
PHYSICAL REVIEW A 98, 062102 (2018)

Proving genuine multiparticle entanglement from separable nearest-neighbor marginals
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We address the question of whether or not global entanglement of a quantum state can be inferred from local
properties. Specifically, we are interested in genuinely multiparticle entangled states whose two-body marginals
are all separable, but where the entanglement can be proven using knowledge of a subset of the marginals only.
Using an iteration of semidefinite programs we prove that for any possible marginal configuration up to six
particles multiqubit states with the desired properties can be found. We then present a method to construct states
with the same properties for more particles in higher dimensions.
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I. INTRODUCTION

An essential property of quantum systems is that they can
be entangled, meaning that the state of the system cannot be
factorized [1,2]. A related question concerns the relationship
between global properties of the system and the local prop-
erties of its subsystems. In the simplest version, one may
just ask whether the global state can be determined from its
marginals, and which sets of marginals are compatible. This is
a rather old problem, sometimes called the marginal problem,
or the representability problem [3], but recently it attracted
again much attention [4–11]. More precisely, one can also ask
whether certain global properties, such as entanglement, can
be concluded from the marginals. In fact, several examples
have been identified, where this is the case: Using spin-
squeezing inequalities one may prove entanglement from two-
body marginals, although these marginals itself are separable
[12,13]. Similar phenomena exist for Bell inequalities, where
the marginals are compatible with a local hidden-variable
model, but the global state is not, and this can be proven from
the marginals [14–16].

The notion of entanglement used in the above mentioned
works relies on the question whether or not the global state
can be factorized completely, that is, whether it is fully
separable or not. In other words, if the state does not fac-
torize, it is entangled. This does not mean, however, that it
is genuine multiparticle entangled, as genuine multiparticle
entanglement requires the entanglement between all particles
and not only some of them. So the more demanding task
of proving that a state is genuinely multiparticle entangled
just from separable two-body marginals still remained. In
Ref. [17], however, a first example of this phenomenon has
been presented and in Ref. [18] the authors provided a sys-
tematic method of finding genuinely multiparticle entangled
states with separable two-body marginals, where the genuine
multiparticle entanglement can be proven from the marginals
only. They have also provided a scheme for constructing states
with the desired properties for any number of particles, and
gave examples of numerically found states for up to five
particles.

In this paper we go one step further and see what happens if
only a subset of the marginals is known, but still all marginals

are required to be separable. Using a suitable ordering and
topology of the particles, one can always view the subset of
known marginals as the set of nearest-neighbor marginals. It
is clear that only from subsets of two-body marginals where
all particles are included and where all marginals form a
connected graph the global entanglement can be proven. The
possible marginal configurations are known as unlabeled trees
[19]. The number of these configurations is known to scale
exponentially [20], but for a small number of particles an
exhaustive classification is known [19,21]. We will see that
it is always possible to find examples of states where genuine
multiparticle entanglement can be proven from separable two-
body nearest-neighbor marginals.

In order to study different marginal configurations for
higher particle numbers the numerical tools used in Ref. [18]
are not sufficient and improved optimization methods are
required. The extension to more particles, however, gives new
insights: For the minimal configurations of five (see Fig. 1)
and six qubits, examples of states can always be found already
for qubits and, remarkably, most of these states are pure. This
purity allows one to present a method to find examples for
general marginal configurations of an arbitrary number of
particles using copies of the numerically found five- and six-
qubit states. This method allows one to construct the desired
states for any marginal configuration of an arbitrary number
of particles, but higher-dimensional systems are required.

This paper is organized as follows. In Sec. II we introduce
the required facts about multiparticle entanglement and state
the problem. In Sec. III we describe the iteration of semidef-
inite programs that we use to solve this problem. Section IV
presents the results for four, five, and six qubits. In Sec. V we
discuss the generalization to an arbitrary number of particles.
Finally, we conclude and discuss further research directions.

II. DEFINITIONS AND STATEMENT OF THE PROBLEM

We begin by recalling the notion of genuinely multipar-
ticle entangled states, detailed discussions can be found in
Refs. [1,2,22]. For simplicity, we will restrict ourselves to
three-particle systems, but the definitions are valid for an
arbitrary number of particles. First, a state ρABC is said to
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FIG. 1. If global entanglement should be concluded from a set
of two-body marginals {ρij } then the set of marginals has to obey
two conditions: First, any particle k must be covered by the set
and secondly, the graph arising from the interpretation of the ρij

as edges must be connected. Among the marginal sets with these
conditions, the minimal sets are of special interest, and these are
necessarily treelike configurations. The figure shows all minimal tree
configurations of marginals for five particles, up to permutations of
the particles [19].

be separable with respect to a bipartition A|BC if it can be
written as a mixture of product states, with respect to the
bipartition A|BC,

ρ
sep
A|BC =

∑
k

qk

∣∣φk
A

〉〈
φk

A

∣∣ ⊗ ∣∣ψk
BC

〉〈
ψk

BC

∣∣, (1)

where the qk form a probability distribution. If the global state
of the system can be written as

ρbs = p1ρ
sep
A|BC + p2ρ

sep
B|AC + p3ρ

sep
C|AB, (2)

it is called biseparable. This gives the definition of genuine
multiparticle entanglement: If a state is not biseparable, i.e., it
cannot be written in the form of Eq. (2), then it is genuinely
multiparticle entangled.

Due to the definition of biseparability, it is very difficult to
verify this property directly. For our approach it is very useful
to consider a relaxed definition by considering a larger set of
states, the set of so-called PPT mixtures (see Fig. 2). Let us
first recall the entanglement criterion of the positivity of the
partial transpose (PPT). Any two-particle state on an N × M

system can be written as

ρ =
N∑
i,j

M∑
k,l

ρij,kl|i〉〈j | ⊗ |k〉〈l|. (3)

FIG. 2. Illustration of biseparable states and PPT mixtures for a
three-particle system; see text for further details. The figure is taken
from Ref. [22].

The partial transposition of ρ with respect to the first sub-
system (we use the standard convention of naming the two
subsystems Alice and Bob), is then given by

ρTA =
N∑
i,j

M∑
k,l

ρji,kl|i〉〈j | ⊗ |k〉〈l|. (4)

A state ρ is said to have a positive partial transpose (PPT) if

ρTA � 0, (5)

that is, ρTA has no negative eigenvalues. Separable states
are PPT [23] and according to the Horodecki theorem [24],
for 2×2 and 2×3 systems, any PPT state is also separable.
This criterion for separability is very easy to test numerically,
thus we shall use it to test the separability of our two-body
marginals.

For multiparticle states, the partial transposition can be
defined for any bipartition of the system. Now, similarly to
biseparable states, a state that can be written as

ρpmix = p1ρ
ppt
A|BC + p2ρ

ppt
B|AC + p3ρ

ppt
C|AB (6)

is called a PPT mixture, as it is a mixture of PPT states for the
different bipartitions [22].

Looking at Fig. 2, the convex hull of all states separable
with respect to a fixed bipartition is the set of biseparable
states. In a similar way, the convex hull of states which are
PPT with respect to a bipartition is the set of PPT mixtures.
It is clear that every biseparable state is also a PPT mix-
ture. Thus, if we can prove that a state is not a PPT mixture,
then it is genuinely multiparticle entangled. Note that the
partial transposition is only one example of a map that can be
used; other positive but not completely positive maps work as
well [25].

Now, having a suitable criterion for entanglement, we
can write down an entanglement witness that can detect a
state which is not a PPT mixture. An entanglement witness
is an observable W that is non-negative on all biseparable
states and has a negative expectation value on at least one
entangled state. For the two-particle case a witness W is called
decomposable if it can be written in terms of two positive
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semidefinite observables P and Q (P � 0 and Q � 0) as

W = P + QTA. (7)

One can generalize this definition to the multiparticle case. A
witness that can be written as

W = PM + Q
TM

M , (8)

for any bipartition M|M̄ of the system is called fully decom-
posable. The connection to the notion of PPT mixtures is the
following.

Observation 1. If ρ is not a PPT mixture, then there exists
a fully decomposable witness W that detects it. The proof can
be found in Ref. [22].

Now we can define the problem in a rigorous way. For N

particles there are N (N − 1)/2 possible two-body marginals
(reduced density matrices) ρij . We fix a subset S of them and
call them also the nearest-neighbor marginals. Then, we want
to find an N -particle state ρ such that the following.

(1) All N (N − 1)/2 two-body marginals of ρ are sepa-
rable. Since we are first looking for multiqubit states, the
marginals are systems of two qubits and for them separability
is equivalent to being PPT.

(2) The state ρ is genuinely multiparticle entangled and
this entanglement can be proven from knowledge of the
marginals in the subset S only. This condition can be assured
by using fully decomposable witnesses, which detect states
that are not PPT mixtures and which contain only two-body
interactions corresponding to the marginals in the subset S.
Clearly, the subset S has to obey some conditions, in order to
find the requested states. First, any particle k must be covered
by the set and second, the graph arising from the interpretation
of the ρij as edges must be connected; otherwise there is one
bipartition, for which entanglement cannot be checked (see
also Fig. 1). Among the marginal sets with these conditions,
the minimal sets are of special interest as in these the least
amount of knowledge is given. These configurations are nec-
essarily treelike configurations.

III. DESCRIPTION OF THE ALGORITHM

In this section, we describe the algorithm used for finding
the desired states. The algorithm relies on an iteration of
semidefinite programs (SDPs) [27], some basic facts about
SDPs are explained in the Appendix A.

To obtain a state with the desired properties, we implement
a program as a sequence of steps, over which an iteration is
performed until the desired precision is reached. The main
idea of this program was already used in Ref. [18].

Step 0: Generate a random pure state ρ. For practical
purposes, it is preferable that the initial state does not have
any symmetries. Otherwise, the following iteration may in
practice end up in a fixed point which does not have the
desired properties.

Step 1: Insert the state into the first SDP. This SDP aims
at finding an optimal fully decomposable witness, meaning
that the witness has the smallest expectation value (among all
other considered witnesses) for the given state. The witness is
constructed such that it can be evaluated from knowledge of
the marginals ρij in the subset S only. Formally, this program

is given by

min Tr(Wρ),

s.t. Tr(W ) = 1,

W =
∑
i,j

ω
α,β

i,j σ α
i ⊗ σ

β

j ⊗ 1⊗(N−2) + perm. in S,

W = PM + Q
TM

M with PM,QM � 0 for all M|M̄.

(9)

The first condition, Tr(W ) = 1 is just a normalization
condition on the witness. This normalization is not the only
possible one; it does, however, assure the best robustness
against white noise [22].

The second condition ensures the constraint that the
witness contains only contains two-body terms from the
marginals in S. Here, σα

i denotes a Pauli matrix acting on
the qubit α. The permutation is performed over two-body
marginals within this set, with a different ω

α,β

i,j coefficient for
each term. It is also important to stress here that, while the
witness is restricted to only two-body terms, the operators PM

and QM are not.
Finally, the last condition ensures that the witness is fully

decomposable, hence it detects non-PPT mixtures.
Step 2: Insert the optimal witness from the previous step,

into the second SDP. The purpose of this SDP is to obtain
an optimal state that minimizes the expectation value of W
as much as possible under the condition that all two-body
marginals are PPT. This program is

min Tr(Wρ),

s.t. Tr(ρ) = 1.

ρ � 0,

ρ
Tα

α,β � 0 for all α, β.

(10)

While the first two conditions are present just to assure the
fact that ρ is a density matrix, the third one represents the
constraint that all two-body marginals of ρ must be separable
(for qubits the PPT condition is equivalent to separability).
Separability must hold for all two-body marginals, not just
the marginals in S.

One can then iterate steps 1 and 2, obtaining a better
approximation of the optimal state with each additional step.
This see-saw algorithm is, of course, not guaranteed to con-
verge to the global optimum. However, in practice different
solutions turned out to be equivalent under local unitary
transformations.

In practice, the two SDPs have been implemented in
PYTHON, using the Picos convex optimization interface [26].
After a remarkably small number of iterations (usually two
or three) one already finds a state that satisfies the desired
requirements. On a regular desktop configuration, the four-
qubit state is obtained in less than a minute, the five-qubit state
in around 45 min and the six-qubit state in around 6 h. We thus
managed to obtain such states for four, five, and six qubits, for
various configurations (see Table I below). We started with a
pure initial random state and it is important to mention that
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TABLE I. Obtained states and witness values for the various
configurations. All states are uniquely determined by their known
two-body marginals from the set S.

Index Configuration Tr[ρW] Pure

4-qubit configurations
4a −3.15 × 10−3 No

4b −3.56 × 10−3 Yes

5-qubit configurations
5a −1.13 × 10−3 Yes

5b −1.31 × 10−3 Yes

5c −1.38 × 10−3 Yes

6-qubit configurations
6a −2.01 × 10−4 Yes

6b −2.56 × 10−4 Yes

6c −2.84 × 10−4 Yes

6d −2.92 × 10−4 Yes

6e −3.80 × 10−4 Yes

6f −4.54 × 10−4 No

all obtained optimal states are also pure, except for two of
them; see Table I. The obtained pure states are also uniquely
determined by the marginals ρi,j in S, which can be concluded
from the fact that they are eigenstates corresponding to the
smallest eigenvalue of the witness, and this eigenvalue is
nondegenerate. This will turn out to be essential later on, when
we discuss generalizations of these results.

The negative expectation values found numerically (and
presented in Table I) may seem small (10−4 for six-qubit
states) but it is important to note that the SDP solver works
with a precision of at least 10−10.

One can observe that, as the number N of particles in-
creases, the absolute value of the witness value for the nu-
merically found state decreases. This may be expected, since
the total number of two-body marginals is

(
N

2

) = N (N − 1)/2
and the total number of parameters of the density matrix is
4N − 1. On the other hand, the number of nearest-neighbor
two-body marginals is N − 1 and in total 3(N − 1) param-
eters of the density matrix are known. Thus, as N grows,
the witness has information about a very small fraction of
all marginals and parameters and the phenomenon becomes
fragile.

IV. RESULTS FOR THE VARIOUS CONFIGURATIONS

In this section, we present the results obtained by using
the previously described method. After finding the numerical

form of the desired states, one also needs to find an analytical
approximation. This is a tedious task and has only been done
here for the four- and five-qubit states. By noting that local
unitary transformations do not affect the entanglement in our
system, we can apply local unitary transformations to the
state,

ρnum.(α, θ, φ) = U †ρnum.U, (11)

and perform an optimization over any function of the param-
eters α, θ , and φ. This generally leads to a state ρ with some
zero elements, simplifying the task of finding an analytical
form. The above local unitaries are constructed from tensor
products of qubit unitaries, which can be parametrized as

U (α, θ, φ) =
(

eiα cos(φ) eiθ sin(φ)

−e−iθ sin(φ) e−iα cos(φ)

)
. (12)

The main results of the following discussion are summarized
in Table I.

A. Four qubits

There are two possible configurations for four qubits,
denoted in Table I as 4a and 4b. While for both configurations
we obtained genuinely multiparticle entangled states with the
desired requirements, state 4a is not pure. We show here the
other state, 4b, which is pure and uniquely determined by its
known two-body marginals.

|ψ4〉 = 1√
87

(5|φ1〉 +
√

10|φ2〉 +
√

3|φ3〉 + 7|φ4〉), (13)

where the component states are

|φ1〉 = 1√
2
(e

3π
7 i |1100〉 − |0000〉),

|φ2〉 = 1√
5
(e

π
4 i |0101〉 − |0111〉 − |1000〉 − |1001〉 − |1111〉),

|φ3〉 = 1√
6
(e

−2π
3 i |0010〉 + |0011〉 + |0100〉 + |1010〉+

+ |1101〉 + |1110〉),

|φ4〉 = 1√
2
(|0110〉 − |1011〉). (14)

This is the closest analytical state to the one obtained nu-
merically. The values of the numerical result are given in the
Appendix B.

The noise tolerance is defined as the maximal p, such that

ρ(p) = (1 − p)ρ + p
1

2N
, (15)

has still all the desired properties. For the numerical state in
the Appendix B it is given by pmax ≈ 0.35%.

B. Five qubits

We show here the five-qubit state labeled as 5a. This state is
pure and uniquely determined by its known nearest-neighbor
marginals as well. It is given by

|ψ5〉 = 1

N1

(
1

4
|φ〉 + 3

2

√
3

10
|η〉 + 1

14
e

2πi
3 |11101〉

+ 2

11
e

−3πi
13 |11111〉

)
, (16)
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where N1 is a normalization and the corresponding substates
are

|η〉 =
√

2

15

(√
6

2
|η1〉 +

√
2|η2〉 − 2|η3〉

)
,

|η1〉 =
√

1

6
(|00011〉 − |00001〉 − |01001〉 + |01010〉

−|10000〉 + |10011〉)

|η2〉 = 1

3
√

2
(e

πi
8 |01100〉 + e

πi
8 |11001〉 + 4|11110〉),

|η3〉 = 1

2
(|11010〉 + |11100〉 + |11000〉 + |00000〉), (17)

and

|φ〉 = 1

N2

(
1

2
|φ1〉 +

√
2

3
e

πi
4 |φ2〉 +

√
3

5
|φ3〉 + 2|φ4〉

)
,

|φ1〉 = 1

2

(
e

πi
4 |00010〉 − 1

2
|01011〉 − 1

2
|01101〉

+|01110〉 − 1

2
|01111〉 − 1

2
|10111〉 + |11011〉

)
,

|φ2〉 = 1√
2

(|00110〉 + |01000〉),

|φ3〉 = 1√
3

(|00100〉 + |00101〉 + |10101〉),

|φ4〉 = 1

2
(|10010〉 + |10100〉 + |10110〉 − |10001〉). (18)

The numerically obtained state is given in the Appendix B.
Due to the severe limitation on the information regarding

the marginals, the numerically obtained state has a very low
noise robustness (pmax ≈ 0.11%), so only for little noise the
entanglement of the global state can be proven from the
separable known marginals only.

C. Six qubits

In this case, there are six possible nearest-neighbor con-
figurations, five of which are pure and uniquely determined.
Due to its size, we present one example of the obtained states
the state in numeric form in the Appendix B. The noise
tolerance for this numerical six-qubit state is pmax ≈ 0.02%,
and the expectation value of the optimal witness, together with
this state, while negative, is of the order of 10−4. All other
marginal configurations that have been tested are presented in
Table I.

V. GENERALIZATION TO MORE PARTICLES

The purpose of this last section is to present a general
method for constructing arbitrarily large states by using the
numerically found ones as building blocks. The main idea of
this generalization was already presented in Ref. [18]. This
method ensures that the constructed states retain the properties
of the states found for a small number of particles. Note
that we found pure genuinely multiparticle entangled states
which are uniquely determined by their known two-body

A B C D E F

|ψ5〉1

|ψ5〉2

|θ〉

FIG. 3. Constructing a state with the desired properties for a
simple six-party configuration. Here, it is assumed that the marginals
ρAB , ρBC , ρCD , ρDE , and ρEF are known. See text for further details.

marginals. It is important to stress that without this unique
determination and the purity the proposed method would not
work.

Before describing the method in detail, we point out a
disadvantage of this generalization, namely that one must
resort to higher-dimensional systems, where each party does
not consist of only a qubit. The state we use here to exemplify
is the linear five-qubit state. The first example is for a simple
six-party system, depicted in Fig. 3.

The state we want to construct is |θ〉. The parties A and F
have a single qubit while the ones from B to E have two qubits.
We depict the two-party marginals by blue lines. All we need
to do is to distribute two copies of the pure five-qubit state |ψ5〉
in Eq. (16) as represented by the thick red lines among the
six parties. Let us explain why this construction works: Every
two-party marginal is a direct product of separable states since
the marginals of |ψ5〉 are separable. Thus it is itself separable.
From the fact that |ψ5〉 is uniquely determined by its known
two-body nearest-neighbor marginals it follows that one also
knows the state |ψ5〉 and the way copies of this state have
been distributed among the parties. This also means that the
global state itself, namely |θ〉, is uniquely determined by its
two-body nearest-neighbor marginals as well. The constructed
state is pure and cannot be factorized for any bipartition of
the system, so it is genuinely multiparticle entangled and this
entanglement is proven from the nearest-neighbor two-body
marginals only.

A B C D

E F G
H

I J K L

O PM N

|ψ5〉1

|ψ5〉2

|ψ5〉3

|ψ5〉4

FIG. 4. Covering a two-dimensional lattice with linear numeri-
cally found states. See text for further details.
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A

B

C

D

E

F

G

H

I

J|ψ5〉1

|ψ5〉2

|ψ5〉3

|ψ5〉4

|θ〉

FIG. 5. Constructing a state with the desired properties for an
arbitrary configuration. See the text for further details.

If we consider a 4×4 two-dimensional lattice, as depicted
in Fig. 4, it can be fully covered by using four copies of the
linear five-qubit state. Nodes H, I, L, and P contain two qubits,
one from each copy of the state, so we require a total of 20
qubits to construct the desired lattice state.

These ideas can be used for an arbitrary configuration.
Consider the 10 parties (A to J) in Fig. 5. Each of the parties
has at least one qubit (H and J) and at most three (C and F). By
repeating the same algorithm as above, and distributing as few
copies of the five-qubit state as possible, while still covering
every party by at least one copy, we obtain a 10-particle state,
with the desired properties as the one above. Due to the fact
that with our SDP we were able to go as high as six qubits, one
could take advantage of this and use the linear six-qubit state
instead. While less robust to noise, an arbitrary configuration
would require less copies of the state, thus helping to reduce
the dimensionality of some of the systems (for example, C and
F in Fig. 5 are three-qubit systems).

VI. CONCLUSION

In this paper we considered an interesting class of states,
namely genuinely multiparticle entangled states whose two-
body reduced density matrices are all separable, nevertheless
one can prove the global entanglement from some marginals
only. We found examples of this phenomenon for all possible
configurations of four, five, and six qubits. We also showed
how these examples can be used to find more general states
for more particles.

While this paper only looks at two-body marginals, the
problem could be taken one step further by also treating
higher-order marginals and proving the entanglement of the
global state just with the knowledge of those marginals. This
gives more information about the state, but on the other hand,
the condition on the separability of the marginals becomes
more restrictive. Another option would be to further constrain
the witness by allowing the observers to perform only a

subset of possible measurements (for example, only σz and σx

measurements). Similarly, it would be interesting to consider
nonlocality and ask whether all the phenomena observed for
entanglement can also be found for nonlocal correlations.
Here, the recent results in Refs. [28,29] may be useful.

As previously discussed, the states presented here have a
rather low noise tolerance (for example, 0.02% for the six-
qubit state), and it decreases with the increase in the number
of qubits. This is mainly due to the strong constraint on
nearest-neighbor information only. Nevertheless it would be
interesting, though challenging, to see an experimental study
of the effects discussed here.
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APPENDIX A: SEMIDEFINITE PROGRAMMING

An SDP can be formulated as the problem of minimizing a
variable x ∈ Rm in the form,

min cT x,

subject to F (x) = F0 +
m∑

i=1

xiFi,

F (x) � 0.

(A1)

The vector c ∈ Rm and the m + 1 symmetric matrices
F0, . . . , Fm ∈ Rn×n represent the problem data, while the
F (x) � 0 constraint means that F (x) is a positive semidef-
inite matrix, zT F (x)z � 0, or, alternately, all eigenvalues of
F (x) are non-negative.

An SDP is a convex optimization problem since for
F (x) � 0 and F (y) � 0, for all λ ∈ [0, 1] we have

F [λx + (1 − λy)] = λF (x) + (1 − λ)F (y) � 0, (A2)

hence both the objective function and the constraint are
convex.

To a given SDP one can associate the so-called dual
semidefinite program (from now on it will be referred to as
SDD), which is of the form,

max − Tr(F0Z),

subject to Tr(FiZ) = ci,

Z � 0,
(A3)

again, for all i = 1, . . . , m. In this case, the variable is the
matrix Z = ZT ∈ Rn×n. Henceforth we refer to the original
SDP as the primal problem and to the SDD as the dual
problem and call a matrix Z to be dual feasible if Tr(FiZ) =
ci and Z � 0.

One important property of SDPs and their associated duals
is that one sets bounds on the optimal value of the other. If Z
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is dual feasible and x is primal feasible, then we have

cT x + Tr(ZF0) =
m∑

i=1

Tr(ZFixi ) + Tr(ZF0)

= Tr(ZF (x)) � 0, (A4)

since Tr(AB ) � 0 if A � 0 and B � 0. This reduces to

− Tr(F0Z) � cT x, (A5)

so the dual objective value of any dual feasible point Z is
smaller than or equal to the primal objective value of any
primal feasible point x. If α is the optimal value of the SDP
α = min{cT x|F (x) � 0}, then we have for any dual feasible
Z that − Tr(ZF0) � α. Analogously if β is the optimal value
of the SDD, then β � cT x. This means that dual feasible
matrices impose a lower bound on the primal problem and

primal feasible points impose an upper bound on the dual
problem. What one can generally prove is that, in most cases,
the strong condition α = β holds.

Theorem 2. The condition α = β holds if any of the fol-
lowing requirements is true.

(1) The primal problem is strictly feasible, that is, there
exists feasible x such that F (x) > 0.

(2) The dual problem is strictly feasible, that is, there
exists feasible Z such that Z = ZT > 0.

A proof of this theorem can be found in Ref. [30].

APPENDIX B: EXAMPLES OF STATES

We present here the numerical form for some of the states
discussed in Sec. IV. The coefficients of the states have been
approximated by fractions and the states are written in a not
normalized way.

The four-qubit state from Sec. IV for the configuration 4b is given by

|ψ4〉 ∼
(

− 2

33
+ 5i

38
,

1

21
+ 2i

13
,

50

149
+ 3i

35
,− 1

17
+ 3i

25
,

7

26
− 5i

28
,− 3

32
+ 10i

61
,

7

62
+ 6i

17
,− 2

17
+ i

111
,

5

23
+ 8i

29
,

3

31
+ 5i

41
,

2

41
− 5i

34
,− 1

13
+ 11i

30
,− 1

289
+ i

51
,− 1

270
+ i

24
,− 1

58
+ 7i

24
,

11

31

)
.

The numerical form of the five-qubit state for configuration 5a, presented in Sec. IV is given by

|ψ5〉 ∼
(

− 3

35
− i

22
,

4

31
+ i

40
,

4

29
− i

22
,− 1

28
+ 4i

29
,

4

35
− 2i

25
,− 1

24
+ i

19
,− 6

35
− 5i

28
,

2

33
− 4i

45
,

1

32
− i

3
,

3

35
− 19i

94
,− 5

24
− 3i

16
,

1

74
− 2i

33
,− 4

27
+ i

207
,− 1

186
− 2i

39
,

5

41
− 2i

13
,

2

19
+ 5i

34
,− 2

27
+ i

6
,

− 3

29
− 8i

33
,−1

8
− 5i

36
,

7

30
− 3i

40
,− 4

31
− 5i

28
,

1

7
− 3i

35
,−11

36
+ i

83
,

1

50
− 2i

35
,

1

10
− 8i

41
,

1

26
− i

50
,

− 4

39
− 2i

29
,− 2

29
− 2i

19
,− 1

18
− i

295
,− 2

27
− 2i

23
,− 1

18
− 4i

33
,

1

10

)
.

Due to its size, we only present the linear six-qubit state (configuration 6a) in numerical form,

|ψ6〉 ∼
(

3

77
, 0,

1

55
,− 4

61
− 6i

85
,− 2

97
, 0, 0,

3

107
,−10

59
,

1

133
− 7i

167
,− 7

211
,− 7

211
,− 1

27
+ 21i

106
,

− 23

172
− 6i

121
,−11

70
,

1

106
− 8i

193
,− 7

211
,

9

167
,

13

168
,−33

97
,

10

103
+ 17i

77
,

13

168
,

8

61
,

8

83
,

16

43
, 0,

1

128
− 11i

84
,

29

83
, 0,

47

168
,

16

43
,

9

167
, 0, 0,− 1

117
,− 17

358
+ 15i

188
,− 1

79
+ 10i

191
, 0, 0,− 7

181
+ i

25
,

2

63
+ 9i

103
, 0, 0,

10

91
,

5

127
+ 9i

79
, 0,

2

59
+ 5i

72
,− 3

137
,− 3

107
,− 6

161
+ 4i

59
,− 8

159
+ 4i

93
,

28

159
+ 29i

217
,− 3

137
,− 3

107
,− 3

107
,− 5

62
+ 2i

17
,

3

137
, 0,

3

137
,− 3

107
,− 2

43
− 7i

87
,

1

174
, 0,− 3

65
+ 6i

125

)
.

This state is also pure and uniquely determined by its two-body nearest-neighbor marginals, while still retaining the desired
properties, namely the state should be genuinely multiparticle entangled and the entanglement should be proven from the
separable nearest-neighbor two-body marginals only.
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