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The dynamics and non-Markovianity of an atomic impurity qubit (AIQ) immersed in a structured environment
is explored where the AIQ is driven by a two-dimensional field and the environment is a quasi-two-dimensional
dipolar Bose-Einstein condensate (dBEC). We derive a non-Markovian master equation for the AIQ with initial
correlation between the qubit and the dBEC, which contains all the influences of the non-Markovian environment
on the atomic impurity qubit. Analyzing the spectrum density for the AIQ-dBEC coupled system and solving
the dynamics of the qubit, we find that the atomic impurity qubit can be partially stabilized in its excited state
by controlling the x-direction field with the y-direction field fixed. Our analysis reveals that it is the formation
of the system-environment bound state that results in such a suppressed dissipation. The present paper is helpful
for understanding the effect of the structured and modulated environment and enriches the dynamics of an open
system.
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I. INTRODUCTION

All realistic quantum systems interact inevitably with their
surrounding environments. Their dynamics can be described
by time-dependent collections of completely positive trace-
preserving maps [1,2]. The characterization of quantum pro-
cesses in view of the relationship of these maps at different
times leads to the very definition of the Markovian process,
which plays an important role in the theory of an open
quantum system. Markovian processes successfully describe
a plethora of physical processes, particularly in the field of
quantum optics, but it fails when it is applied to more complex
system-environment couplings where memory effects become
important. In recent years a lot of work has been devoted to
the study of quantum non-Markovianity. In particular, a notion
of memory for quantum processes has been introduced which
can be physically interpreted in terms of information flow
between the open system and its environments.

The understanding of the implications of non-
Markovianity and the reasons for its occurrence are still
largely elusive, although there is a growing interest in light
of their potential impact on many disciplines from quantum
information and nanotechnology to quantum biology [3–6].
An important contribution to this quest came from the
formulation of quantitative measures of the degree of non-
Markovianity [7–10]. The handiness of such instruments has
recently triggered the study of non-Markovianity in quantum
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many-body systems, such as quantum spin chains [11] or
impurity-embedded ultracold atomic systems [12,13] and in
excitation-transfer processes in photosynthetic complexes [2].

Many quantum non-Markovian processes described by the
dephasing model [14–17] have been observed in quantum
optics. High-precision control of Bose-Einstein condensates
(BECs) suggests using the atomic BEC as a controllable
dephasing reservoir for the qubit [12,18,19] where an impurity
atom trapped in a double-well potential acts as the qubit. The
information flow between the open system and the reservoir
can be observed and well controlled via adjusting the s-wave
scattering length.

With the realization of quantum degenerate gases in mag-
netic atoms [20–24] and heteronuclear molecules [25–27],
dipolar BECs (dBECs) have attracted growing attention in
recent years. Compared with the BECs where only contact
interactions play the key role, dipolar Bose-Einstein conden-
sates have long-ranged and anisotropic dipole-dipole interac-
tions (DDIs), which give rise to a rich array of new physics for
ultracold gases [28]. Since non-Markovian dynamics strongly
depends on the dephasing factor [9,19], we will carefully
examine how the dephasing factor changes with time and its
dependence on the dipolar interaction strength. It has been
shown that very high densities of states for reservoir modes
originate from the roton-type mode softening induced by the
DDIs [29–32]. This provides us with a way to nondestruc-
tively observe the phenomenon of roton-type mode softening
via measuring the dephasing dynamics in Ramsey-type ex-
periment [33]. It is worth stressing that the roton-type modes
softening has been observed in the cavity-BEC system [34]
and the spin-orbit coupled condensate [35].
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Inspired by cold atomic gases trapped in structured en-
vironments [12,13,36,37], we are interested in how and
when the dissipation of an atomic impurity qubit (AIQ)
coupled to an environment is suppressed. For this purpose,
we study the dissipative dynamics of the AIQ driven by a
two-dimensional (2D) magnetic field and placed in the struc-
tured environment—a quasi-two-dimensional dipolar Bose-
Einstein condensate. We derive a non-Markovian master equa-
tion with a general entangled initial state, which goes beyond
the master equation based on the uncorrelated initial state in
the literature [1,38–40]. The expression of spectrum density
for the AIQ-dBEC is analytically given. We find that the
excited-state population of the atomic impurity qubit would
be partially preserved in the steady state by decreasing the
x-direction magnetic field at the fixed y-direction magnetic
field. This feature can be understood as the formation of the
bound state of the whole system (AIQ and dBEC) which
results in the suppressed dissipation. This suggests that one
can control the dissipation of the AIQ via engineering the
bound state of the coupled AIQ-dBEC system.

This paper is organized as follows. In Sec. II, we introduce
our model and derive a non-Markovian master equation for the
atomic impurity qubit subjected to the dipolar Bose-Einstein
condensate environment with an initial correlation between
the AIQ and the environment. We analyze the energy spectrum
of the whole system (AIQ plus dBEC) and discuss the origin
of the suppressed dissipation of the AIQ. In Sec. III, we give
an analytical expression of the spectral density and study the
non-Markovianity of the system. In Sec. IV, we study the
influence of the initial system-environment correlation on
the non-Markovian dynamics. Section V is devoted to the
discussion of the validity of our model. Finally, we conclude
in Sec. VI.

II. THE MODEL AND DYNAMICS

A. The model Hamiltonian

We start by considering a single-atomic impurity qubit
immersed in a thermally equilibrated dipolar Bose-Einstein
condensate reservoir at temperature T with Rabi frequency
ωz driven by a two-dimensional magnetic field. The Hamil-
tonian of such a system (system, environment, plus a two-
dimensional magnetic field) takes the form

Ĥ = Ĥa + Ĥb + Ĥab + Ĥc, (1)

where Ĥa is the Hamiltonian of the impurity atom, Ĥb is
the Hamiltonian of the dipolar Bose-Einstein condensate, Ĥab

is the interaction Hamiltonian between the impurity and the
dipolar Bose-Einstein condensate reservoir, and Ĥc is the
interaction Hamiltonian of the impurity atom with the two-
dimensional magnetic field.

The impurity atom has two internal states |+〉 and |−〉
and is confined in a spin-independent three-dimensional sym-
metric harmonic trap of the form Va (x) = 1/2maω

2
ax2, where

ma is the mass of the impurity and ωa is the trap frequency.
Under the condition that h̄ωa � kBT , we may assume that
the spatial wave function of the impurity is the ground state
of the harmonic oscillator with potential Va (x), i.e., φa (x) =
π−3/4L

−3/2
a exp[−x2/(2L2

a )], where La = √
h̄/(maωa ). The

Hamiltonian for the impurity atom is then,

Ĥa = h̄�aσ̂z. (2)

Here �a is the level splitting between the ground (|−〉) and
the excited (|+〉) states. For the reservoir atoms, we assume
that all dipole moments are polarized along the z axis. The
impurity atom-atom interaction is

V (3D)(x − x1) = gbδ(x − x1) + 3gd

4π

1 − 3 cos2θ

|x − x1|3
, (3)

where gb = 4πh̄2aB/mb represents the strength of the contact
interaction with aB being the s-wave scattering length, gd =
μ0μ

2/3 with μ0 being the permeability of vacuum, μ being
the magnetic dipole moment of the qubit, and θ is the polar
angle of x − x1. The strength of the dipole-dipole interactions
is conveniently measured by the dipolar interaction length
aD = gdmb/(4πh̄2). Moreover, the gas is confined along the
z axis by potential Vb(z) = 1/2mbω

2
zz

2, where ωz is the trap
frequency. For sufficiently large ωz, the motion of the atoms
along the z axis is frozen to the ground state of the oscillator
with Vb(z), i.e., φb(z) = π−1/4L

−1/2
a exp[−z2/(2L2

b )]. Fol-
lowing Bogoliubov’s method, the Hamiltonian of the reservoir
takes

ĤR =
∑

k

h̄ωkâ
†
kâk, (4)

where the excitation spectrum [31] is

ωk = 1
2ωz

√
(Lbk)4 + P (Lbk)2[1 + χα(Lbk)], (5)

where P = 8
√

2nLbaB denotes a dimensionless parameter
that characterizes the strength of the contact interaction Lb =√

h̄/(mbωz), χ = gd/gb being the relative DDI strength, and
α(x) = 2 − 3

√
π/2xex2/2erfc(x/

√
2) being the Fourier trans-

form of the effective 2D DDI. It is now well established that
sufficiently strong DDI would lead to the roton excitation and
eventually the instability. Under the given parameters P = 2,
roton excitation sets in when

χ > χ∗ ≈ 4.23. (6)

In addition, the condensate becomes unstable for χ > χ∗∗ ≈
5.67. For the interaction Hamiltonian Ĥab, we assume that
only when the impurity is in the excited-state |+〉 it undergoes
s-wave scattering with atoms in the dipolar Bose-Einstein
condensate. Such a collision is characterized by the s-wave
scattering length Aab. We note that this scenario can be
engineered by means of Feshbach resonances [41] and similar
treatments were taken in Refs. [12,42]. Now the interaction
Hamiltonian can be written as the following form:

Ĥab = h̄�bσ̂z + σ̂z

∑
k

h̄gk (âk + â
†
k ), (7)

where �b = 2
√

πh̄nAab/[mab

√
L2

a + L2
b ] is the level shift

due to the collisions and mab = mamb/(ma + mb ) is the
reduced mass. And

gk = (ns−1/2)�be
−(Lak)2/4

√
ek/(h̄ωk ) (8)

is the impurity-reservoir coupling parameters with s being
the area of the reservoir and ek = h̄2k2/(2mb ) being the
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free-particle energy. The Hamiltonian for the qubit driven by a
two-dimensional magnetic field takes Ĥm = h̄Bxσ̂x − h̄Bzσ̂z

[43]. For simplicity, we will mainly focus on the resonance
case (�a + �b − Bz = 0), and this requirement can be met
by adjusting the magnetic-field Bz in the z direction. After
making the unitary transform Ŝ=e−i(π/4)σ̂y to the total Hamil-
tonian, we arrive at

Ĥ = h̄Bxσ̂z +
∑

k

h̄ωkâ
†
kâk −

∑
k

h̄gkσ̂x (âk + â
†
k ). (9)

The interaction Hamiltonian in Eq. (9) contains the coun-
terrotating terms σ̂−âk and σ̂+â

†
k . A useful approximation in

quantum optics and quantum information communities is the
rotating-wave approximation (RWA). With this approxima-
tion, Eq. (9) can be written as

Ĥ = h̄Bxσ̂z +
∑

k

h̄ωkâ
†
kâk −

∑
k

h̄gk (σ̂+âk + â
†
kσ̂−). (10)

Equation (10) is analytically solvable because the total exci-
tation number N̂ = σ̂+σ̂− + ∑

k â
†
kâk of the whole system is

conserved. Due to the tunability of the x-direction magnetic
field, we can precisely control the non-Markovian dynamics
of the quantum system.

B. The non-Markovian dynamics of the AIQ
with the correlated initial state

Due to decoherence phenomena, arbitrary initial states
of an infinite bosonic environment are inaccessible in the
present experiments. Moreover, according to Ref. [44], the
initial system environment correlation cannot be avoided in
a realistic situation, and it is therefore reasonable that a
more general analysis can give a better understanding of
experimental results. We therefore assume the most general
formalization of the initial state within the single excitation
can be written as

|ψ (0)〉 = α|−, 0〉 + K(0)|+, 0〉 +
∑

k

Mk (0)|−, 1k〉, (11)

which is an entangled state of the atomic impurity qubit
and dipolar Bose-Einstein condensate [i.e., Mk (0) �= 0].
Nonetheless, we note that the recent development and
progress in the highly controlled experimental techniques
allows one to prepare and manipulate systems devised from
an increasing number of particles [45]. Our general analysis
therefore may also serve as a starting point for studies of
reduced dynamics of the qubit coupled to a large but finite
bosonic system prepared in a desired quantum state in a
single excitation subspace. We note that the initial correla-
tion between system and environment has been extensively
investigated both theoretically[46–52] and experimentally
[15,53,54]. In particular, Ref. [55] studied an operational ap-
proach to open dynamics and quantifying initial correlations.

With this initial state (11), the time-evolved state |ψ (t )〉
can be written as

|ψ (t )〉 = α|−, 0〉 + K(t )|+, 0〉 +
∑

k

Mk (t )|−, 1k〉, (12)

with normalized condition |K(t )|2 + ∑
k |Mk (t )|2 = 1.

By substituting |ψ (t )〉 into the Schrödinger equation
ih̄|ψ (t )〉 = Ĥ |ψ (t )〉, we obtain the equations of motion,

K̇ = −iBxK(t ) − i
∑

k

gkMk (t ), (13)

Ṁk = −i(ωk − Bx )Mk (t ) − igkK(t ). (14)

Solving Eq. (14) for Mk (t ), setting the slowly vary-
ing amplitudes transformation K(t ) → eiBx tK(t ), Mk (t ) →
eiBx tMk (t ), and substituting these into Eq. (13), we obtain the
integrodifferential equation,

K̇(t ) + 2iBxK(t ) +
∫ t

0
K(τ )F (t − τ )dτ = S (t ), (15)

where the initial value of K(t ) is K(0). The contribution
induced by the initial correlation between system and envi-
ronment is given by

S (t ) = i
∑

k

Mk (0)gke
−iωkt , (16)

and the dissipation-fluctuation kernel,

F (t ) =
∑

k

|gk|2e−iωkt

≡
∫ ∞

0
dωJ (ω)e−iωt , (17)

with spectrum density J (ω) = ∑
k |gk|2δ(ω − ωk ) being the

reservoir spectrum density. In particular, excited-state prob-
ability amplitude K(t ) reduces to K0(t ) when Mk (t ) = 0,
which is governed by

K0(t ) + 2iBxK0(t ) +
∫ t

0
K0(τ )F (t − τ )dτ = 0, (18)

where the initial value is K0(0) = K(0).
In particular, in the continuum limit, S−1 ∑

k →
(2π )−2

∫
dk,

J (ω) = εω3
zL

4
b

∫ ∞

0

k3e−L2
ak

2/2

ω(k)
δ[ω − ω(k)]dk, (19)

where ε = nA2
abL

2
b(ma + mb )2/[m2

a (L2
a + L2

b )] and ω(k) ≡
ωk .

The non-Markovian dynamics of the impurity atom system
is governed by the exact master equation by tracing over
degree of freedom of the reservoir Eq. (12) as follows:

ρ̇ = −ir (t )[σ̂+σ̂−, ρ] + γ (t )[2σ̂−ρσ̂+− σ̂+σ̂−ρ − ρσ̂+σ̂−],

(20)

where the time coefficients are given by

r (t ) = −Im[K̇(t )/K(t )],
(21)

γ (t ) = −Re[K̇(t )/K(t )].

Detailed derivations of Eq. (22) can be found in Appendix A.
Taking the Laplace transformation to Eqs. (15) and (18),
respectively, K(t ) can be written as

K(t ) = K(0)K0(t ) +
∫ t

0
K0(τ )S (t − τ )dτ , (22)
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where K0(t ) is decided by Eq. (18). We show the coherence
r (t ) and dissipation γ (t ) contain all the influences of the
initial correlations on the system dynamics. In order to see
this clearly, we will present an expansion for r (t ) and γ (t )
in orders of the initial population. With this consideration,
one can have the coherence and dissipation up to any order
in perturbation if required

r (t ) = r0(t )

[
1 +

∞∑
n=1

A(t )n

|K0(t )|2n

]
+ B(t )

2|K(t )|2 ,

(23)

γ (t ) = γ0(t )

[
1 +

∞∑
n=1

A(t )n

|K0(t )|2n

]
+ A(t )

2|K(t )|2 ,

where A(t ) = |K0(t )|2 − |K(t )|2, B(t ) = 2 Im(K̇0K∗
0 −

K̇K∗), and

r0(t ) = −Im[K̇0(t )/K0(t )],
(24)

γ0(t ) = −Re[K̇0(t )/K0(t )],

which corresponds to the coherence and dissipation in
the uncorrelated initial state [Mk (0) = 0] with the master
equation ρ̇0 = −ir0(t )[σ̂+σ̂−, ρ0] + γ0(t ) [2σ̂−ρ0σ̂+ −
σ̂+σ̂−ρ0 − ρ0σ̂+σ̂−], where ρ0 = |K0(t )|2|+〉〈+| + [1 −
|K0(t )|2]|−〉〈−|, which is consistent with the case of the
uncorrelated initial state [1,38–40]. With Eqs. (20) and
(22), we can study the exact time-dependent non-Markovian
dynamics for the AIQ when the system and environment
initially are prepared in a correlated state (11). From the
above results, we find that the first term in Eq. (24) represents
the zero-order approximation, which corresponds to the
uncorrelated initial state [Mk (0) = 0]. The other terms of
Eq. (24) except the first term denote the influence of the
high-order contributions for the initial correlations (n � 1) to
the system dynamics.

As a concrete example, we consider a single 87Rb atom
immersed in a dBEC of 164Dy atoms [22,23]. The dipolar
interaction length aD for 164Dy atoms is around 7 nm, and the
s-wave scattering length between Dy atoms is aB = 5.3 nm
[22,23], which leads to the dipolar-contact interaction ratio
χ ∼ 1.32. In general, we will treat χ as a control parameter
which can, in principle, be realized by tuning aB through the
Feshbach resonance. The parameters P and ε can be estimated
as follows. For a typical trap frequency ωz = 2π × 103 Hz,
the corresponding harmonic-oscillator width is Lb ∼ 2.5 ×
10−5 cm. Assuming that the peak density of the condensate
is 1014 cm−3, the area density is then n = 4.4 × 109 cm−2,
which results in the typical value of P ∼ 1.5. To fix ε, we
assume that the s-wave scattering length between 87Rb and
164Dy atoms is Aab ∼ 5 nm and the width of the impurity
trap La equals the dBEC trap length Lb and we therefore
have ε ∼ 4.6 × 10−3. Without loss of generality, we will take
P = 2, ε = 0.0046 in the simulation.

In Fig. 1, we plot |K0(t )| in Eq. (18) for different Bx’s.
We can see that |K0(t )| decays fast after transient oscillations
for strong Bx . We will refer to the dynamics in this regime as
the complete decoherence [see Figs. 1(b), 1(d) and 1(f)]. With
the decrease in the magnetic field, the decay is suppressed,
which is dramatically different from that a weaker driving
strength always induces a more severe decoherence. When
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FIG. 1. The figure shows the time evolution of the exact solution
|K0(t )|. Here we have taken the parameters χ = 0 for (a) and (b),
χ = 2 for (c) and (d), and χ = 4.6 for (e) and (f). Bx = 10 Hz for
(a), (c), and (e) and Bx = 100 Hz for (b), (d), and (f).

Bx = 10 Hz, the coherence does not decay to zero, and a
finite quantum coherence is preserved in the steady state. With
the increase in the relative DDI strength χ , the oscillation is
totally stabilized, and the decoherence is inhibited. We call the
dynamics in this regime Bx � Bcl

x /2 (see the next subsection)
as decoherence suppression.

This observation indicates that the system encounters a
threshold induced by the non-Markovian effect. Although this
result confirms that the memory function connects directly
with the non-Markovianity, the existence of the threshold
point Bx inspires us to further pursue the hidden physical
reason for the system.

C. Energy spectrum of the AIQ-dBEC system

In this section, we will show that the decoherence suppres-
sion for the atomic impurity qubit system is due to the bound
state of the whole system (atomic impurity qubit plus environ-
ment) [56–60]. Possible observations of the prediction can be
observed within current technologies [61–64]. To proceed, we
perform a Laplace transform to Eq. (18) and obtain K̄0(s) =
[s + iBx + F̄ (s)]−1 with F̄ (s) = ∫ ∞

0
J (ω)

s+iω−iBx
dω [In order to

maintain consistency with the eigenequation below, here we
have used K0(t ) without rotation to Bx , i.e., K0(t ) satisfies
K0(t ) + iBxK0(t ) + ∫ t

0 K0(τ )F (t − τ )dτ = 0 with F (t ) =∫ ∞
0 dωJ (ω)e−i(ω−Bx )t , please see below Eq. (14)]. According

to the Cauchy residue theorem, the inverse Laplace transform
can be performed by finding all the poles of K̄0(s). We now
consider a special case if there is a pole on the imaginary axis,
i.e., purely imaginary axis s = −iEbs (Ebs is a real number)in
which poles equation,

s + iBx + F̄ (s) = 0 (25)
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leads to the identity,

Bx +
∫ ∞

0

J (ω)

Bx − ω + Ebs

dω = Ebs, (26)

where J (ω) is given by Eq. (19). Note that the roots of
Eq. (26) are just the eigenenergies in the single-excitation
subspace of the whole system consisting of the AIQ and its
environment. To see this, we expand the eigenstates as |�〉 =
Z|+, {0k}〉 + ∑

k uk|−, 1k〉. Then from the eigenequation,

Ĥ |�〉 = E|�〉, (27)

with Hamiltonian given by Eq. (10), we obtain∑
k

gkuk = −(E − Bx )Z, (28)

gkZ = −uk (Bx + E − ωk ). (29)

For the bound-state energy E < −Bx , solving Eq. (29) gives
uk = −gkZ/(Bx + E − ωk ). Equation (26) can be obtained
by substituting the result uk into Eq. (28). In this regime with
|Z|2 + ∑

k |uk|2 = 1, we obtain

Z (Ebs ) =
[

1 +
∑

k

g2
k

(Bx − ωk + Ebs )2

]−1/2

. (30)

It is interesting to see that the roots of Eq. (26) multiplied by
h̄ are just the eigenenergies in the single-excitation subspace,
see Eq. (10). It is understandable from the fact that the
decoherence of the AIQ induced by the vacuum environment
is governed by the single-excitation process of the whole
system. For the sake of discussion about the critical equation
of the bound states below, we define the left side of Eq. (26)
as

X(Ebs ) ≡ Bx +
∫ ∞

0

J (ω)

Bx − ω + Ebs

dω. (31)

Since X(Ebs ) is a monotonically decreasing function when
Ebs < −Bx , Eq. (26) has one discrete root if X(−Bx ) < −Bx .
It has an infinite number of roots in the region Ebs > −Bx ,
which form a continuous energy band. We name this discrete
eigenstate with eigenenergy Ebs < −Bx the bound state. Its
formation would have profound consequences on the deco-
herence dynamics. Equation (26) has an isolated root in the
band gap whenever

2Bx �
∫ ∞

0

J (ω)

ω
dω ≡ Bcl

x . (32)

To see this, we perform the inverse Laplace transform to
K̄0(s), and obtain

K0(t ) = Z2(Ebs )e−iEbs t +
∫ iς+∞

iς+0

dω

2π
K̄0(−iω)e−iωt , (33)

where Z (Ebs ) is given by Eq. (30) and the second term
contains contributions from the continuous energy band. Os-
cillating with time in continuously changing frequencies, the
second term in Eq. (33) decays and tends to zero due to out-
of-phase interference. Therefore, if the bound state is absent,
then limt→∞K0(t ) = 0 characterizes a complete decoherence,
whereas if the bound state is formed, then limt→∞K0(t ) =
Z2(Ebs )e−iEbs t implies dissipation suppression.

To make this result clear, we recall that, according to
the Schrödinger equation, ih̄(∂/∂t )|ψ (t )〉 = Ĥ |ψ (t )〉 with Ĥ

given by Eq. (10). The time evolution of the whole state
satisfies |ψ (t )〉 = e−iĤ t/h̄|+, 0〉. Inserting completeness re-
lations |�bs〉〈�bs | + ∫ ∞

−Bx
|�c(Ec )〉〈�c(Ec )|dEc = I into it,

we obtain

|ψ (t )〉 = Z (Ebs )e−iEbs t |�bs〉 + |ψc(t )〉, (34)

where |ψbs (t )〉 denotes the bound state with energy Ebs given
by Eq. (26). |ψc(t )〉 is a superposition of the continuous-
spectrum eigenfunctions of the Hamiltonian,

|ψc(t )〉 =
∫ ∞

−Bx

e−iEctZ∗
c (Ec )|�c(Ec )〉dEc, (35)

with the continuous-spectrum eigenfunctions,

|�c(Ec )〉 = Zc(Ec )|+, {0k}〉 +
∫ ∞

0
uc,k (Ec )|−, 1k〉dk,

(36)

where Ec denotes the continuous-spectrum eigenenergy in the
regime of Ec > −Bx , which is obtained by the diagonaliza-
tion of

Ĥse =

⎛
⎜⎝

Bx −g1 · · · −gN

−g1 ω1 − Bx 0 0
· · · 0 · · · 0

−gN 0 0 ωN − Bx

⎞
⎟⎠, (37)

where N denotes total mode numbers of the structured envi-
ronment and Zc(Ec ) and uc,k (Ec ) are solved in the regime of
Ec > −Bx by Eqs. (28) and (29), respectively. The probability
amplitude on the upper state from Eq. (34) can be written as

Z2(Ebs )e−iEbs t +
∫ ∞

−Bx

e−iEct |Z2
c (Ec )|dEc. (38)

We show that the second term of Eq. (38) corresponds to the
second term of Eq. (33), which tends to zero in the long-
time limit t → ∞ according to the Lebesgue-Riemann lemma
[65]. This leads to the probability amplitude on the upper state
to approach Z2(Ebs )e−iEbs t . Note that this feature has been
illustrated in the literature [56,66] to describe the incomplete
decay of an atom in photonic band-gap media.

According to critical equation (32), we can calculate Bcl
x =

33.77 Hz for χ = 0, Bcl
x = 30.57 Hz for χ = 2, and Bcl

x =
50.74 Hz for χ = 4.6. The energy spectrum E and the decay
rate γ (t ) are shown in Fig. 2. We can see that γ (t ) tends
to a positive constant in the absence of the bound state
when Bx > Bcl

x /2. The complete positivity of γ (t ) causes
|K0(t )| to decay to zero monotonically. Here the dipolar
Bose-Einstein condensate reservoir has no backaction on the
system. When the bound state is formed with Bx � Bcl

x /2,
the competition between the environmental backaction and
the dissipation on the impurity atom causes γ (t ) to transiently
take negative values and asymptotically approaches zero [see
Figs. 2(c) and 2(e)]. Consequently, after some short-time
oscillations, |K0(t )| tends to a finite value matching well with
the result limt→∞K0(t ) = Z2(Ebs )e−iEbs t .

The phase diagram derived from Eq. (32) is quite rich, see
Fig. 3. The dashed-pink line shows the first critical equation
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FIG. 2. (a) and (b) Diagrammatic solutions of Eq. (26) with dif-
ferent parameters χ = 0, χ = 2, and χ = 4.6 correspond to dashed-
blue, solid-pink, and dotted-black lines, respectively. Bx = 10 Hz for
(a), Bx = 100 Hz for (b). (c)–(f) The time evolution of the dissipation
coefficient. Here we have taken the parameters χ = 0 for the blue
lines in (c) and (d), χ = 2 for the dashed-red lines in (c) and (d).
χ = 4.6 for (e) and (f). Bx = 10 Hz for (c) and (e). Bx = 100 Hz for
(d) and (f).

in Eq. (32). The existence of the quantum phase transition
(QPT) in the model can be clearly found. The ground-state
energy and its derivative are plotted in Figs. 3(b) and Fig. 3(c),
respectively. At zero temperature, the nonanalyticity of the
ground-state energy is directly connected to the QPT. The
first-order QPT is characterized by the discontinuity in the first
derivative of the ground-state energy with respect to χ . It
is easy to find that the first derivative is discontinuous at
the critical point (32), which means that it is a first-order
QPT.

III. ANALYTICAL EXPRESSION OF THE SPECTRAL
DENSITY AND NON-MARKOVIANITY

A. Analytical solution of the spectral density

The physics behind the dynamics of the atomic impurity
qubit can be found by examining the system-environment
spectrum density. To this end, we plot the corresponding
spectral density J (ω) in Fig. 4. Clearly, for χ = 0, J (ω)
is a function peaked at ω = 0.9ωz, see the blue-thin line of
Fig. 4(a). The peak of J (ω) then moves to ωz when the
DDI is turned on, see the red-thick line of Fig. 4(a). In
particular, J (ω) becomes a sharply peaked function as χ

approaches χ∗ [see Fig. 4(b)]. Intuitively, a peak at ωq on
J (ω) indicates that the spectral density is particularly high at
ωq , which picks up the frequency ωq for the non-Markovian
dissipative rate γ (t ) through Eq. (22) and results in oscillating
in K0(t ). To see this more clearly, we approximate J (ω) as a
δ function, i.e., J (ω) ≈ ∑

q Cqδ(ω − ωq ) with an amplitude

FIG. 3. (a) Phase diagram of the atomic impurity qubit in the
space spanned by the DDI strength and the field Bx . The dashed-pink
line is given by the critical equation (32): 2Bx = ∫ ∞

0
J (ω)

ω
dω. (b)

Ground-state energy Eg given by Eq. (26) with Bx = 16 Hz and (c)
its first derivative ∂Eg

∂χ
with respect to χ as a function of the relative

DDI strength with Bx = 16 Hz.

Cq (q indicates the number of the peaks) in which we obtain
immediately the correlation function F (t ) ≈ ∑

q Cqe
−iωq t in

Eq. (17), an undamped oscillating function of t . In the case
of χ = 4.6 as shown in Fig. 4(b), we find that there exists a
so-called “beat frequency” phenomenon for coupling between

ω/ωz
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J
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)

×105
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J
(ω
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×106

0

5

10

15

(a)

(b)

FIG. 4. The spectrum density function given by Eq. (39). The
blue-thin and red-thick lines correspond to χ = 0 and χ = 2, respec-
tively, in (a). In (b), χ takes 4.6.

062106-6



CONTROLLABLE DISSIPATION OF A QUBIT COUPLED … PHYSICAL REVIEW A 98, 062106 (2018)

system and environment, which originates from the two peaks
in the dependence of J (ω) on ω. In the following, we will give
approximately an analytical expression for J (ω).

We assume that kj (ω) is the root of equation ω = ωk with
ωk given by Eq. (5), so the spectral density of the AIQ-dBEC
system in Eq. (19) reduces to

J (ω) = εh̄2ω3
zL

4
b

∑
j

λ[kj (ω)]

ω

∣∣∣∣dωk

dk

∣∣∣∣
−1

k=kj (ω)

, (39)

where λ(k) = k3e−L2
ak

2/2. When χ > χ∗, the exciton
spectrum has a local maximum as kM and a local minimum
at km, the corresponding exciton energies are h̄ωM = h̄ωkM

and h̄ωm = h̄ωkm
, respectively. Based on Eq. (39), J (ω)

diverges at ωM and ωm. To accurately take into account the
contributions from these singularities to J (ω), let us focus
on ωk in the vicinities of kM where the excitation energy
can be approximated as ωk  ωM + ω′′

k (kM )(k − kM )2/2.
Using Eq. (39), it can be then shown that, in the vicinity
of ωM , we have J (ω) = ZM (ωM − ω)−1/2 for ω < ωM ,
where ZM =

√
2h̄1.5εω3

zL
4
bλ(kM )|ω′′

k (kM )|−1/2/ωM .
Similarly, in the vicinity of the local minimum, we
have J (ω) = Zm(ωm − ω)−1/2 for ω > ωm, where
ZM =

√
2h̄1.5εω3

zL
4
bλ(km)|ω′′

k (km)|−1/2/ωm.
Based on the above discussion, we may assume that these

two singularities result in the largest contribution to system-
environment spectrum density J (ω). We then define

J̃ (ω) = ZM

θ (ωM − ω)

(ωM − ω)
+ Zm

θ (ω − ωm)

(ω − ωm)
, (40)

as the approximate J (ω), where θ (t ) is the unit step function
that θ (t ) equals one when t is greater than or equal to zero,
otherwise θ (t ) is zero.

With this approximation, the expression of K0(t ) for the
general spectrum density can be calculated using the analyti-
cal expressions by the Laplace transformation [67],

K0(t ) = Z2(Ebs )e−iEbs t + 1

π

∫ ∞

−∞
dω

× I (ω)e−iωt

[ω − 2Bx − R(ω)]2 + I2(ω)
, (41)

where Ebs is given by Eq. (26) and R(ω) = P
∫ ∞
−∞

J (ω′ )dω′
ω−ω′

and I (ω) = πJ (ω). Due to the vanishing spectral density
for Ebs < 0, a localized mode at X(Ebs ) = 0 occurs for
Ebs < 0. The localized mode that leads to the dissipation-
less process is given by Eq. (33). Equation (41) shows
that the environment modifies the system spectrum as a
combination of localized modes (dissipationless process)
plus a continuum spectrum part (nonexponential decays).
Remarkably, the result obtained from these simple exam-
ples gives indeed the underlying structure of memory func-
tions in arbitrary complicated systems. This indicates that
alternatively, non-Markovian dynamics can be fully char-
acterized by the environmental-modified spectrum of the
system.

Figure 5 shows the comparison of |K0(t )| and |K̃0(t )| for
χ = 5.6 and χ = 4.7, respectively. The parameters Zm,M and
ωm,M used in |K̃0(t )| are all obtained with the given χ with

t
0 0.01 0.02 0.03 0.04 0.05 0.06

|K
0(

t)
|,|
K̃ 0

(t
)|

0.85

0.9

0.95

1
numerical
analytical

t
0 0.01 0.02 0.03 0.04 0.05 0.06

|K
0(

t)
|,|
K̃ 0

(t
)|

0.98

0.985

0.99

0.995

1
numerical
analytical

(a)

(b)

FIG. 5. |K0(t )| and |K̃0(t )| versus time t . The dotted and
solid lines correspond to the analytical expression |K̃0(t )| given
by Eq. (41) based on Eq. (40), whereas |K0(t )| is for the fully
numerical simulation by solving Eq. (39). |K0(t )| and |K̃0(t )| are
plotted for (a) χ = 5.6 and (b) χ = 4.7. Parameters chosen in (a) are
Bx = 10 Hz, ZM/ω1/2

z = 49.49, ωM/ωz = 0.933, and Zm/ω1/2
z =

12.30, ωm/ωz = 0.25; ZM/ω1/2
z = 38.83, ωM/ωz = 0.91, and

Zm/ω1/2
z = 21.38, ωm/ωz = 0.83 for (b).

the excitation spectrum (5). As the DDI strength decreases,
for example, χ = 4.7, ωM (ωm) decreases (increases) such
that ZM becomes much larger than Zm. We find from Fig. 5
that the results given by the approximate analytical solution
Eq. (40) are in good agreement with those obtained by the
numerical simulation based on Eq. (39).

B. Non-Markovianity for the atomic impurity qubit in dBEC

To study the non-Markovianity of the quantum process,
we should take away the contribution from the initial states.
This consideration suggests taking an uncorrelated state as the
initial one. The following measure of non-Markovianity will
be used in the discussion:

N = max
ρ1,2(0)

∫
σ (t )>0

dt σ (t ), (42)

where σ (t ) = Ḋ[ρ1(t ), ρ2(t )] is the change rate of the trace
distance D[ρ1(t ), ρ2(t )] = 1

2 Tr|ρ1(t ) − ρ2(t )| between states
ρ1(t ) and ρ2(t ) with their respective initial states ρ1(0) and
ρ2(0) [9]. In the Markovian limit, the environment acts, such
as a “sink” that all the energy flows irreversibly from the
system to the environment. The states become more and more
indistinguishable with time, which means σ (t ) < 0 always
holds, and thus N = 0. In the non-Markovian dynamics, the
dynamical interplay between the system and the environ-
ment would transiently cause the energy backflow from the
environment to the system. This would lead to the increase in
the distance.
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FIG. 6. Non-Markovianity N as a function of the relative
DDI strength χ with Bx = 10 Hz. The inset shows the integrals∫

σ (t )>0 σ (t )dt in the definition of non-Markovianity [Eq. (42)] versus
the driving time σ with χ = 4. The blue and red lines represent the
integrals with initial states (|+〉, |−〉) and the other 2000 randomly
chosen pairs, respectively.

There exists no general analytical expression for the opti-
mal initial states ρ1(0) and ρ2(0) [68]. But for a given pair of
ρ1(0) and ρ2(0), the distance is given by

D(ρ1, ρ2) = |K0|
√

A2|K0|2 + B2, (43)

where A = ρ1(t = 0)11 − ρ2(t = 0)11 and B = ρ1(t =
0)10 − ρ2(t = 0)10 are defined by the elements of the initial
density matrix and Eq. (42) has been used.

In Fig. 6, the integral
∫
σ (t )>0 σ (t )dt in the definition of

N with 2000 randomly chosen initial states [ρ1(0), ρ2(0)]
[denoted by thin-red curves] is plotted (with χ = 2). Clearly
all these pairs yield smaller values than that of the state pair
(|+〉, |−〉) (denoted by the bold-blue curve). This suggests that
|+〉 and |−〉 are the optimal pair, which maximizes the change
rate in Eq. (42). Thus the trace distance of the evolved states
can be written as D(t ) = |K0(t )|2. Based on this observation,
we write the non-Markovianity as

N = 1

2

[
|K0(τ )|2 − 1 +

∫ τ

0
|∂t |K0(t )|2|dt

]
, (44)

where τ denotes the time when the system reaches the steady
state. We show in this case that the non-Markovianity measure
(42) given by the trace distance is equivalent to measures
based on divisibility with Ref. [8]. For a slightly larger χ , we
find it is very difficult to obtain a converged N . As expected,
N increases very quickly when χ approaches the divergent
point χ∗.

So far, we have studied the non-Markovian dynamics for
the atomic impurity qubit immersed in the dipolar Bose-
Einstein condensate. In the next section, we will discuss the

influence of initial system-environment correlation on the
system dynamics.

IV. INFLUENCE OF THE INITIAL CORRELATION
ON NON-MARKOVIAN DYNAMICS

In the previous section, we have found a threshold χ∗ in
the influence of the dipolar Bose-Einstein condensate on the
dynamics of the atomic impurity qubit; this is a prediction of
the non-Markovian effect in open quantum systems. In this
section, we will study the effect of initial system-environment
correlation on the system. The steady state of the system in
Eq. (22) including the initial correlation between the AIQ and
the dBEC reads (11)

K(t )|t→∞ = e−iEbs t/h̄

{K̃[−iEbs/h̄]−1}′
[
K(0) −

∑
k Mk (0)gk

Ebs/h̄ − 2Bx

]
,

(45)

where {· · · }′ denotes the first derivative of {· · · } with respect
to Ebs . In the following, two examples will be used to exem-
plify the initial correlation effects.

This first is the sinusoidal wave case. Consider an initial
probability amplitude taking the sinusoidal form

Mk (0) =
{
iη sin[a(k − k0)/�0]/

√
�0S, 0 � k � T0,

0, k > T0,

(46)

where k0 is the wave vector corresponding to the central
frequency of the dNEC reservoir, η is the distribution intensity
in the non-Markovian environment, �0 is the width, and T0 is
the period of the sinusoidal probability amplitude.

To study the influence of the initial system-environment
correlation on the dynamics of the atomic impurity qubit, we
calculate the population amplitude |K(t )| on the upper state
as a function of time t . The numerical results are shown in
Fig. 7(a). Then we can obtain from the condition (32) that
the bound state is formed when Bx < 16.8 Hz. We can see
that, when the bound state is absent, i.e., Bx < 16.8 Hz, the
system decays fast. However, when the bound state is formed,
i.e., Bx < 16.8 Hz, we find the system dynamics remains
unchanged with time t , which confirms our expectation based
on the bound-state analysis. In addition, from Fig. 7(a), we
can see that there exists a maximum Y (close to 1 but smaller
than 1) for |K(t )| at t = 0.1 s where the impurity atom arrives
at the maximal population on its excited state. This comes
from the feedback of the dipolar Bose-Einstein condensate
reservoir on the impurity atom with decoherence suppressed
[originated from the second term of Eq. (45)].

However, in the rectangular wave case, Mk (0) that takes
the following form:

Mk (0) =
{
iη/

√
S, 0 � k � T0,

0, k > T0
(47)

is shown in Fig. 7(b). The initial system-environment correla-
tion does not alter the non-Markovianity of the impurity atom.
But it suppress the population of the impurity atom on its
excited state. This environment-induced reactance describes
the energy exchange between the system and the environment,
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FIG. 7. Influence of the initial system-environment correlation
on the dynamics of the AIQ with χ = 0. The solid lines and the
pointed lines correspond to the excited-state populations |K0(t )|
and |K(t )| with uncorrelated and correlated initial states, respec-
tively. The sinusoidal wave case (46) and rectangular wave case
(47) correspond to (a) and (b) [a = 0.04, �0 = 90, η = 0.11, k0 =
100, T0 = 2π ], (c) and (d) [η = 0.1, T0 = 5], respectively. The
other parameters take Bx = 10 Hz for (a) and (c) and Bx = 100 Hz
for (b) and (d).

reminiscent of the effect of the initial system-environment
correlation.

V. DISCUSSIONS WITHOUT THE ROTATING-WAVE
APPROXIMATION

In many physical systems described by the Hamiltonian
of Eq. (9), the typical coupling strength many orders of
magnitude smaller than the frequencies, characterizing the
weak-coupling regime. It is then a good approximation to
drop the counter-rotating terms, a procedure which is known
as the rotating-wave approximation. In this section, we will
study the influence of the counterrotating terms on the system
dynamics in the AIQ-dBEC model. This can be demonstrated
by deriving an effective Hamiltonian in weak-coupling limits
by using the Fröhlich-Nakajima transformation.

In order to study the influence of the counterrotating terms
in the Hamiltonian, we write Eq. (9) as (here we set h̄ = 1)

Ĥ = Ĥ0 + ĤI ,

Ĥ0 = Bxσ̂z +
∑

k

ωkâ
†
kâk, (48)

ĤI = −
∑

k

[gk (âk + â
†
k )σ̂+ + H.c.].

In order to take into account the correlation between the AIQ
and the dBEC, we present a treatment based on a general-
ized version of the Fröhlich-Nakajima transformation exp(Ŝ1)
[69–72].

We can derive the second-order effective Hamiltonian
without rotating wave approximation by this unitary transfor-
mation:

Ĥeff = exp(Ŝ1)Ĥ exp(−Ŝ1) = Ĥ0 + Ĥ1 + Ĥ2 · · · , (49)

where

Ŝ1 =
∑

k

(ξ ∗
k â

†
kσ̂+ − ξkâkσ̂−), (50)

with undetermined coefficients ξk . A k-dependent function
ξk is introduced in the transformation, which corresponds to
displacements of each boson mode due to the coupling to the
two-state system [73–76]. In order to eliminate the counter-
rotating terms â

†
kσ̂+ + H.c. from the first-order term, we need

impose

Ĥ1 = ĤI + [Ŝ1, Ĥ0]

=
∑

k

[−gk (â†
k + âk )σ̂+ − (2Bx + ωk )ξ ∗

k â
†
kσ̂+ + H.c.]

=
∑

k

−(gkâkσ̂+ + gkâ
†
kσ̂−), (51)

which leads to the coefficient ξk = −gk/(2Bx + ωk ) and then
yields the anti-Hermitian operator Ŝ1 in Eq. (50). If we omit
the high-frequency intercrossing terms such as â

†
kâ

†
k′ , and

âkâk′ , we get

Ĥ2 = [Ŝ1, ĤI ] + 1

2
[Ŝ1, [Ŝ1, Ĥ0]]

=
∑

k

|gk|2
2Bx + ωk

σ̂+σ̂− −
∑

k

|gk|2
2Bx + ωk

. (52)

Finally, we obtain the effective Hamiltonian Ĥeff =
exp(Ŝ1)Ĥ exp(−Ŝ1) up to the second order in the system-
environment coupling constant as follows

Ĥeff = B̃xσ̂z +
∑

k

ωkâ
†
kâk −

∑
k

gk (âkσ̂+ + â
†
kσ̂−).

(53)

Here the modified level spacing for the AIQ that can be
regarded as the Lamb shift is

B̃x = Bx + 1

2

∑
k

|gk|2
ωk + 2Bx

. (54)

We show that the effective Hamiltonian (54) has the same
form with the Hamiltonian under the RWA in Hamiltonian
(10) except the modified factor Bx . With this observation,
we can obtain exact non-Markovian master equation (20) in
the initial correlation between the qubit and the dBEC with
effective decay given by Eq. (21) by only replacing Bx with
B̃x . With the parameters we have used above, we estimate the
maximum value of the coupling strength gk as 10−1 Hz, while
Bx ∼ 10 Hz–100 Hz, so that gk � Bx . Therefore, within the
parameters we selected (i.e., weak-coupling regime), B̃x ≈
Bx , we do not consider the influence of the counterrotating
terms on the atomic impurity qubit Secs. II–IV in this work.
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VI. DISCUSSION AND CONCLUSION

To summarize, we have studied the dissipative dynam-
ics of an atomic impurity qubit immersed in the structured
environment—a quasi-2D dipolar Bose-Einstein condensate.
We discover that the DDI can significantly modify the non-
Markovianity. We derive a non-Markovian master equation
for the atomic impurity qubit with an initial correlation be-
tween AIQ and dBEC, which contains all the influences of
the non-Markovian environment on the system. We give an
analytical expression for the spectrum density of the coupled
AIQ-dBEC system. The result suggests that the DDI-induced
excitation spectrum is highly tunable via either the Feshbach
resonance or a fast rotating magnetic field. It is remarkable
to find that the AIQ may not decay completely to its ground
state and population on its excited state could be nonzero
in the steady state. This is qualitatively different from the
conventional results, and it reveals that the non-Markovian
effect may not only cause a quantitative correction to the
short-time dynamics, but also induces a qualitative change to
the steady state of the quantum system. Further examination
shows that such a qualitative change is essentially due to the
formation of the system-environment bound state.

This paper focuses on a reservoir and uses it to study
quantum non-Markovian dynamics where the environmental
spectrum can be well engineered and modulated from being
relatively flat to very sharp by the scattering lengths. We found
that the DDI strength can increase the sharpness of the envi-
ronmental spectrum and lead to non-Markovian enhancement.
This is different from most studies in the literature where
the spectrum of the environment only leads to the loss of
coherence.
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APPENDIX: THE DERIVATION OF NON-MARKOVIAN
MASTER EQUATION (20) WITH THE

INITIAL CORRELATION

With the help of the probability amplitudes α, K(t ), and
Mk (t ) we can now express the reduced density matrix ρ(t ) as

ρ(t ) = TrR|ψ (t )〉〈ψ (t )| ≡
(|K(t )|2 α∗K(t )

αK∗(t ) 1 − |K(t )|2
)

, (A1)

where |ψ (t )〉 is given by (12) and TrR• = 〈0| • |0〉 +∑
k 〈1k| • |1k〉. Differentiating Eq. (A1) with respect to time

with zero-exciton probability amplitude α̇ = 0, we get

ρ̇(t ) =
(
K̇(t )K∗(t ) + c.c. α∗K̇(t )

αK̇∗(t ) −K̇(t )K∗(t ) − c.c.

)
. (A2)

We assume that the non-Markovian master equation (A2) has
the form of Eq. (20), which can be rewritten as

ρ̇(t ) =
( −2γ (t )|K(t )|2 −α∗[γ (t ) + ir (t )]K(t )

−α[γ (t ) − ir (t )]K∗(t ) 2γ (t )|K(t )|2
)

.

(A3)

Comparing Eqs. (A2) and (A3), we can obtain Eq. (22).
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