
PHYSICAL REVIEW A 98, 062104 (2018)

Quantum master equations for entangled qubit environments
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We study the Markovian dynamics of a collection of n quantum systems coupled to an irreversible
environmental channel consisting of a stream of entangled qubits. Within the framework of repeated quantum
interactions, we derive the master equation for the joint-state dynamics of the n quantum systems. We investigate
the evolution of the joint state for two-qubit environments where the presence of antidiagonal coherences in the
state of the bath qubits (in the local energy basis) is essential for preserving and generating entanglement between
two remote quantum systems. However, maximally entangled bath qubits, such as Bell states, exhibit exceptional
behavior, where the master equation does not have a unique steady state and can destroy entanglement between
the systems. For the general case of n-qubit environments we show that antidiagonal coherences that arise from
multibody entanglement in the bath qubits do not affect the composite system evolution in the weak-coupling
regime.
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I. INTRODUCTION

Open quantum systems are the subject of extensive re-
search since physical quantum systems cannot be entirely
isolated from their surroundings. The influence of the envi-
ronment often manifests as unwanted noise that can thwart
attempts to exploit intrinsic quantum properties for quantum
computing, communication, and metrology [1]. Open systems
tend to lose their key quantum properties—coherence and
entanglement—as they interact with the environment. This is
not inevitable, however, and much research has focused on
engineered environments [2] for various tasks including quan-
tum computing [3–5] and the generation of novel steady states
[6–10]. This can be achieved through a combination of precise
structuring of system-bath interactions and preparation of the
environment in particular states.

One can take many approaches to the description of open
quantum systems. In standard quantum optical treatments,
the electromagnetic field serves as the environment [11–13],
and the dynamics of the reduced quantum states is given by
a master equation (ME) after the environmental degrees of
freedom are traced out. An alternative approach is that of
repeated quantum interactions [14–17], also called collision
models [18–22], which treats the system-environment cou-
pling discretely. The environment is comprised of a chain of
identical and independent quantum ancillae which sequen-
tially couple to the system and are then traced out. Taking
a continuous limit [15,16,20–26], the resulting dynamical
map on the reduced system state becomes such that it is
described by a Lindblad ME. This formalism has been applied
in the context of quantum thermodynamics [27–31], as well as
quantum optics and information [32], and has experimentally
been tested using free-space optics [33]. The framework of
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repeated quantum interactions has also proven useful for the
study of correlated quantum channels [20,34,35]. When the
ancillae are correlated, the reduced-state dynamics can exhibit
non-Markovian behavior [21,36,37], such as for propagating
bath states with a fixed number of distributed excitations [38].

In this article we consider a correlated environment that
interacts with many quantum systems simultaneously. The
environment consists of a stream of n ancilla qubits, each
coupled to its own system. The n qubits arrive entangled
with one another at each interaction time, but they are not
entangled across different times, which allows us to derive
a Lindblad ME for the joint state of the quantum systems.
Depending on the state of the qubits, the ME can generate
nontrivial dynamics of the reduced systems. This provides the
tools to tackle the problem of converting coherences and/or
entanglement in the environment into quantum correlations
in the system [39–43]. Accordingly, we analyze in detail
the pedagogical case of n = 2 qubits in the bath, which can
be prepared as a stream of entangled states, as it provides
the canonical method for transferring qubit entanglement to
system entanglement. When the bath is prepared arbitrarily
close to a maximally entangled state, the system is driven to
an entangled pure state, such as a two-mode squeezed state
for the case of two optical cavities. Surprisingly, if the qubit
bath is exactly in a Bell state, the system fails to converge
to a unique steady state. For n-qubit baths (n > 2), we find
that for certain multiqubit entangled environments such as
baths prepared in X states (which have nonzero elements only
on the diagonal and antidiagonal entries of the state matrix
when expressed in the local energy basis) [44,45], the bath
entanglement cannot be transferred to the systems, as a direct
consequence of the weak-coupling limit

The manuscript is organized as follows. In Sec. II the
underlying framework behind our analysis is explained. We
first present and interpret the two-qubit bath ME in Sec. III.
We give two forms for the ME, which are useful for pure-state
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and general mixed-state baths, respectively. In Sec. V and
Sec. IV we apply the formalism to study the dynamics and
steady states for two sets of quantum system: optical cavities
and two-level atoms. The general case of an n-qubit bath is
dealt with in Sec. VI. Finally, in Sec. VII we summarize the
findings of this paper and propose future directions.

II. REPEATED INTERACTION WITH A BATH
OF n ENTANGLED QUBITS

We derive dynamical maps and master equations within the
structure of repeated quantum interactions [14,17,30,32]. In
this formalism, a quantum system in Hilbert space HS couples
to an environment which is comprised of a stream of identical
and independent quantum systems such that HE ≡ ⊗

k H (k)
E .

We assume the environment has infinitely many elements,
although in principle it can be finite. Each environmental
element sequentially interacts with the system over a short
time interval of duration �t = tk+1 − tk after which it no
longer interacts with the system. Tracing over the environ-
mental degrees of freedom yields a map on the system of
interest in HS . This is similar to the standard scenario for
open systems in quantum optics where a bosonic probe field
interacts with the system in a continuous-in-time manner [12].
However, the situation here is different in two ways. First, the
system-environment coupling is fundamentally discrete, al-
though we will ultimately consider short-time interactions and
take a continuous limit [15,16,46]. Second, the environmental
systems are qubits rather than bosonic modes. This serves
not only to model physical situations where streams of qubits
interact with a fixed quantum system [47], but in addition
the results fit into the framework of quantum computing and
simulation [32].

For each interaction time interval �t the total Hilbert space
of the system plus the segment of the environment interacting
at that time is H = HS ⊗ H (k)

E , and the Hamiltonian is

Ĥ = ĤS + Ĥ
(k)
E + Ĥ

(k)
SE , (1)

corresponding to the bare Hamiltonians of the system ĤS and
of the environment Ĥ

(k)
E , and the system-environment inter-

action, Ĥ
(k)
SE . Here, we consider each environmental piece, la-

beled by k, as a set of n entangled qubits. Each of the n qubits
couples to its own quantum system; see Fig. 1 for the case of
n = 2. That is, in each time interval �t , n entangled qubits
interact with n quantum systems, which themselves are left
arbitrary and can in general be remote from each other. Note
that the bath qubits within a single time interval are entangled,
but they are not entangled between time intervals. This type of
environmental entanglement drives non-Markovian dynamics
[34,38,48–51] and will be treated separately.

Each subsystem interacts with its respective qubit via a
coupling operator ĉj . The bare and interaction Hamiltonians
are

ĤS =
n∑

�=1

ωS�
ĉ
†
�ĉ�, Ĥ

(k)
E =

n∑
�=1

ωE�
σ̂
†
� σ̂�, (2)

Ĥ
(k)
SE =

n∑
�=1

λ�(ĉ�σ̂
†
� + ĉ

†
�σ̂�), (3)

FIG. 1. Conceptual diagram of the physical model where a
stream of entangled qubits sequentially interacts with separate
quantum systems. Shown here is the case of n = 2 qubits.

where ω� and ωE�
are the respective transition frequencies

of the subsystems and the bath qubits, λ� is the coupling
strength between the �th subsystem and its qubit, and the bath
qubit lowering operator is σ̂� = |g〉�〈e|. Here, it is assumed
that ĉ� are eigenoperators of the system Hamiltonian [52]. In
the interaction picture with respect to the bare Hamiltonian,
ĤS + Ĥ

(k)
E , the joint unitary evolution is generated by the

time-dependent Hamiltonian,

Ĥ
(k)
I =

n∑
�=1

λ�(ĉ†�σ̂�e
−iδ�t + H.c.), (4)

where δ� := ωE�
− ωS�

is the detuning and H.c. stands
for Hermitian conjugate. The detuning is included here
for completeness; henceforth, we focus our attention on
resonant system-qubit interactions, δ� = 0, which gives
[ĤS + Ĥ

(k)
E , Ĥ

(k)
SE ] = 0. That is, the resonant interaction is a

thermal process where any energy lost by the bath is absorbed
by the subsystems and vice versa [53]. One models a specific
reservoir by selecting a particular state for the environmental
qubits. Investigating situations where the bath qubits are
entangled is the focus of this article.

A dynamical map for the joint state of the n fixed quantum
systems is found by tracing out the the environmental qubits
after the interaction, Û (k)

I = exp(−iĤ
(k)
I �t ), generated by the

time-independent Hamiltonian in Eq. (4):

Û
(k)
I = 1̂ − iĤ

(k)
I �t − 1

2

(
Ĥ

(k)
I

)2
�t2 + O(�t3), (5a)

where in the weak-coupling regime the unitary time-evolution
operator is expanded up to second order in �t . At each time
interval the incoming bath qubits and the quantum systems
are assumed to be in a product state, so the dynamical map is
completely positive and trace preserving. Assuming that only
one qubit interacts with each system in an interaction time
and the joint state of the n-qubit environment interacting in
the time interval is ρ̂E , the dynamical map for a single time
step �t is given by

M(�t )ρ̂(tk ) := TrE

[
Û

(k)
I

(
ρ̂(tk ) ⊗ ρ̂

(k)
E

)
Û

(k)
I

†]. (6)
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The fact that each set of n qubits, described by ρ̂E , is indepen-
dent from other sets means that this dynamical map is explic-
itly Markovian (i.e., arises from a memoryless environment).
This is because the joint state of the input environment is a
tensor product state across interaction time intervals, ρ̂E ≡⊗

k ρ̂
(k)
E [50]. Thus the dynamical map at every subsequent

time interval is of the form of Eq. (6), using the system state
from the previous time interval and a fresh environmental
state ρ̂E .

Rather than using the discrete dynamical maps in Eq. (6),
we take a continuous-time limit and describe the reduced-state
dynamics by a Markovian ME. A master equation can be
derived from Eq. (6) under a set of standard assumptions.
First, each environmental qubit spends the same amount of
time �t interacting with its local system. Second, the Markov
condition requires that the n-qubit environment in each time
interval is independent of other intervals. Third, the system-
bath coupling is weak λ� < ωS�

, while λ��t � 1. Finally,
we make a typical assumption that Tr[ÔEρ̂E] = 0, which
indicates that the averages of those environment operators ÔE ,
which appear in the interaction Hamiltonian Ĥ

(k)
SE , over the

environment state vanish. This allows us to construct a ME
including only dissipator terms with no unitary evolution. See
Appendix A for the details of derivations.

One might be able to take different approaches depending
on the problem under investigation either by deriving a coarse-
grained master equation or finding an interpolating scheme for
any time between two discrete times tk and tk+1 which requires
error analysis [23–25] or taking the system-environment cou-
pling strengths to infinity λ� → ∞ at �t → 0 [20,22,26,28].
We also refer an interested reader to Refs. [15–17] for more
rigorous mathematical analyses about continuous repeated
quantum interactions.

It is noted that the interaction Hamiltonian that arises
naturally in collision models, Eq. (4), has the form typically
associated with the rotating-wave approximation employed in
quantum optics.

From now on, for the ease of notation we drop the explicit
superscripts for the system and environment state unless con-
fusion could arise.

III. MASTER EQUATIONS FOR TWO-QUBIT BATHS

In this section we focus on two-qubit baths as the
quintessential extension of the single-qubit baths that are
typically studied [28,30–32,38]. Two-qubit baths can exhibit
nonclassical correlations including maximal entanglement.
We investigate how two-qubit baths modify correlations be-
tween two remote subsystems—optical cavities in Sec. IV and
two-level atoms in Sec. V.

Let us assume that in each time interval the two bath qubits
are prepared in the state

ρ̂E =
∑

l

|ψEl
〉〈ψEl

|, (7)

where

|ψE1〉 = bee|ee〉 + bgg|gg〉, (8a)

|ψE2〉 = bge|ge〉 + beg|eg〉, (8b)

and the coefficients satisfy

bjk ∈ C,
∑

j∈{e,g}
|bjj |2 =

∑
j 
=k

|bjk|2 = 1. (9)

We insert Eq. (5a) into the discrete dynamical map for the
reduced system state, Eq. (6), and then evaluate the terms
under the two-qubit bath state in Eq. (8). It is then straightfor-
ward to obtain the Markovian ME whose details can be found
in Appendix A, yields the following master equation (h̄ = 1),
for the reduced state ρ̂:

˙̂ρ(t ) =
4∑

m=1

D[L̂m]ρ̂, (10)

where the jump operators are

L̂1 = √
γ1bggĉ1 + √

γ2beeĉ
†
2, (11a)

L̂2 = √
γ1beeĉ

†
1 + √

γ2bggĉ2, (11b)

L̂3 = √
γ1bgeĉ1 + √

γ2begĉ2, (11c)

L̂4 = √
γ1begĉ

†
1 + √

γ2bgeĉ
†
2, (11d)

and the Lindblad superoperator is defined as

D[ô]ρ̂ = ôρ̂ô† − 1
2 {ô†ô, ρ̂}+, (12)

with {Â, B̂}+ = ÂB̂ + B̂Â. The relative rates are given by
γ� = λ2

��t .
The master equation generates incoherent dynamics in the

reduced system state ρ̂(t ). The quantum system undergoes
correlated dissipation as described by the jump operators in
Eq. (11). Each jump operator drives a dissipative process
given by combinations of loss (ĉ�) and heating (ĉ†�) across
subsystems 1 and 2.

Interestingly, the jump operators (11) are determined by
the state in two two-dimensional subspaces of the qubit bath,
spanned by either {|gg〉, |ee〉} or {|ge〉, |eg〉}. Equivalently,
each subspace is spanned by two Bell states. Populations and
coherences within subspace {|gg〉, |ee〉} contribute to jump op-
erators L̂1 and L̂2, and similarly populations and coherences
within subspace {|ge〉, |eg〉} contribute to jump operators L̂3

and L̂4. Coupling between the subspaces is due to certain
single-qubit coherences.

Alternative form for the master equation

We transform the master equation into another useful form
by expanding Eq. (10) and collecting terms according to
coefficients,

˙̂ρ(t ) =
2∑

�=1

γ↓,�D[ĉ�]ρ̂ +
2∑

�=1

γ↑,�D[ĉ†�]ρ̂

+ γ↓↓ S[ĉ1, ĉ2]ρ̂ + γ ∗
↓↓ S[ĉ†1, ĉ

†
2]ρ̂ (13)

+ γ↓↑ S[ĉ1, ĉ
†
2]ρ̂ + γ ∗

↓↑ S[ĉ†1, ĉ2]ρ̂,

where we have defined a superoperator,

S[ô1, ô2]ρ̂ := ô1ρ̂ô2 + ô2ρ̂ô1 − 1
2 {ô1ô2 + ô2ô1, ρ̂}+,

(14)
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that is symmetric in the arguments. The coefficients in
Eq. (13) are given by

γ↓,1 = γ1(|bgg|2 + |bge|2), (15a)

γ↑,1 = γ1(|bee|2 + |beg|2), (15b)

γ↓,2 = γ2(|bgg|2 + |beg|2), (15c)

γ↑,2 = γ2(|bee|2 + |bge|2), (15d)

γ↓↓ = √
γ1γ2 bggb

∗
ee, (15e)

γ↓↑ = √
γ1γ2 bgeb

∗
eg. (15f)

The first four coefficients in Eqs. (15a)–(15d) are positive and
can be interpreted as rates. The final two Eqs. (15e) and (15f)
are complex and the superoperator terms that they multiply
may in general interfere with other terms including the local
dissipators. This is indeed a consequence of Eq. (13) not being
in diagonal form with respect to the jump operators. The MEs
in Eq. (10) and Eq. (13) are identical, but each may be more
useful for certain calculations.

One can get some insight about the system dynamics by
parameterizing the state of the environment in an alternate
form

ρ̂E =
∑

l

plρ̂E
(l)
1

⊗ ρ̂
E

(l)
2

+ C, (16)

where
∑

l pl = 1. The first term represents a convex sum
of some product states for each qubit in the bath and the
correlation term is

C = beeb
∗
gg|ee〉〈gg| + begb

∗
ge|eg〉〈ge| + H.c. (17)

This representation of the environment’s state sheds more
light on the role of bipartite correlations in entangling the
subsystems. That is to say, recalling Eqs. (16), (17), (13),
and (15), it can be seen that entanglement in the bath does
not play any role in the local dissipation processes described
by the first two terms in the ME. However, it does show up
in the two-excitation processes via the complex coefficients,
Eqs. (15e) and (15f). This indicates that any nonlocal jumps
are due to the presence of bipartite quantum correlations in the
bath.

IV. TWO REMOTE CAVITIES: TWO-MODE SQUEEZING

A stream of qubits interacting with a harmonic oscillator
is the prototype for a variety of tasks. For example, two-
level Rydberg atoms interacting with an ultra-high-finesse
microwave cavity have been used for quantum nondemolition
measurements of photon number [47] and stabilization of
Fock states in the cavity [54]. We consider here the natural
extension of this system to two remote cavities [41,42,55,56].
This could be realized, for example, by directing two separate,
independently prepared streams of atoms close to one another
in a laser field tuned near a Rydberg transition. The Rydberg
blockade entangles each successive pair of atoms [57,58], one
from each stream, which are then sent to separate cavities.

The subsystems are single-mode cavities with creation
and annihilation operators â� and â

†
� (� = 1, 2) that satisfy

canonical commutation relations, [â�, â
†
m] = δ�,m. We con-

sider an arbitrary two-qubit bath state in the two-dimensional

subspace spanned by {|gg〉, |ee〉}, expressed as |ψE〉 = |ψE1〉.
That is, the coefficients in Eq. (8) take values beg = bge = 0,
while |bgg|2 + |bee|2 = 1. For simplicity each cavity couples
to its respective stream of bath qubits with the same rate
(λ1 = λ2) via an interaction that exchanges excitations, which
corresponds to ĉ� → â�. Thus the ME in Eq. (10) has jump
operators L̂3 = L̂4 = 0 and

L̂1 = √
γ (bggâ1 + beeâ

†
2), (18a)

L̂2 = √
γ (bggâ2 + beeâ

†
1), (18b)

reminiscent of two-mode squeezing transformation.
The connection to two-mode squeezing can be made ex-

plicit under certain conditions. When |bgg| > 1/
√

2 we can
define a strictly positive effective rate given by the population
difference,

� := γ (|bgg|2 − |bee|2). (19)

Then, the jump operators can be rewritten as

L̂1 =
√

�[cosh(r )â1 + eiϑ sinh(r )â†
2], (20a)

L̂2 =
√

�[cosh(r )â2 + eiϑ sinh(r )â†
1], (20b)

where the squeezing amplitude r is related to the coefficients
via the relations,

cosh(r ) = |bgg|√|bgg|2 − |bee|2
, (21)

and the squeezing angle ϑ is given by the phase of bee relative
to bgg. The jump operators are explicitly given by a two-mode
squeezing transformation on the cavity annihilation operators,
L̂� = √

�Ŝâ�Ŝ
†, where the unitary, two-mode squeezing op-

erator is [59,60]

Ŝ = eζ ∗â1â2−ζ â
†
1 â

†
2 , (22)

with complex squeezing parameter ζ = reiϑ . The transforma-
tion is in the Schrödinger picture because the jump operators
are nullifiers [61,62] of the two-mode squeezed vacuum state.
This can be seen directly by transforming the action of the
annihilation operators,

â�|0〉2 = 0 → Ŝâ�Ŝ
†Ŝ|0〉2 ∝ L̂�|r, ϑ〉2 = 0, (23)

where the two-mode squeezed vacuum state is

|r, ϑ〉2 := Ŝ|0〉2. (24)

Thus the steady state of the ME is a pure, Gaussian, two-
mode squeezed vacuum state |r, ϑ〉2 with squeezing that
depends on the qubit-bath coefficients. Preparing the qubit
bath in a maximally entangled state, |bgg| = 1/2, is the limit
of infinite squeezing, r → ∞. The dynamical preparation of
|r, ϑ〉2 from a two-mode vacuum state is shown for various
values of the squeezing parameter r in Fig. 2(a). The state
is dissipatively cooled via interaction with the two-qubit bath
towards the steady state; details can be found in Appendix B.
We quantify the approach to |r, ϑ〉2 with the Uhlmann-Jozsa
fidelity, which can be calculated from the covariance matrix;
see Eq. (B13). As r is increased, the effective rate � decreases
according to Eq. (19). That the time to approach the steady
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FIG. 2. Dissipative preparation of a two-mode squeezed vacuum
state across two remote cavities. The joint cavity state, initially
prepared in two-mode vacuum, evolves under the ME in Eq. (10)
with jump operators given by Eq. (18). The associated squeezing
parameter r is related to the bath qubit coefficients; see Eq. (21). For
the plotted values of r , the ground-state coefficient magnitudes are
|bgg| ≈ {0.908, 0.796, 0.720, 0.709, 0.707} and the squeezing angle
is set to ϑ = 0. Smaller |bgg| corresponds to larger squeezing and
infinite squeezing to |bgg| = 1/

√
2. (a) Fidelity, Eq. (B13), of the

state with the two-mode squeezed vacuum state Eq. (24) for various
values of r . (b) Time at which the fidelity F surpasses 0.98 as a
function of the squeezing parameter r .

state |r, ϑ〉2 increases exponentially with the squeezing pa-
rameter r—see Fig. 2(b)—is unsurprising, since more highly
squeezed states contain more energy.

Typical optical squeezing protocols are limited by small
nonlinearities in parametric down conversion or light-
matter interactions [60] with achieved state-of-the-art opti-
cal two-mode squeezing ∼10 dB [63–65], where no. dB =
10 log10(e2r ). Here, efficient preparation of bath qubits in
near-maximally entangled states can be leveraged to generate
and stabilize extremely high level two-mode squeezing; for
example, r = 3 corresponds to ∼26 dB. Several recent pro-
tocols take a similar tack to the one we present here. A pro-
posal to entangle remote superconducting qubits in separate
cavities involves generating two-mode squeezed states using
reservoir engineering via a commonly coupled three-wave
mixer [56]. The jump operators in their ME are identical to
those in Eq. (20). Three-wave mixing has also been used

to demonstrate production of two-mode squeezed states in
spatially separated microwave transmission lines [66]. Finally,
while our focus has been on two-mode squeezing, we note
that stabilization of single-mode squeezed states in a cavity
using entangled qubit pairs that arrive in succession has been
proposed [67].

In the opposite regime, where |bgg| < 1/
√

2, there is no
unitary Bogoliubov transformation that transforms the oper-
ators âj while maintaining the canonical commutation rela-
tions. Nevertheless, the jump operators in Eq. (18) may be
written similarly to Eq. (20) with the roles of cosh(r ) and
sinh(r ) reversed. Because | cosh(r )/ sinh(r )| > 1, the jump
operators contain a larger proportion of â

†
� than â�, and the

incoming two-qubit environment is more likely to transfer
energy to the subsystems than to remove it. In this case
the ME serves as an incoherent amplifier. In the following
section we will investigate this parameter regime as well
as the “exceptional points” where the bath is prepared in a
maximally entangled state, e.g., a Bell state.

Note that when the bath qubits are prepared in the orthog-
onal subspace, |ψE〉 = |ψE2〉 (bgg = bee = 0), the cavity dy-
namics are qualitatively different from those analyzed above
even when the bath qubits are near maximally entangled. In
this case L̂1 = L̂2 = 0 in Eq. (11), and the resulting ME has
dissipative terms not related to squeezing.

In the following section we replace each optical cavity with
a two-level atom coupled to its own environmental qubit (as
opposed to interacting with a common environment such as
the cases considered in [68–70]).

V. TWO REMOTE TWO-LEVEL ATOMS INTERACTING
WITH A BELL-STATE BATH

In this section we investigate the repeated interaction
between two remote two-level subsystems and a stream of
maximally entangled bath qubits. The subsystems are taken
to be identical, each described by a bare Hamiltonian Ĥ� =
ω0
2 σ̂z,�, where ω0 is resonant with the bath qubit frequency,
δ� = ωE�

− ω0 = 0. The interaction between each subsystem
and its bath qubit is an excitation exchange described by a
lowering operator, ĉ� → σ̂�. To avoid confusion, we hence-
forth refer to the bath as qubits and the subsystems as atoms,
with the understanding that the bath qubits could indeed be
physically manifested as a stream of entangled atoms.

A. Bath qubits in a pure Bell state

We first consider a maximally entangled two-qubit bath
state in the subspace {|gg〉, |ee〉},

|ψE〉 = 1√
2

(|ee〉 + eiφ|gg〉), (25)

such that the Bell states |�+
E〉 and |�−

E〉 are given by φ =
(0, π ), respectively. That is, the coefficients in Eq. (8) take
values bee = 1/

√
2 and bgg = eiφ/

√
2, while beg = bge = 0.

For simplicity we set λ1 = λ2 = λ corresponding to decay
rate γ , which yields the ME:

˙̂ρ(t ) = γ

2
(D[σ̂1 + eiφσ̂

†
2 ] + D[eiφσ̂

†
1 + σ̂2]ρ̂). (26)
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The joint state of the atomic subsystems is initialized in the
arbitrary state

ρ̂0 =
∑
j,k

∑
j ′,k′

ρ0
jk,j ′k′ |jk〉〈j ′k′|, (27)

where the sums run over {g, e}.

1. Bath qubits in |�+
E〉

First, we consider the case where the bath qubits are
prepared in the Bell state, |�+

E〉, given by φ = 0 in Eq. (25). In
the long-time limit, t → ∞, the steady state of the two-atom
system is given by

ρ̂ss =

⎛
⎜⎜⎝

ρss
ee,ee 0 0 ρss

ee,gg
0 ρss

eg,eg 0 0
0 0 ρss

ge,ge 0
ρss∗

ee,gg 0 0 ρss
gg,gg

⎞
⎟⎟⎠, (28)

where the steady-state matrix elements are related to the
initial-state matrix elements by

ρss
ee,ee = 1

3

[
ρ0

ee,ee + ρ0
gg,gg − ρ0

ee,gg + 1
2ρ0

eg,eg + 1
2ρ0

ge,ge

]
,

ρss
eg,eg = 1

3

[
1
2ρ0

ee,ee + 1
2ρ0

gg,gg + ρ0
ee,gg + ρ0

eg,eg + ρ0
ge,ge

]
,

ρss
ge,ge = ρss

eg,eg,

ρss
gg,gg = ρss

ee,ee,

ρss
ee,gg = − 1

6

[
ρ0

ee,ee + ρ0
gg,gg − 4ρ0

ee,gg − ρ0
eg,eg − ρ0

ge,ge

]
.

Thus the atomic steady state is not unique; rather, the ME
has an invariant subspace. A particular steady state within this
invariant subspace depends on the initial state [71–73].

The steady state of the joint atomic system can exhibit
nonclassical correlations, identified by the negative partial
transpose criterion [74]. The partial transpose matrix ρPT

ss ,
partitioned with respect to the subsystems, takes the following
form:

ρ̂PT
ss =

⎛
⎜⎜⎝

ρss
ee,ee 0 0 0
0 ρss

eg,eg ρss
ee,gg 0

0 ρss
gg,ee ρss

ge,ge 0
0 0 0 ρss

gg,gg

⎞
⎟⎟⎠. (29)

Negativity in the spectrum of ρ̂PT
ss guarantees the presence of

entanglement. We quantify the entanglement by the logarith-
mic negativity [75],

LN (ρ̂) := log2(Tr[
√

ρ̂
†
PTρ̂PT]), (30)

where LN (ρ̂) ∈ [0, 1] with the minimum value corresponding
to separable states and the maximum value to maximally
entangled states.

A particular steady state of interest is when the atomic
system is prepared in the Bell state |�−〉, whence it does not
undergo any decoherence via interaction with the qubit bath,
since it is already at the steady state. However, when the initial
atomic state is |�+〉 the steady state is the mixture

ρ̂ss = 1
3 (|�+〉〈�+| + |eg〉〈eg| + |ge〉〈ge|), (31)

with a positive partial transpose matrix, i.e., it has purely pos-
itive eigenvalues ( 1

2 , 1
6 ) with boldface indicating degeneracy
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FIG. 3. Entanglement and purity of the atomic state when the
two-qubit bath is prepared in the |�+

E〉 Bell state. The initial two-
atom state ρ̂0(θ ) is parametrized by θ , Eq. (32). We also include plots
for nonmaximally entangled atomic states, |�±(ε)〉, that deviate
from Bell states by ε = 0.001, Eq. (37). (a) Entanglement as quan-
tified by the logarithmic negativity, Eq. (30), for which LN (ρ̂) ≈ 1.
(b) State purity, Tr[ρ̂2]. Note that, for θ < θc = π/4, the gray curve
and dashed blue curve exactly coincide. That is, initial entanglement
is preserved despite the fact that the state becomes mixed. Beyond θc

the steady state is no longer entangled and the minimum purity, 0.25,
occurs at θ = π/3.

of order 3. A positive partial transpose is a sufficient condition
for separability of a two-qubit system.

An interesting scenario is an initial joint atomic state,
ρ̂0(θ ) = |ψ0(θ )〉〈ψ0(θ )|, that is a weighted sum of the two
Bell states,

|ψ0(θ )〉 = sin θ |�+〉 + cos θ |�−〉, (32)

for 0 � θ � π/2. Beyond this range in θ , the entanglement
behavior repeats. Above we found that the maximally en-
tangled state, ρ̂0(θ = 0) = |�−〉〈�−|, is a steady state of
the ME. As θ deviates from zero, the contribution from
the antisymmetric Bell state diminishes. Beyond the critical
point θc = π/4 (|ψ0〉 = |ee〉) the effect of the symmetric Bell
state is dominant and the entanglement vanishes, LN [ρ̂ss(θ �
θc )] = 0. At the critical point the steady state is a two-atom
Werner state [76],

ρ̂ss(θc ) = 1
3 |�−〉〈�−| + 1

6 1̂S, (33)

which is separable. In fact, even after this point the steady state
is separable all the way to θ = π/2, at which point it is given
by Eq. (31). The behavior is illustrated in Fig. 3(a) where we
plot logarithmic negativity as a function of θ (dashed blue
curve). Comparison with the initial logarithmic negativity
(light gray curve) reveals that the Bell state environment
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TABLE I. Summary of results when the environment is prepared in a Bell state or a state very close to a Bell state, |�±(ε)〉, Eq. (37),
or |�±(ε)〉 ≡ (|eg〉 ± √

1 + ε |ge〉)/
√

2 + ε parametrized by 0 < ε � 1. The initial atomic state, Eq. (32), is parametrized by θ and numbers
in bold indicate threefold degeneracy in the eigenvalue. When the two-qubit environment is exactly prepared in either of the two Bell states,
the steady state ρ̂ss depends on the initial state ρ̂0 and the atoms remain entangled only for some specific parameter regimes. However, for an
environment initialized in |�±(ε)〉 or |�±(ε)〉, the two atoms can acquire nonclassical correlations arbitrarily close to maximally entangled
states.

Two-qubit bath state ρ̂E θ Initial atomic state ρ̂0(θ ) Steady state ρ̂ss(θ ) Spectrum of ρ̂PT
ss (θ )

|�+〉〈�+| 0 |�−〉〈�−| |�−〉〈�−| 1
2 (−1, 1)

” θc = π

4 |ee〉〈ee| 1
6 1̂S + 1

3 |�−〉〈�−| ( 1
2 , 1

6 )

” π

2 |�+〉〈�+| 1
3 (|eg〉〈eg| + |ge〉〈ge| + |�+〉〈�+|) 1

3 (0, 1)

|�−〉〈�−| 0 |�−〉〈�−| 1
3 (|eg〉〈eg| + |ge〉〈ge| + |�−〉〈�−|) 1

3 (0, 1)

” θc |ee〉〈ee| 1
6 1̂S + 1

3 |�+〉〈�+| ( 1
2 , 1

6 )

” π

2 |�+〉〈�+| |�+〉〈�+| 1
2 (−1, 1)

|�±(ε)〉〈�±(ε)| ∈ [0, π

2 ] |ψ0(θ )〉〈ψ0(θ )| |�∓(ε)〉〈�∓(ε)| ( 1
2+ε

, 1+ε

2+ε
, 1

2 , − 1
2 )

|�+〉〈�+| 0 |�−〉〈�−| |�−〉〈�−| 1
2 (−1, 1)

” θc |eg〉〈eg| 1
6 1̂S + 1

3 |�−〉〈�−| ( 1
2 , 1

6 )

” π

2 |�+〉〈�+| 1
3 (|ee〉〈ee| + |gg〉〈gg| + |�+〉〈�+|) 1

3 (0, 1)

|�−〉〈�−| 0 |�−〉〈�−| 1
3 (|ee〉〈ee| + |gg〉〈gg| + |�−〉〈�−|) 1

3 (0, 1)

” θc |eg〉〈eg| 1
6 1̂S + 1

3 |�+〉〈�+| ( 1
2 , 1

6 )

” π

2 |�+〉〈�+| |�+〉〈�+| 1
2 (−1, 1)

|�±(ε)〉〈�±(ε)| ∈ [0, π

2 ] |ψ0(θ )〉〈ψ0(θ )| |�∓(ε)〉〈�∓(ε)| ( 1
2+ε

, 1+ε

2+ε
, 1

2 , − 1
2 )

preserves the initial system entanglement up until θc despite
the fact that the state becomes mixed; see Fig. 3(b).

2. Bath qubits in |�−
E〉, |�+

E〉, or |�−
E〉

The situation where the bath is prepared in |�−
E〉 proceeds

similarly. In this case, the steady state has the same form as
Eq. (28) with the following substitutions:

ρ0
ee,gg → −ρ0

ee,gg and ρss
ee,gg → −ρss

ee,gg. (34)

When the initial atomic state is parametrized as in Eq. (32),
the steady states for the extremal cases, θ = (0, θc ), are just as
in Eq. (31) and Eq. (33), respectively, with the roles of |�±〉
swapped. By varying θ in the interval [0, θc], the antisym-
metric Bell state is dominant, the result of which is that the
systems remain separable. For the range θ > θc the symmetric
Bell state, |�+〉, is dominant in the initial atomic state and the
ME preserves the initial entanglement. For θ = π/2 the initial
state, ρ0(θ = π/2) = |�+〉〈�+|, is a steady state.

Lastly, when the qubit environment is prepared in the other
subspace {|eg〉, |ge〉},

|ψE〉 = 1√
2

(|eg〉 + eiφ|ge〉), (35)

with Bell states |�+
E 〉 and |�−

E 〉 given by φ = {0, π}, the
steady states have an analogous form. Table I summarizes the
results for comparison.

B. Bath qubits in a nonmaximally entangled state

From the above analysis it may be inferred that the exis-
tence of coherences in the environment is merely a necessary
condition for entangling the subsystems, even though the

cross terms in the master equation, Eq. (26), might suggest
otherwise, i.e., the generation of quantum correlation among
systems. We found that Bell-state baths generate a ME without
a unique steady state and, depending on the initial atomic
state, atomic entanglement is either preserved or destroyed,
but never created. Here we show that, when the bath qubits
are prepared in a nonmaximally entangled state that can be
arbitrarily close to a Bell state, the ME has a unique, entangled
steady state. Consider the bath in the following state that
slightly deviates from a maximally entangled state:

|ψE (φ, ε)〉 = 1√
2 + ε

(|ee〉 + eiφ
√

1 + ε |gg〉). (36)

The atomic steady state is highly entangled for all φ, with
logarithmic negativity, LN (ρ̂) ≈ 1 for 0 < ε � 1. This can
be seen by considering the following approximate Bell states
for the qubit bath:

|�+(ε)〉 := |ψE (0, ε)〉, (37a)

|�−(ε)〉 := |ψE (π, ε)〉. (37b)

The corresponding atomic steady states are the pure states,
ρ̂ss = |�∓(ε)〉〈�∓(ε)|. The partial transpose matrices ρ̂PT

ss
have respective eigenvalues(

1

2 + ε
,

1 + ε

2 + ε
,

1

2
,−1

2

)
(38)

that guarantee entanglement. The logarithmic negativity of the
steady states is shown in Fig. 3 for ε = 0.001 (dotted red line).

This behavior continues for the bath qubits far from Bell
states. In Fig. 4 we plot the negativity of the atomic steady

062104-7



DARYANOOSH, BARAGIOLA, GUFF, AND GILCHRIST PHYSICAL REVIEW A 98, 062104 (2018)

0

0.2

0.4

0.6

0.8

1

0-0.5 0.5-1 1

FIG. 4. Steady-state entanglement of two remote atoms interact-
ing with a two-qubit bath, quantified by the logarithmic negativity
LN (ρ̂ss ). The qubit bath is parametrized by Eq. (8a) with bee and
bgg taken to be real. At the exceptional points, where the bath is
prepared in a Bell state, bee = ±1/

√
2 indicated by red and green

dots, the atomic steady state is not unique. In this case, the steady-
state entanglement is a function of the initial atomic state (see Fig. 3).

state for the two-qubit bath state given by Eq. (8a), with bee

and bgg taken to be real.
For bee = {0,±1} the qubit bath state is separable, and as

expected, the atoms relax to an uncorrelated steady state. As
the entanglement in the bath qubits increases, so does that of
the atomic steady state. The logarithmic negativity approaches
a limiting value of LN (ρ̂ss) → 1 as the bath approaches a Bell
state, bee = limε→0 ±1/

√
2 + ε. Indeed, for each value of bee,

the atomic steady state has the same logarithmic negativity
as is present in the two-qubit bath state, indicated by full
distribution of environmental entanglement to the atoms. As
discussed in Sec. V A at bee = ±1/

√
2 (red and green dots),

where the environment is exactly in the Bell states, the steady-
state atoms can exhibit any value of the logarithmic negativity,
depending on their initial state. Recall that a similar situation
arose for the case of two remote cavities in Sec. IV. We found
that when the bath qubits were prepared in the |�±

E〉 Bell state,
this represented the limit of infinite squeezing for the cavities’
steady state.

VI. GENERAL CASE: MASTER EQUATIONS
FOR n-QUBIT ENVIRONMENTS

Our focus thus far has been on the system dynamics and
steady-state properties generated by two-qubit environments.
A natural question is how does the evolution differ when the
environment consists of more than two qubits? In order to
address this, we expand the formalism presented in Sec. III
to the case of n-qubit environments. We present the ME for n-
qubit environments and illustrate some key differences when
going beyond two-qubit baths.

Let us now proceed by supposing that all approximations
required for the ME derivation in Sec. III (Born Markov,
weak coupling, and Tr[σ̂�ρ̂E] = 0) are applicable here as
well. At each interaction time interval the environment is
prepared in a general n-qubit state ρ̂E . It is straightforward
to generalize the master equation derived for the two-qubit
environments, Eq. (13), to the n-qubit scenario. Following the

(a)

(ρE)3q :

|eee
|eeg
|ege
|egg
|gee
|geg
|gge
|ggg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)

(ρE)2q :

|ee
|eg
|ge
|gg

⎛
⎜⎜⎜⎜⎝

. . . .

. . . .

. . . .

. . . .

⎞
⎟⎟⎟⎟⎠

FIG. 5. Color-coded representation of the state matrix for three-
and two-qubit environments. Matrix elements in the local energy
basis contribute to different terms in the multiqubit ME, Eqs. (39)
and (40). Matrix elements labeled in gray ( ) are zero because of
the form of the environment’s state, Eq. (8). Those labeled in dark
blue ( ) contribute to local dissipators, D[ô]ρ̂, and those labeled in

magenta ( ) contribute to the two-body superoperators, S[ô�, ôm]ρ̂.

Matrix elements labeled in black ( ) do not contribute to the ME
dynamics. Note the similarities to Fig. 3 in Ref. [29].

same procedure Eq. (5a) is substituted into Eq. (6) so that the
evolution of the joint n system is described by the following
ME:

˙̂ρ(t ) =
n∑

�=1

(γ↓,� D[ĉ�] + γ↑,� D[c†�])ρ̂

+
∑
�<m

(γ↓↓,�m S[ĉ�, ĉm] + γ↓↑,�m S[ĉ�, ĉ
†
m]

+ γ ∗
↓↑,�m S[ĉ†�, ĉm] + γ ∗

↓↓,�m S[ĉ†�, ĉ
†
m])ρ̂, (39)

where

γ↓,� = γ�TrE[〈g�|ρ̂E|g�〉], (40a)

γ↑,� = γ�TrE[〈e�|ρ̂E|e�〉], (40b)

γ↓↓,�m = √
γ�γmTrE[〈g�, gm|ρ̂E|e�, em〉], (40c)

γ↓↑,�m = √
γ�γmTrE[〈g�, em|ρ̂E|e�, gm〉], (40d)

where for example |e�, em〉 is the excited bath state for sub-
systems � and m. The above ME can also be straightforwardly
expressed in diagonal, Lindblad form with 2n(n − 1) jump
operators; however, the form above is more amenable when
considering mixed-state baths.

The ME in Eq. (39) has two physical mechanisms (which
are independent of n): (1) processes involving the gain
(↑) or loss (↓) of a system excitation via local dissipators
and (2) two-excitation processes described by superoperators
S[ô�, ôm]ρ̂. When the n-qubit bath state is expressed in the
local energy basis, each matrix element contributes to one of
these two processes through the coefficients in Eq. (40) or
does not drive dynamics at all. Indicated in Fig. 5 are the
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contribution of the environmental state matrix elements to
each of these processes (in dark blue and magenta, respec-
tively), for two- and three-qubit environments. The entries of
ρ̂E shown by gray color are zero due to the assumption that
the expectation value of the bath operators over ρ̂E should be
zero.

Consider first the n = 3 bath. An important observation
is the absence of antidiagonal matrix elements, indicated
by black cells in Fig. 5(a), in any coefficients in Eq. (40).
Surprisingly, this implies that preparing the environmental
qubits in certain maximally entangled states such as the
Greenberger-Horne-Zeilinger (GHZ) state [77] in the local
energy basis is not useful for generating correlations between
the subsystems for n > 2. Additionally, if the quantum sys-
tems are atoms prepared in a GHZ state, their nonclassical
quantum correlations eventually decohere, as expected for
three subsystems subject to local dissipation such as dephas-
ing or depolarizing channels [44]. This is in marked contrast
to two-qubit baths where the antidiagonal components of ρ̂E

that appear in Eqs. (15e) and (15f), indicated by the magenta
cells in Fig. 5(b), are the key ingredient for entangling the
systems. This highlights the significance of the two-qubit
X-state environments (described by a state matrix in which
only diagonal and antidiagonal entries are nonzero) [44,45].
Dağ et al. [29] encountered a similar result—they found
that antidiagonal coherences in n = 3 qubit baths do not
contribute to squeezing or displacement of a single cavity
mode.

This behavior extends to n-qubit baths. The antidiagonal
matrix elements of ρ̂E have the form |x〉〈x̄| where x is a
string of e and g labels and x̄ is the complement string
with e and g swapped. For n � 3 these matrix elements do
not contribute the coefficients in Eq. (40)—either the inner
product is zero or the trace over the remaining systems is
zero. Thus, for n � 3, the qubit correlations in an X-state
bath play no part in the ME dynamics and cannot influence
entanglement among the subsystems. In fact, the influence
of any bath-qubit correlations beyond two-body entanglement
vanishes in the ME. As a result, many highly entangled bath
states, including maximally entangled states, do not play a role
in entangling the subsystems.

This analysis suggests a way that could be used for
steady-state entanglement across all subsystems, which could
be verified by calculating an n-partite entanglement witness
[78–82]. Since the ME, given in Eq. (39), has only two-body
cross terms, generating entanglement among the subsystems
might be achieved by engineering a specific structure in ρ̂E . It
seems the presence of pairwise entanglement in a particular
form in the bath qubits is sufficient to make sure that the
coefficients in Eqs. (40c) and (40d) are nonzero. It remains an
open question whether such an environment with pairwise en-
tanglement would enable entangling dynamics in the ME, or
perhaps more generally a sequence of entangled environments
operating for consecutive periods of time. In addition, the cost
of engineering such an environment would be an important
factor. Another interesting case is three-qubit entangled W -
state baths which retain some two-body superoperators in the
ME. However, to determine whether the subsystems become
entangled in the long-time limit, a thorough analysis like the
one presented in Sec. V would be required. There, PPT is just

a necessary condition, and calculating logarithmic negativity
for three bipartitions of the system is required.

Although the absence of coupling from antidiagonal co-
herences in ρ̂E may appear puzzling, some of the observed
structure will be due to the weak-coupling approximation that
underpins the master equation derivation. Recall that the joint
state of the systems is updated by a dynamical map, Eq. (6),
that results from tracing out the bath after unitary evolution
over a small interaction time �t . In the weak-coupling regime
the expansion of the unitary operator, Eq. (5a), is truncated at
the second-order term in �t . This limits the influence of bath
correlations in the ME to two-body terms. If one were to keep
terms up to �t3 or beyond, these coherences would play a part
in the dynamical map. This could arise when the coupling time
between each successive qubit and its corresponding subsys-
tem is large enough that weak-coupling criterion, λi�t � 1,
is not entirely valid and requires perturbative corrections.

VII. CONCLUSION

Within the repeated quantum interaction formalism we
have derived master equations for open quantum systems
evolving under irreversible entangled quantum channels. The
environment is composed of a chain of identical entangled
two-level systems which sequentially interact weakly with
their corresponding subsystems and are then discarded. In
the limit of a continuous stream of environmental qubits, the
joint system evolves according to a Markovian ME with lo-
cal effective Hamiltonians and nonlocal dissipative processes
with jump operators that are combinations of creation and
destruction operators across the subsystems. This description
applies generally to a qubit bath in a mixed state, for which
we provide an alternate, nondiagonal form of the ME that can
be easier to work with.

A pedagogical study of a two-qubit bath coupled to a pair
of two-level subsystems led to several conclusions. First, we
find that the presence of antidiagonal coherences in the bath
is essential for steady-state entanglement of the subsystems,
when the bath state is expressed in a basis of local eigenstates.
Second, maximally entangled bath states do not give rise to
unique steady states while even slight deviations from these
“exceptional” bath states do.

For the general case of entangled n-qubit baths, the ME
contains at most two-body terms in the jump operators. A sur-
prising consequence is that particular maximally entangled n-
qubit baths (for n > 2) do not affect subsystem entanglement.
That is, when expressed in the local energy basis antidiagonal
coherences in the bath state do not couple to the system. An
implication is that X-state baths drive the same dynamics
as diagonal state baths such as a thermal bath. This is in
contrast to the two-qubit environments where the existence
of antidiagonal coherences are essential to the generation of
entanglement between the systems.

This work opens several avenues for future research. Ex-
tending the methods of Gross et al. [32], the formalism
presented here offers a way to model multimode Gaussian
bosonic baths such as two-mode squeezed electromagnetic
environments. Thermal and other mixed-state baths can be
directly modeled by tracing over a part of a multiqubit
entangled bath. Moreover, it is possible to proceed beyond

062104-9



DARYANOOSH, BARAGIOLA, GUFF, AND GILCHRIST PHYSICAL REVIEW A 98, 062104 (2018)

Gaussian baths by perturbatively extending the weak-coupling
limit with the inclusion of higher-order terms, O[(λ�t )k], in
the interaction Hamiltonian. Detuning the bath qubits from
the systems, δ� 
= 0, may also generate interesting dynamics
[70,83].

Environment-assisted entangling protocols based on engi-
neered qubit environments that include only pairwise entan-
glement across all qubits could be used to create useful mul-
tipartite entanglement among all systems (generating cluster
states, for example). This might be useful especially when
entangling the multipartite system in other ways is practically
challenging. Several extensions to the bath itself could be
studied. The bath qubits could be replaced by d-dimensional
quantum systems, or qudits, yielding a richer structure to the
environment, and simultaneous spatial entanglement between
qubits across channels and entanglement in time between
progressive qubits in a single channel such that the evolution
is inherently nonlocal and non-Markovian [28,38,49].
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APPENDIX A: MASTER EQUATION DERIVATION
FOR A TWO-QUBIT ENVIRONMENT

Inserting the unitary interaction, Û
(k)
I , from Eq. (5a)

into the dynamical map in Eq. (6) and keeping terms to
second order in �t , the following expression is obtained
[28,29,31]:

ρ̂(tk+1) = TrE

(
ρ̂(tk ) ⊗ ρ̂E − i�t

[
Ĥ

(k)
I , ρ̂(tk ) ⊗ ρ̂E

] + �t2 Ĥ
(k)
I ρ̂(tk ) ⊗ ρ̂EĤ

(k)
I − �t2

2

{(
Ĥ

(k)
I

)2
, ρ̂(tk ) ⊗ ρ̂E

}
+

)
, (A1)

where {Â, B̂}+ denotes an anticommutator. We will explicitly take the environmental trace for each term in the expansion with
respect to the environment, ρ̂E = ∑

l |ψEl
〉〈ψEl

|, where |ψEl
〉 are given in Eq. (8). The first term is simply just the system state

ρ̂(tk ). The commutator term proportional to �t vanishes because we assume Tr[σ̂�ρ̂E] ≡ 〈σ̂�〉 = 0,

TrE

([
Ĥ

(k)
I , ρ̂(tl ) ⊗ ρ̂E

]) = [λ1ĉ1〈σ̂ †
1 〉 + λ2ĉ2〈σ̂ †

2 〉 + H.c., ρ̂(tk )] = 0. (A2)

Now we turn our attention to the second-order terms, proportional to �t2. The first term in the second line becomes

TrE

(
Ĥ

(k)
I ρ̂(tk ) ⊗ ρ̂EĤ

(k)
I

) = λ2
1{(|bge|2 + |bgg|2)ĉ1ρ̂(tk )ĉ†1 + (|bee|2 + |beg|2)ĉ†1ρ̂(tk )ĉ1}

+ λ2
2{(|beg|2 + |bgg|2)ĉ2ρ̂(tk )ĉ†2 + (|bee|2 + |bge|2)ĉ†2ρ̂(tk )ĉ2}

+ λ1λ2{bggb
∗
ee ĉ1ρ̂(tk )ĉ2 + bgeb

∗
eg ĉ1ρ̂(tk )ĉ†2 + beeb

∗
gg ĉ

†
1ρ̂(tk )ĉ†2 + begb

∗
ge ĉ

†
1ρ̂(tk )ĉ2 + H.c.}. (A3)

And the remaining anticommutator term becomes

TrE

[{(
Ĥ

(k)
I

)2
, ρ̂(tk ) ⊗ ρ̂E

}
+
] = λ2

1 {(|bee|2 + |beg|2){ρ̂(tk ), ĉ1ĉ
†
1}+ + (|bge|2 + |bgg|2){ρ̂(tk ), ĉ†1ĉ1}+}

+ λ2
2 {(|bee|2 + |bge|2){ρ̂(tk ), ĉ2ĉ

†
2}+ + (|beg|2 + |bgg|2){ρ̂(tk ), ĉ†2ĉ2}+}

+ 2λ1λ2 {bggb
∗
ee{ρ̂(tk ), ĉ1ĉ2}+ + bgeb

∗
eg{ρ̂(tk ), ĉ1ĉ

†
2}+

+ beeb
∗
gg{ρ̂(tk ), ĉ†1ĉ

†
2}+ + begb

∗
ge{ρ̂(tk ), ĉ†1ĉ2}+}. (A4)

Now putting all terms together we can rewrite Eq. (A1) as

ρ̂(tk+1) = (I + �t2E )ρ̂(tk ) ≡ M(�t )ρ̂(tk ), (A5)

where I is the identity map and E = E (λ1, λ2) is a linear
operator on ρ̂. The map M is divisible with

ρ̂(tk+1) =
(
I + 1

n
�t2E

)n

ρ̂(tk ) ≡ [Mn(�t )]nρ̂(tk ) (A6a)

= M(�t )ρ̂(tk ) + O(�t4), ∀n. (A6b)

So we cannot distinguish between the original map and n

applications of the 1
n

-strength map. We emphasize that scaling
down the time step �t by n and applying the map n times

does not reproduce the same dynamics as does n applications
of [Mn(�t )], as it is clear from the above equations. That is,

[M(�t/n)]nρ̂(tk ) 
= [Mn(�t )]nρ̂(tk ). (A7)

Let us now update the system’s state for one time increment
τ = �t/n (which can be arbitrarily small) so we have

ρ̂(t + τ ) = (I + τ�tE )ρ̂(t ), (A8)

where we assume tk = t . It is then easy to construct a time
derivative of the state according to

lim
τ→0

ρ̂(t + τ ) − ρ̂(t )

τ
= ˙̂ρ(t ) = �t E ρ̂(t ). (A9)
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The right-hand side is equal to summation of Eqs. (A3)
and (A4), which by rearranging terms results in the master
equation, Eq. (10).

APPENDIX B: GAUSSIAN EVOLUTION

Here we briefly review the description of multimode Gaus-
sian bosonic states and their open systems’ evolution. Con-
sider a system composed of N bosonic modes. We work in
the basis of Hermitian position and momentum operators for
each mode, q̂ = 1√

2
(â + â†) and p̂ = 1

i
√

2
(â − â†), and the

canonical commutation relations are [q̂�, p̂m] = δ�m. Noting
the commutation relation for vectors of operators, [r̂, ŝ�] =
r̂ŝ� − (ŝr̂�)�, where � denotes matrix transpose, we define a
column vector of stacked position and momentum operators,
x̂ := (q̂ p̂)�. Then, the canonical commutation relations can
be succinctly stated as

[x̂, x̂�] = i�, (B1)

where the matrix � is called the symplectic form and has the
following representation in the qp basis:

� =
(

0 I

−I 0

)
, (B2)

with I being the N × N identity matrix.
A Gaussian quantum state of N bosonic modes is entirely

described by a vector of means �x := 〈x̂〉 and a symmetrized
covariance matrix � with elements �ij = 1

2 〈x̂i x̂j + x̂j x̂i〉.
The covariance matrix for the vacuum state is �0 = 1

2 I. The
squeezing operator in Eq. (22) was defined with respect to its
Schrödinger-picture action; to find the covariance matrix we
need its Heisenberg-picture action. Using Ŝ†(r, ϑ ) = Ŝ(r, ϑ +
π ), the covariance matrix for a two-mode squeezed state can
be found from its associated symplectic matrix [62],

�(r ) = 1

2

⎛
⎜⎜⎜⎝

cosh(2r ) −sinh(2r ) 0 0

−sinh(2r ) cosh(2r ) 0 0

0 0 cosh(2r ) sinh(2r )

0 0 sinh(2r ) cosh(2r )

⎞
⎟⎟⎟⎠,

(B3)

where we set ϑ = 0 for simplicity.
Gaussianity of a quantum state is preserved under evolu-

tion generated by Hamiltonians quadratic in the mode opera-
tors and jump operators that are linear in the mode operators—
the master equation in Eq. (10) is one such example. Given a
Lindblad master equation with M jump operators that governs
the evolution of a multimode bosonic state,

˙̂ρ = −i[Ĥ , ρ̂] +
M∑

m=1

D[L̂m]ρ̂, (B4)

we may translate this into an evolution for the means and the
covariance matrix without loss of information if Gaussianity
is preserved. The Gaussian-preserving conditions require that
the Hamiltonian can be written as

Ĥ = 1
2 x̂�Gx̂, (B5)

expressed in terms of the symmetric, real matrix G ∈ R2N×2N ,
and each jump operator has the form

L̂m = √
γm

N∑
�=1

(Qm�q̂� + Pm�p̂�), (B6)

where γm is the associated dissipation rate. Collecting the Qm�

and Pm� coefficients into the matrices Q and P, the vector of
M jump operators is

L̂ = Cx̂, (B7)

with C := (Q P) ∈ CM×2N . The means and covariance
matrix obey the following equations of motion [84]:

�̇x = A�x, (B8)

�̇ = A� + �A� + B, (B9)

with matrices

A = �(G + Im[CHC]), (B10)

B = � Re[CHC] ��, (B11)

where H indicates matrix conjugate transpose (to distinguish it
from the Hermitian adjoint † of an operator). For the two-mode
ME in Sec. IV G = 0 and the jump operators are given by
Eq. (20). Setting ϑ = 0 the matrices in the covariance matrix
evolution, Eq. (B9), are A = �

2 I and B = ��(r ).
The Uhlmann-Jozsa fidelity

F (ρ̂1, ρ̂2) =
[

tr(
√√

ρ̂1ρ̂2

√
ρ̂1)

]2

(B12)

is a measure of the closeness of the quantum states ρ̂1 and
ρ̂2. When both states are Gaussian and at least one is pure,
the fidelity can be calculated directly from their respective
covariances matrices, �ρ1 and �ρ2 ,

F (ρ̂1, ρ̂2) = [
det

(
�ρ1 + �ρ2

)]−1/2
, (B13)

where det(A) is the determinant of the matrix A [85]. In
Sec. IV the two-mode squeezed state is pure with a covariance
matrix given by Eq. (B3).

[1] S. M. Barnett et al., Prog. Quantum Electron. 54, 19 (2017).
[2] M. Müller et al., Engineered open systems and quantum sim-

ulations with atoms and ions, in Advances In Atomic, Molec-
ular, and Optical Physics (Academic Press, New York, 2012),
Vol. 61, pp. 1–80.

[3] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 EP
(2009).

[4] F. Pastawski, L. Clemente, and J. I. Cirac, Phys. Rev. A 83,
012304 (2011).

[5] Z. Leghtas et al., Science 347, 853 (2015).

062104-11

https://doi.org/10.1016/j.pquantelec.2017.07.002
https://doi.org/10.1016/j.pquantelec.2017.07.002
https://doi.org/10.1016/j.pquantelec.2017.07.002
https://doi.org/10.1016/j.pquantelec.2017.07.002
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1126/science.aaa2085


DARYANOOSH, BARAGIOLA, GUFF, AND GILCHRIST PHYSICAL REVIEW A 98, 062104 (2018)

[6] Y. Lin et al., Nature (London) 504, 415 EP (2013).
[7] S. Shankar et al., Nature (London) 504, 419 (2013).
[8] D. Kienzler et al., Science 347, 53 (2014).
[9] M. E. Kimchi-Schwartz, L. Martin, E. Flurin, C. Aron, M.

Kulkarni, H. E. Tureci, and I. Siddiqi, Phys. Rev. Lett. 116,
240503 (2016).

[10] B. Q. Baragiola and J. Twamley, New J. Phys. 20, 073029
(2018).

[11] H. J. Carmichael, Statistical Methods in Quantum Optics
(Springer-Verlag, Berlin, 2008).

[12] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, UK, 2010).

[13] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2003).

[14] T. A. Brun, Am. J. Phys. 70, 719 (2002).
[15] S. Attal and Y. Pautrat, Ann. Henri Poincaré 526, 59 (2006).
[16] S. Attal and A. Joye, J. Stat. Phys. 126, 1241 (2007).
[17] L. Bruneau, A. Joye, and M. Merkli, J. Math. Phys. 55, 075204

(2014).
[18] J. Rau, Phys. Rev. 129, 1880 (1963).
[19] V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and V. Bužek,
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[40] A. Černoch, K. Bartkiewicz, K. Lemr, and J. Soubusta, Phys.
Rev. A 97, 042305 (2018).

[41] R. Riedinger et al., Nature (London) 556, 473 (2018).
[42] C. F. Ockeloen-Korppi et al., Nature (London) 556, 478 (2018).
[43] P. Kurpiers et al., Nature (London) 558, 267 (2018).
[44] Y. S. Weinstein, Phys. Rev. A 82, 032326 (2010).
[45] S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, and

H. H. Eberly, Phys. Rev. A 86, 062303 (2012).
[46] C. Pellegrini, Ann. Probab. 36, 2332 (2008).
[47] G. Nogues et al., Nature (London) 400, 239 (1999).
[48] J. E. Gough, M. R. James, and H. I. Nurdin, in 50th IEEE

Conference on Decision and Control and European Control
(IEEE, New York, 2011), pp. 5570–5576.

[49] B. Q. Baragiola, R. L. Cook, A. M. Brańczyk, and J. Combes,
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