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Quantum state engineering with twisted photons via adaptive shaping of the pump beam
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High-dimensional entanglement is a valuable resource for quantum communication, and photon pairs
entangled in orbital angular momentum (OAM) are commonly used for encoding high-dimensional quantum
states. However, methods for the preparation of maximally entangled states of arbitrary dimensionality are still
lacking, and currently used approaches essentially rely on filtering and entanglement concentration. Here, we
experimentally realize a method for the generation of high-dimensional maximally entangled OAM states of
photon pairs which does not require any of these procedures. Moreover, the prepared state is restricted to the
subspace of the specified dimensionality, thus requiring minimal spatial postselection.
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The use of high-dimensional entangled systems denoted as
qudits in quantum communications offers a number of advan-
tages over the well-studied qubit systems, such as higher in-
formation capacity [1,2], enhanced robustness against eaves-
dropping in quantum key distribution (QKD) protocols [3],
and stronger violation of generalized Bell’s inequalities [4]
with possible applications in device-independent QKD [5,6]
and randomness generation [7]. To date, the orbital angular
momentum (OAM) of light produced by spontaneous para-
metric down-conversion (SPDC) has become the workhorse
for two-qudit state generation [8]. Twisted photons have
enabled the qutrit encoding technique [9], which has been
successfully used in a QKD protocol [10]. OAM of photons
has recently been successfully used for three-dimensional
Greenberger-Horne-Zeilinger (GHZ) state generation [11].
Although other techniques for encoding high-dimensional
spatial states exist, such as, for example, multislit encoding
[12], OAM-based qudits remain the only practical alternative
for long-distance quantum communication in free space [13]
and in multimode fibers [14].

Ideally, in a nearly collinear phase-matching geometry, the
angular momentum of photons in the down-conversion pro-
cess is conserved [15]. Therefore, if a pump photon has zero
OAM value, the produced two-photon state is anticorrelated
in OAM,

|�〉 =
+∞∑

l=−∞
cl|l,−l〉. (1)

Here, |cl|2 determine the probabilities of finding a signal
photon in the eigenstate |l〉 carrying lh̄ units of OAM and
an idler photon in the state |−l〉 carrying −lh̄ units of OAM.
The width of |cl|2 distribution is called the spiral bandwidth
and depends on the crystal length and the pump beam waist
[16]. Since the amplitudes cl are in general nonequal and
decrease with increasing l, the OAM state (1) is not maximally
entangled. Therefore, the generated state requires a procedure
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of entanglement concentration [17] to equalize these weights
[18,19]. This method (also referred to as “procrustean filter-
ing”) implies the extraction of maximally entangled states out
of nonmaximally entangled ones using spatial filtering, which
inevitably leads to loss. In this Rapid Communication we
present an experimental realization of maximally entangled
two-qudit state generation without the need for such a filtering
procedure.

It is a well-known fact that the two-photon state generated
in the SPDC process carries information about the angular
spectrum of the pump beam [20–23]. For example, previous
experimental results have shown that the spatial mode spec-
trum of SPDC may be radically modified with the use of
low-order Hermite-Gaussian pump beams [24,25]. Here, we
go further and engineer high-dimensional states entangled in
OAM with a much more complex pump beam transformation.
The method we use is inspired by the theoretical work of
Torres et al. [26], who showed that the amplitudes of the
OAM-entangled quantum states can be controlled by nesting
the phase singularities in the pump beam.

The analysis presented in Ref. [26] is based on the ap-
proximation of an infinite phase-matching bandwidth which
implies an infinite number of spatial modes produced in
SPDC. Conversely, in our approach we attempt to concentrate
the full flux of the down-converted photons in the low-order
mode subspace to minimize the number of unused photons.
Thus, following the idea of our previous experiment [25], we
first minimize the spiral bandwidth by optimal pump beam
focusing. Then we reconfigure the OAM spectrum of the
SPDC radiation by converting an initially Gaussian pump
beam into a superposition of Laguerre-Gaussian modes LGl

p

of width w,

Ep(ρ, φ; w) =
∑

l

αlLGl
0(ρ, φ; w), (2)

where the Ep(ρ, φ; w) function describes the electric field of
the transformed beam in cylindrical coordinates {ρ, φ} and
αl are complex-valued coefficients. The index l is associated
with an azimuthal phase term exp (ilφ) of the LG beam and
the radial index p is taken to be zero. The careful adjustment
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FIG. 1. Experimental setup. L1 = 200 mm, L2 = 100 mm, L3 =
L4 = 11 mm. O1 and O2: 20× and 10× microscopic objectives, re-
spectively. IF: 810 ± 5-nm interference filter. SPCM: Single-photon-
counting modules.

of αl allows us to control both the weights and the phases
of maximally entangled high-dimensional states. Thus, the
method presented here is a valuable alternative to the filtering
approaches mentioned above and to the recently proposed
technique of qudit generation based on entanglement by path
identity [27].

Experiment. We use a 15-mm-thick periodically poled
KTiOPO4 (KTP) crystal designed for a collinear frequency
degenerate type-II phase matching as a source of entangled
photon pairs. The output beam of a grating-stabilized 405-nm
diode laser is spatially filtered by a single-mode fiber and then
shaped by the first spatial light modulator SLM1 (Cambridge
Correlators). The resulting field in the first diffraction order of
the SLM1 is focused on the crystal via a lens L1 (see Fig. 1
for details). Since the signal and idler photons have orthog-
onal polarizations, they are separated by the polarizing beam
splitter (PBS). We use a well-known scheme for projective
measurements in the basis of LG modes [28] by focusing
the signal and idler beams on the corresponding halves of
an SLM2 (Holoeye Pluto) followed by single-mode fibers
and photon-counting modules. A half-wave plate (HWP) is
inserted to optimize the polarization of photons reflected by
the PBS for the second SLM.

Our method of hologram calculation for the LG mode
generation and detection is based on the algorithm presented
in Ref. [29]: The phase profile imprinted on the hologram
contains the phase distribution of the desired field and a
blazed grating pattern modulated by the desired amplitude
distribution. This method implies that the input field is a
plane wave, so its direct application to a Gaussian beam with
a finite waist causes some unwanted amplitude alteration.
The reverse process of mode selection with a single-mode
fiber also requires us to take into account the difference
between the plane wave and the fundamental fiber mode
[30,31]. Thus to generate an LG mode LGl

0(ρ, φ,w) ∝
(ρ/w)|l|L|l|

0 (2ρ2/w2) exp (−ρ2/w2) exp (ilφ) (where L|l|
0

FIG. 2. Normalized (divided by the maximal value) coincidence
count rates as a function of detection mode azimuthal numbers ls and
li for the cases of the pump beam with (a) l = −2, (b) l = 0, and
(c) l = 2 (experiment).

is an associated generalized Laguerre polynomial) we
use a modified expression for the field imprinted on
the hologram, with the modified waist w̃ introduced
to take into account the finite incident beam waist
and to avoid amplitude alteration: L̃G

l

0(ρ, φ,w, w̃) ∝
(ρ/w̃)|l|L|l|

0 (2ρ2/w̃2) exp (−ρ2/w2) exp (ilφ). The optimal
ratio w/w̃ of the Gaussian and polynomial widths for the
detection masks has been calculated from the experimentally
determined fiber mode width and is found to be w/w̃ = 1.6.
The holograms displayed on the first SLM are not modified
since the incident Gaussian pump beam width is significantly
larger than the width of the corresponding mask.

In optimizing the regime of down-conversion for a minimal
spiral bandwidth, we follow the formalism of Schmidt modes
developed in Ref. [32]. According to this concept, the pump
waist is chosen such that the crystal length L is approximately
twice that of the Gaussian pump beam Rayleigh range. Thus
we focus the pump beam to a waist size w = √

L/kp ≈
25 μm, where kp denotes the wave vector of the pump.
For the optimal detection of the down-converted modes we
use the detection beam waist σ ≈ 33 μm, which is close to
the theoretically optimal σ = √

2w for the single-Schmidt
mode regime [25]. As a result, the experimentally measured
azimuthal correlations between the idler and the signal chan-
nels reveal a very low contribution of the down-converted
photons with |l| > 1 [see Fig. 2(b)]. The number of azimuthal
spatial modes can be estimated as Kaz = 1/

∑
l λ

2
l , where the

eigenvalues of the Schmidt decomposition λl are equal to |cl|2
probabilities from (1) [33]. Hence, we estimate the value of
Kaz = 2.0 ± 0.1 from the diagonal distribution ls = −li of
measured coincidence count rates. Such a small azimuthal
Schmidt number allows us to decrease the number of unused
photons in high-order modes during further spiral spectrum
reconfiguration.

Qudit state engineering. Due to the conservation of OAM,
switching between an initially Gaussian pump beam and LG
modes with l = 2 or l = −2 leads to a shift of the down-
converted mode distribution from the leading diagonal ls =
−li to the upper diagonal ls = 2 − li or subdiagonal ls =
−2 − li , respectively [see Figs. 2(a) and 2(c)]. Moreover,
this distribution becomes wider, indicating that entanglement
between spatial modes also increases with the increasing
absolute value of pump OAM, being in agreement with previ-
ous experimental results [34] and our numerical calculations
for the biphoton amplitude under the Gaussian approxima-
tion [32]. In particular, the predicted spiral spectra for the
pump beams with l = −2, l = 0, and l = 2 approximate the
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FIG. 3. Spiral spectra of maximally entangled (a) qutrits, (b) ququarts, and (c) ququints. Associated intensity and phase profiles of the
pump beams calculated from the experimentally obtained coefficients αl in (2) are shown in the bottom row. The corresponding nonzero αl

are (a) α−2 = 0.76 − 0.11i, α0 = −0.12 + 0.15i, α2 = 0.30 − 0.53i, (b) α0 = 0.09 − 0.02i, α2 = −0.02 − 0.19i, α4 = 0.57 − 0.01i, α6 =
0.77 − 0.21i, (c) α−4 = −0.25 − 0.73i, α−2 = 0.19 − 0.10i, α0 = −0.07 + 0.11i, α2 = 0.14 − 0.14i, α4 = −0.54 + 0.09i.

measured ones with R2 values of 0.975, 0.997, and 0.979,
correspondingly. As one can see from the presented spiral
spectra, the use of the pump beam in a superposition of three
even low-order LG modes may provide the cross-correlation
histogram with three equal antidiagonal elements, which cor-
responds to the generation of two maximally entangled qutrits
with some phases θ1 and θ2,

|� (3)〉 = exp (iθ1)|−1,−1〉 + |0, 0〉 + exp (iθ2)|1, 1〉√
3

, (3)

in the subspace S3 = {|−1,−1〉, |0, 0〉, |1, 1〉}.
To equalize the coefficients in the generated superposition

precisely and to take into account the experimental errors
associated with nonperfect overlap between the pump modes
and the detection modes, we further optimize the values of αl

coefficients with an adaptive procedure.
For this optimization we use a simultaneous perturba-

tion stochastic approximation (SPSA) algorithm introduced
in Ref. [35]. This algorithm requires only two cost function
measurements at each iteration of an optimization process,
regardless of the problem dimensionality. It means that we use
only two proposal vectors of modal weights α = {α−2, α0, α2}
and experimental estimates of the cost function to provide
the direction to the optimal pump beam configuration. As
a cost function f (α), we choose a variance of three mea-
sured probabilities |〈ls , li |� (3)(α)〉|2 for ls = li = −1, 0, 1,
where the state vector of the generated state |� (3)(α)〉 =
a1(α)|−1,−1〉 + a2(α)|0, 0〉 + a3(α)|1, 1〉 depends on the
vector α. In other words, we seek to minimize the difference
between the absolute values of the measured amplitudes ai (α)
and equal weights 1/

√
3 to produce the maximally entangled

qutrits. The resulted OAM spectrum of a maximally entangled
qutrits followed by the corresponding intensity and phase
profiles of the pump are shown in Fig. 3(a). A detailed descrip-
tion of the algorithm behavior is given in the Supplemental
Material [36].

We have repeated the same procedure to produce max-
imally entangled ququarts by pumping the crystal with a
superposition of four LG beams with even and positive

OAM values l = 0, 2, 4 only. The resulting state is maximally
entangled in the subspace S4 = {|0, 0〉, |1, 1〉, |2, 2〉, |3, 3〉}.
The corresponding beam represents a “vortex pancake”—a
Gaussian beam with phase vortices nested in it [see Fig. 3(b)].
In analogy with the previous case, we rewrite the cost func-
tion for the adaptive optimization f (α) as a variance of the
four measured probabilities |〈ls , li |� (4)(α)〉|2 for ls = li =
0, 1, 2, 3 with α = {α0, α2, α4, α6}.

Finally, we have prepared maximally entangled ququints
in the subspace S5 = {|−2,−2〉, |−1,−1〉, |0, 0〉, |1, 1〉,
|2, 2〉} using a superposition of five LG beams with even
l = −4,−2, 0, 2, 4 as a pump. The obtained experimental
results are shown in Fig. 3(c). Here, we need to note that
since in the ququint case we use LG beams that have both
positive and negative indices, the maximal mode order
of the generated pump beam is lower than in the case of
ququarts. This leads to a more efficient conversion of the
initially Gaussian pump beam to the LG mode superposition
despite the higher dimensionality of the prepared state. In
particular, the power of the radiation incident on the crystal
after the corresponding phase masks is 1.5, 0.7, and 1.1 mW
for the cases of qutrits, ququarts, and ququints, respectively.
At the same time, from the histograms presented in Fig. 3 we
can conclude that the coincidence rates Rc for the ququint
case are nearly twice as high as for the ququart one. Of
course, one can use a subspace other than the proposed S4, for
example, the exclusion of any LG mode from the “ququint”
pump seems to be a more preferable way to generate ququart
states.

Qutrit phase control. Despite the fact that the measured
spectra demonstrate the equality of the qudit amplitudes,
they provide no information about the phases. Moreover, the
question arises whether the pump light control allows one to
produce a qudit with arbitrary phases at all. It is natural to
assume that the global rotation of the pump beam does not
influence the amplitudes due to the azimuthal symmetry of
LG beams. According to the analytical predictions for the
vortex pancake case, this statement is true [26]. At the same
time, the relative phases of the components of maximally
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FIG. 4. Experimental phases of qutrit terms |−1, −1〉 and |1, 1〉
for different rotation angles (a) θ = 0, (b) θ = π/8, (c) θ = π/4, and
(d) θ = 3π/8, followed by the corresponding intensity profiles of the
pump beam. The phase of the |0, 0〉 term is taken to be zero as a
reference. Phase errors are calculated from Monte Carlo simulations
of Poissonian counting statistics.

entangled states vary with the pump beam rotation angle
θ deterministically. Thus, Eq. (3) can be modified in the
following way,

|� (3)(θ )〉 = 1√
3

[exp (iθ1 − i2θ )|−1,−1〉 + |0, 0〉

+ exp (iθ2 + i2θ )|1, 1〉], (4)

as a particular case of pump beam phase variation.
This prediction is in good agreement with the experiment.

In order to estimate the phases of the prepared qutrits, we
perform a full quantum state reconstruction in a way de-
scribed in Ref. [28] for a nine-dimensional OAM subspace,
spanned by all possible pairwise tensor products of |l〉 vectors
with l = −1, 0, 1 (see the Supplemental Material [36] for
details). Since the reconstructed density matrix ρ is mixed
(as implicitly assumed by the chosen parametrization), we
chose its eigenvector with the largest eigenvalue (≈0.92) as an
estimate of the closest pure state, and compare it with (4). The
phases of |−1,−1〉 and |1, 1〉 terms obtained experimentally
for varying θ are presented in Fig. 4. After the rotation of the
pump beam, the amplitudes of the qutrit components become
slightly unequal. We launch our adaptive algorithm after each
rotation by an angle π/8 to equalize the amplitudes again. As
a result, the pump beam intensity redistributes across the beam
with its rotation, however, these changes are barely visible.

Arbitrary relative phases of the components may also be
obtained in higher-dimensional cases by an appropriate choice
of the modes’ phases in the pump beam. This is confirmed
by our numerical simulations. This phase control procedure is
experimentally much simpler than applying mode-dependent
phase shifts to the generated photon pairs, as required by
existing methods.

Entanglement verification. To further demonstrate the en-
tanglement of the generated qutrits, we have made use
of the Collins-Gisin-Linden-Massar-Popescu (CGLMP) in-
equalities, which are the Bell inequalities generalized for the
d-dimensional case [37]. It was shown that the Bell parameter
Id=3 has to be less than 2 for any local realistic theory and
is approximately equal to 2.87 for the case of maximally
entangled qutrits. We experimentally measure the value of

FIG. 5. Density matrices ρ of the reconstructed qutrit states.
(a) A maximally entangled qutrit state, and (b) a nonmaximally
entangled state from Eq. (5).

I3 = 2.56 ± 0.06, which is well above the classical limit,
but lower than the theoretical upper bound. We attribute the
reduction of I3 mainly to the modest value of purity for the ex-
perimentally generated state Tr ρ2 = 0.85 ± 0.02. Relatively
low values of purity seem to be caused by the imperfections
of our mode detection technique and are ubiquitous for such
realizations of projective measurements in the spatial mode
basis. In addition, the grating defects in the periodically poled
crystal, which are known to affect negatively the single-mode
coupling efficiency [38], may also reduce the purity of the
prepared state.

It is well known that the CGLMP inequalities for the
dimensionality d > 2 are maximally violated by nonmaxi-
mally entangled states. In particular, for qutrits the maximal
violation is obtained for states of the form

|�〉 = 1/
√

2 + γ 2(|−1,−1〉 + γ |0, 0〉 + |1, 1〉). (5)

The maximal value of I3 ≈ 2.91 corresponds to γ ≈ 0.79
[39]. To demonstrate the capability of our technique we
prepared this state experimentally, however, we were not able
to significantly improve the violation—the experimental value
of I3 = 2.61 ± 0.05 is equal to that of maximally entan-
gled states within experimental uncertainty. This value is in
agreement with theoretical predictions for the uncolored noise
model ρ = p|ψ〉〈ψ | + (1 − p)1/d2, where the I3 parameter
scales as pI3. The experimentally obtained p = 0.91 ± 0.02
and p = 0.88 ± 0.02 for the maximally and nonmaximally
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entangled states, correspondingly, explain well the observed
reduction of I3, which was also reported before in other exper-
iments [40]. The results of the experimental state reconstruc-
tions of maximally entangled and nonmaximally entangled
qutrit states are shown in Fig. 5.

Discussion. We have experimentally demonstrated a
method for the generation of spatially entangled states of
photons with variable dimensionality. In this Rapid Commu-
nication we mostly focused on generating maximally entan-
gled states with equal amplitudes of the components in the
superposition, however, the method is completely general, and
may be used to generate qudit states with an arbitrary dis-
tribution of amplitudes and phases. The level of control over
generated states demonstrated here is sufficient, for example,
to generate all mutually unbiased bases for a realization of a
high-dimensional QKD protocol [1,3]. Moreover, the adaptive
procedure used here to supplement the analytical heuristic
may be utilized on its own to generate completely arbitrary
spatial states of photon pairs, with the only limitation being
the conservation laws in the SPDC process. For example,

one may use full-state tomography to estimate the fidelity
of the prepared state with the desired one, and use it as a
cost function for the optimization routine. We believe that
this approach may become an interesting and fruitful research
direction.

Despite the fact that our method does not require the
procedure of entanglement concentration, the prepared states
still have to be postselected to belong to the subspace of OAM
modes spanned by |l, l〉 products, since the two-dimensional
spiral spectra in Fig. 3 contain a significant amount of un-
wanted components for the unequal ls and li . However, these
distributions might be diagonalized by the transition from the
OAM measurement basis to the eigenbasis of the produced
state density matrix, i.e., the true Schmidt modes [41]. This
possibility will be explored elsewhere.

Note added. Recently, we became aware of a closely related
work [42].
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