[
H 0

j , ρ̄C
A
]∏

i /∈A
ρ̄i +

∑
A

tr
C
ρ̄C
A
∑
j /∈A

[
H 0

j , ρ̄j

] ∏
i /∈A∪{j}

ρ̄i

+
∑
A

∑
j∈A

∑
i∈A\{j}

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k +
∑
A

∑
j∈A

tr
C

∑
i /∈A

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k

+
∑
A

tr
C
ρ̄C
A
∑
j /∈A

∑
i /∈A∪{j}

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k. (B4)

Let us simplify each term in the above equation separately.
(1) First consider the terms involving H 0

j :
(a) Consider the first sum in Eq. (B4), viz., ∑

A
tr
C

∑
j∈A

[
H 0

j , ρ̄C
A
]∏

i /∈A
ρ̄i . (B5)

(i) The terms are trivially zero when the overlap C ∩ A �= ∅ or {j}.
(ii) If the overlap contains exactly one cell C ∩ A = {j}, then we have the following identity:

tr
j

[
H 0

j , ρ̄C
A
] = (H 0

j

)
mn

(
ρ̄C
A
)MM

mn
− (H 0

j

)
nm

(
ρ̄C
A
)MM

mn
= 0,

where M is an index on the Hilbert space of states on the set of cells A\{j} and m, n are indices on the Hilbert space at j ,
and repeated indices are summed so (ρ̄C

A )MM
mn =∑M〈mM|(ρ̄C

A )MM
mn |nM〉.

We see therefore that only terms with no overlap C ∩ A = ∅ contribute to the first sum in Eq. (B4):∑
A⊆S

tr
C

∑
j∈A

[
H 0

j , ρ̄C
A
]∏

i /∈A
ρ̄i =

∑
A⊆(S\C)

∑
j∈A

[
H 0

j , ρ̄C
A
]
tr
C

∏
i /∈A

ρ̄i =
∑

A⊆S\C

∑
j∈A

[
H 0

j , ρ̄C
A
] ∏

i∈S\(A∪C)

ρ̄i . (B6)

(b) Consider now the second sum in (B4), viz.,

tr
C
ρ̄C
A

N∑
j /∈A

[
H 0

j , ρ̄j

] ∏
i /∈A∪{j}

ρ̄i .
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The terms are zero when A ∩ C �= ∅ and when j ∈ C, so that∑
A⊆S

tr
C
ρ̄C
A
∑
i /∈A

[
H 0

j , ρ̄j

] ∏
j /∈A∪{j}

ρ̄i =
∑

A⊆(S\C)

ρ̄C
An

∑
j /∈(A∪C)

[
H 0

j , ρ̄j

]
tr
C

∏
i /∈A∪{j}

ρ̄i

=
∑

A⊆(S\C)

∑
j /∈(A∪C)

ρ̄C
A
[
H 0

j , ρ̄j

] ∏
i∈S\(A∪C∪{j})

ρ̄i

=
∑

A⊆(S\C)

∑
j∈A

ρ̄C
A\{j}

[
H 0

j , ρ̄j

] ∏
i∈S\(A∪C)

ρ̄i . (B7)

The last line here requires a bit of thought; it reflects the fact that summing over all possible A ⊆ (S\C), then over j ∈
(S\(C ∪ A), is equivalent to summing over all possible A ⊆ (S\C) and all possible j in A.
(2) Now consider the terms involving the interaction Hamiltonian HI

ij .
(a) Consider first the third sum in Eq. (B4), viz.,

∑
A

∑
j∈A

∑
i∈A\{j}

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k, (B8)

which contains all the terms where cells inside A are interacting with each other, i.e., case (i) in Fig. 9.
(i) If the intersection C ∩ A contains cells other than i or j , then

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k = 0.

(ii) If the intersection C ∩ A = {i, j} then

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k = 0,

so that there are only nonzero terms in the sum when the intersection A ∩ C contains exactly one or zero elements.
(iii) If the intersection is one of C ∩ A = {i} or {j} then

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k = tr
iorj

([
1

2
HI

ij , ρ̄C
A

]) ∏
k /∈(A∪C)

ρ̄k,

which is not necessarily zero.
(iv) When both i, j are in A\C then

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k =
[

1

2
HI

ij , ρ̄C
A

] ∏
k /∈(A∪C)

ρ̄k.

Thus there only two kinds of term in the sum (B8) that matter. The first are those where both i, j �∈ C and C ∩ A. The
second are those where only one of i or j are in C (say i ∈ C) and A ∩ C = {i}. Thus

∑
A

∑
j∈A

∑
i∈A\{j}

[
1

2
HI

ij , ρ̄C
A

]
tr
C

∏
k /∈A

ρ̄k =
∑

A⊆(S\C)

∑
j∈A

∑
i∈A\{j}

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k +
∑
A ⊆ S

A ∩ C = {j}

∑
j∈A

tr
C

[
1

2
HI

ij , ρ̄C
A

]∏
k /∈A

ρ̄k

=
∑

A⊆(S\C)

∑
j∈A

∑
i∈A\{j}

[
1

2
HI

ij , ρ̄C
A

] ∏
k /∈A∪C

ρ̄k +
∑

A⊆(S\C)

∑
i∈C

∑
j∈A

[
HI

ij , ρ̄C
A∪{i}

] ∏
k /∈A∪C

ρ̄k.

(B9)

(b) The fourth sum in Eq. (B4), viz.,

∑
A

∑
j∈A

tr
C

∑
i /∈A

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k, (B10)

is a sum over terms involving interactions between j in A and i not in A [i.e., terms like (ii) in Fig. 9].
(i) When neither i nor j are in C, then

tr
C

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k =
[

1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k.
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(ii) When there is an overlap A ∪ C which contains an element other than j , then

tr
C

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k = 0.

(iii) When i is in C and A ∩ C = ∅, then

tr
C

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k =
[

1

2
tr
i

(
HI

ij ρ̄i

)
, ρ̄C

A

] ∏
k /∈(A∪C∪{i})

ρ̄k.

(iv) When j is in C but i is not, then

tr
C

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k = tr
j

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k.

(v) If i and j are in C, then

tr
C

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k = 0.

Thus the sum (B10) is∑
A

∑
j∈A

tr
C

∑
i /∈A

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈A∪{i}

ρ̄k

=
∑

A⊂(S\C)

∑
j∈A

∑
i /∈(A∪C)

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k +
∑

A⊂(S\C)

∑
j∈A

∑
i∈C

[
1

2
tr
i

(
HI

ij ρ̄i

)
, ρ̄C

A

] ∏
k /∈(A∪C)

ρ̄k

+
∑
A ⊆ S

A ∩ C = {j}

∑
i /∈(A∪C)

tr
j

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k (B11)

=
∑

A⊂(S\C)

∑
j∈A

∑
i /∈(A∪C)

[
1

2
HI

ij , ρ̄C
Aρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k +
∑

A⊂(S\C)

∑
j∈A

∑
i∈C

[
1

2
tr
i

(
HI

ij ρ̄i

)
, ρ̄C

A

] ∏
k /∈(A∪C)

ρ̄k

+
∑

A⊆(S\C)

∑
j∈C

tr
j

[
1

2
HI

ij , ρ̄C
A∪{j}ρ̄i

] ∏
k /∈(A∪C∪{i})

ρ̄k. (B12)

(c) The fifth sum in Eq. (B4), viz., ∑
A

tr
C
ρ̄C
A
∑
j /∈A

∑
i /∈A∪{j}

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k, (B13)

is a sum over the interactions shown in Fig. 9 (iii), where both i and j are not in C. Then
(i) When i, j ∈ C, we have

tr
C
ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k = 0.

(ii) When A ∩ C �= ∅, we have

tr
C
ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k = 0.

(iii) When one of i and j (say i) is in C and the other is not, then (and A ∩ C = ∅)

tr
C
ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k = ρ̄C
A

[
1

2
tr
i

(
HI

ij ρ̄i

)
, ρ̄j

] ∏
k /∈(A∪{j}∪C)

ρ̄k.

(iv) When nether i nor j are in C and A ∩ C = ∅, we have

tr
C
ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k = ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}∪C

ρ̄k.
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Thus the sum (B13) is given by∑
A

tr
C
ρ̄C
A
∑
j /∈A

∑
i /∈A∪{j}

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}

ρ̄k =
∑
A⊆C

∑
i∈C

∑
j /∈A∪C

ρ̄C
A

[
1

2
tr
i

(
HI

ij ρ̄i

)
, ρ̄j

] ∏
k /∈(A∪{j}∪C)

ρ̄k

+
∑
A⊆C

∑
i∈C

∑
j∈A\{i}

ρ̄C
A

[
1

2
HI

ij , ρ̄j ρ̄i

] ∏
k /∈A∪{i,j}∪C

ρ̄k. (B14)

Thus finally, inserting Eqs. (B6), (B7), (B9), (B12), and (B14) into (B4), we have

tr
C

[H, ρS ] =
∑

A⊆S\C

⎧⎨
⎩
∑
j∈A

[
H 0

j , ρ̄C
A
] ∏

i∈S\(A∪C)

ρ̄i + ρ̄C
A

∑
i∈S\(A∪C)

[
H 0

i , ρ̄i

] ∏
j∈S\(A∪C∪{i})

ρ̄j

+
∑
j∈A

∑
i∈A\{j}

[
1

2
HI

ij , ρ̄
C
An

] ∏
k∈S\(A∪C)

ρ̄k +
∑
i∈C

∑
j∈A

tri
[
HI

ij , ρ̄
C
A∪{i}

] ∏
k∈S\(A∪C)

ρ̄k

+ ρ̄C
A

∑
k∈S\(A∪C)

∑
l∈S\(A∪C∪{k})

[
HI

kl, ρ̄k

] ∏
j∈S\(A∪C∪{k,l})

ρ̄j + ρ̄C
A

∑
k∈S\(A∪C)

∑
l∈C

[
tr
l

(
HI

klρ̄l

)
, ρ̄k

] ∏
j∈S\(A∪C∪{k})

ρ̄j

+
∑
j∈A

∑
k∈S\(A∪C)

[
HI

jk, ρ̄
C
Aρ̄k

] ∏
i∈S\(A∪C∪{k})

ρ̄i +
∑
l∈C

∑
k∈S\(A∪C)

trl
[
HI

lk, ρ̄
C
A∪{l}ρ̄k

] ∏
j∈S\(A∪C∪{k})

ρ̄j

+
∑
l∈C

∑
k∈A

trl
[
HI

jlρ̄l, ρ̄
C
A
] ∏

j∈S\(A∪C)

ρ̄j

⎫⎬
⎭. (B15)

Comparing this with Eq. (B3), we see that all of those terms above which do not contain an explicit trace can be collected
to give [HS\C, ρ̄S\C], with

HS\C =
∑

j∈S\C

⎛
⎝H 0

j + 1

2

∑
j∈S\(C∪{j})

HI
ij

⎞
⎠ (B16)

so that

i∂t ρ̄S\C = [HS\C, ρ̄S\C] + TT (B17)

The extra “trace term” TT is

TT = i
∑
l∈C

trl

⎧⎨
⎩
∑

A⊆(S\C)

∑
i∈A

([
HI

il , ρ̄
C
A
]
ρ̄l + [HI

il , ρC
A∪{l}

]+ [HI
il , ρ̄i

]
ρC

(A\{i})∪{l} + [HI
il , ρ̄i

]
ρC

(A\{i})ρ̄l

) ∏
j∈(S\C)\A

ρ̄j

⎫⎬
⎭ (B18)

= i
∑
l∈C

trl

⎡
⎣∑

i∈S\C
HI

il ,
∑

A⊆(S\C)∪{l}
ρC

S̃

∏
j∈((S\C)∪{l})\A

ρ̄j

⎤
⎦ (B19)

= i
∑
l∈C

⎡
⎣∑

i∈S\C
HI

il , ρ̄(S\C)∪{l}

⎤
⎦. (B20)

Thus, finally, we have the result

i∂t ρ̄S\C = [HS\C, ρ̄S\C] + i
∑
l∈C

⎡
⎣∑

i∈S\C
HI

il , ρ̄(S\C)∪{l}

⎤
⎦. (B21)

If we now relabel the set (S\C) → A, we get the result (63) in the text.

2. Equation of motion for N-qubit system

We now want to derive the equations of motion (67) for N qubits. The Hamiltonian is

H =
∑

i

1

2
hi · σ i +

N∑
i=1

∑
j<i

1

2
V

μν

ij σ
μ

i σ ν
j , (B22)

which we write as H = H0 + HV .
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We wish to calculate

d

dt

〈∏
j∈C

σ
μj

j

〉
= −i

˝⎡
⎣H,

∏
j∈C

σ
μj

j

⎤
⎦
˛
. (B23)

We thus need the commutators⎡
⎣H0,

∏
j∈C

σ
μj

j

⎤
⎦ =

∑
i∈C

1

2
hλ

i

[
σλ

i , σ
μi

i

] ∏
j∈C\{i}

σ
μj

j = i
∑
i∈C

εμiλνi hλ
i σ

νi

i

∏
j∈C\{i}

σ
μj

j (B24)

and ⎡
⎣HV ,

∏
j∈C

σ
μj

j

⎤
⎦ =

N∑
i=1

∑
k<i

1

2
V

αβ

ik

⎡
⎣σα

i σ
β

k ,
∏
j∈C

σ
μj

j

⎤
⎦. (B25)

The commutator on the right of the previous expression is nonzero when either one of i, k or both i and k are in C. Consider
the case when i is in C but k is not; then we have⎡

⎣σα
i σ

β

k ,
∏
j∈C

σ
μj

j

⎤
⎦ = 2iεμiανi σ

νi

i σ
β

k

∏
j∈C\i

σ
μj

j . (B26)

On the other hand if both i and k are in C, then we have⎡
⎣σα

i σ
β

k ,
∏
j∈C

σ
μj

j

⎤
⎦ = [

σα
i σ

β

k , σ
μi

i σ
μk

k

] ∏
j∈C\{i,k}

σ
μj

j = 2i
(
εμiανi δμkβσ

νj

j + εμkβνkσ
νk

k δμj α
) ∏

j∈C\{i,k}
σ

μj

j . (B27)

Putting Eqs. (B26) and (B26) into the equation of motion for the correlator (B23) one gets the hierarchy of equations of motion,

d

dt

〈∏
i∈A

σ
μi

i

〉
=
∑
i∈A

εμiανhα
i

〈
σ ν

i

∏
j∈A\{i}

σ
μj

j

〉
+
∑
i∈A

∑
� �∈A

εμiανV αλ
i�

〈
σλ

� σ ν
i

∏
j∈A\{i}

σ
μj

j

〉
+
∑
i∈A

∑
j∈A\{i}

εμiανV
αμj

ij

〈
σ ν

i

∏
k∈A\{i,j}

σ
μk

k

〉
,

(B28)

which is the hierarchy of equations of motion for the spin correlators that we wished to derive [cf. Eq. (67)].

APPENDIX C: MATRIX PROPAGATOR FOR TWO-SPIN SYSTEM

In the main text we worked out explicitly the equation of motion for the entanglement correlators of a simple two-spin system,
with the Hamiltonian

H = 1
2 [�1τ

x + �2σ
x + ωτzσ z] (C1)

and eigenvalues ε1, ε2 [compare Eq. (93) et seq.].
Here we write out explicitly the propagators which appear in the block matrix G(z) [the result for G(t ) then being given by

Fourier transformation]. We have

g11(z) =
[

ω2z

2ω30
(
z2 + ω2

30

) + ω2z

2ω21
(
z2 + ω2

21

) +
(

1 − ω4

ω2
30ω

2
21

)
1

z

]
x̂x̂

+ z

2ω30ω21

{(
ω2

20 − �2
1

z2 + ω2
10

+ ω2
20 − �2

2

z2 + ω2
20

)
(ŷŷ + ẑẑ) − 2ω2

(
ŷŷ

z2 + ω2
10

+ ẑẑ

z2 + ω2
20

)}

+ ŷẑ − ẑŷ

4ω30ω20

{
[ω21(�1 + �2) − ω30(�1 − �2)]

ω2
10

z2 + ω2
10

+ [ω21(�1 − �2) + ω30(�1 + �2)]
ω2

20

z2 + ω2
20

}
, (C2)

g12(z) = x̂x̂

{
2�1�2ω

2

ω2
30ω

2
21z

+ zω2

2

(
1

ω30
(
z2 + ω2

30

) − 1

ω21
(
z2 + ω2

21

)
)}

= g21(z), (C3)
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for the “small” matrix propagators, and

g
μ
1pνβ = �1ω

(
2�2zx̂

μẑν ŷβ + [z2 + �2
1 − �2

2 + ω2
]
x̂μẑν ŷβ − [z2 + �2

1 + �2
2 + ω2

]
x̂μŷν ẑβ − �2

z

[
z2 − �2

1 + �2
2 + ω2

]
x̂μŷν ŷβ

)
z
(
z2 + ω2

21

)(
z2 + ω2

30

)
+ω

z�2ŷ
μx̂ν ŷβ + z2ŷμx̂ν ẑβ + �1�2ẑ

μx̂ν ŷβ + z�1ẑ
μx̂ν ẑβ

z2ω2 + (z2 + �2
1

)(
z2 + �2

2

) , (C4)

gμα
pp νβ = 1

z
x̂μx̂αx̂ν x̂β + [(z2 + �2

1

)(
z2 + �2

2

)+ z2ω2
]−1{

z
(
z2 + �2

1 + ω2
)
x̂μŷαx̂ν ŷβ + �2

(
z2 + �2

1

)
[x̂μẑαx̂ν ŷβ − x̂μŷαx̂ν ẑβ]

+ z
(
z2 + �2

1

)
x̂μẑαx̂ν ẑβ + z

(
z2 + �2

2 + ω2
)
ŷμx̂αŷν x̂β + �1

(
z2 + �2

2

)
[ẑμx̂αŷν x̂β − ŷμx̂αẑν x̂β]

+ z
(
z2 + �2

2

)
ẑμx̂αẑν x̂β

}+ (z2 + ω2
21

)−1(
z2 + ω2

30

)−1
{(

z2 + �2
1 + �2

2 + ω2
)[(

z + ω2

z

)
(ŷμŷαŷν ŷβ + ẑμẑαẑν ẑβ )

+ z(ŷμẑαŷν ẑβ + ẑμŷαẑν ŷβ )

]
+ �2

(
z2 − �2

1 + �2
2 + ω2

)
[ŷμẑαŷν ŷβ − ŷμŷαŷν ẑβ + ẑμẑαẑν ŷβ − ẑμŷαẑν ẑβ]

+�1
(
z2 + �2

1 − �2
2 + ω2

)
[ẑμŷαŷν ŷβ + ẑμẑαŷν ẑβ − ŷμŷαẑν ŷβ − ŷμẑαẑν ẑβ]

+ 2
�1�2

z
(z2 + ω2)[ŷμŷαẑν ẑβ − ẑμẑαŷν ŷβ] + 2z�1�2[ŷμẑαẑν ŷβ − ẑμŷαŷν ẑβ]

}
(C5)

for the “large” matrix propagators. In these equations x̂, ŷ, and ẑ are unit Cartesian vectors, and ẑ should not be confused with
the complex frequency z.

Formulas for g22, g21, and g2p, can be obtained from the expressions for g11, g21, and g1p, if we make the replacements
�1 → �2 and �2 → �1 and adjust the tensor indices accordingly (μ → α, ν → β, α → μ, β → ν). gp1(z) and gp2(z) can
be obtained from g1p, g2p using the identities gp1(z) = gT

1p(−z) and gp2(z) = gT
2p(−z) (we have obtained these identities by

examining the full solution).
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