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Ultrastrong-coupling regime of nondipolar light-matter interactions
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We present a circuit-QED scheme which makes it possible to reach the ultrastrong-coupling regime of a
nondipolar interaction between a single qubit and a quantum resonator. We show that the system Hamiltonian is
well approximated by a two-photon quantum Rabi model and propose a simple scattering experiment to probe
its fundamental properties. In particular, we identify a driving scheme that reveals the change in selection rules
characterizing the breakdown of the rotating-wave approximation and the transition from strong to ultrastrong
two-photon interactions. Finally, we show that a frequency crowding in a narrow spectral region is observable in
the output fluorescence spectrum as the coupling strength approaches the collapse point, paving the way to the
direct observation of the onset of the spectral collapse in a solid-state device.
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I. INTRODUCTION

In cavity quantum electrodynamics (QED), the interaction
between photons and atoms is often described within the
dipolar approximation [1], leading to linear (single-photon)
interaction terms, as exemplified by the celebrated Jaynes-
Cummings and quantum Rabi models. Within this framework,
considerable efforts have been made in the last decades to con-
trol and increase the light-matter coupling strength in various
cavity QED experiments. The strong-coupling regime where
the coupling strength is larger than any dissipation rate has
been demonstrated in atomic cavity QED [2], semiconduc-
tor nanostructures [3,4], and superconducting circuits [5,6],
leading to the observation of genuine quantum effects such as
sub-Poissonian photon statistics [7–11]. More recent progress
has also made it possible to reach the so-called ultrastrong-
coupling (USC) regime where the coupling strength becomes
comparable or even larger than the cavity frequency [12–21].

In this context, two-photon interaction processes (e.g.,
processes involving the simultaneous creation of one atomic
excitation and absorption of two cavity photons) have so far
been realized using second- or higher-order effects of the
dipolar interaction in driven systems and therefore limited
to extremely small coupling strengths [22,23]. A variety of
novel physical phenomena emerges when the two-photon
interaction (TPI) reaches the ultrastrong-coupling regime. In
particular, a collapse of the discrete energy spectrum into
a continuous band has been predicted in the ultrastrong-
coupling regime of various two-photon generalizations of the
quantum Rabi model (QRM) [24–28]. In the many-body limit,
the TPI leads to a rich interplay between the spectral collapse
and the superradiant phase transition [29,30]. However, it is an
open question whether such a counterintuitive mathematical
property is experimentally observable.

These considerations prompted various efforts to design
quantum simulators of TPI models in different atomic plat-
forms [31–33]. However, the implementation of a genuine

TPI, where the coupling is not mediated by an external
drive, requires an interaction more complex than dipolar. As
recently shown, superconducting qubits coupled to microwave
resonators offer a promising platform for the design of such
nondipolar interactions [34,35].

In this work, we show that fundamental quantum opti-
cal phenomena due to an ultrastrong nondipolar light-matter
interaction can be observed with current circuit-QED tech-
nology. To this end, we propose and analyze a device that
realizes the two-photon quantum Rabi model in the nonper-
turbative USC regime. We characterize the circuit response
under coherent driving for increasing values of the coupling
strength of the genuine TPI. The transition from strong to ul-
trastrong nondipolar coupling is witnessed by the appearance
of additional peaks in the fluorescence spectrum resulting
from a change in selection rules due to the breakdown of the
rotating-wave approximation. In addition, higher-order pho-
ton correlations reveal the abrupt disappearance of nonlinear
effects such as the two-photon blockade for specific coupling
strengths in the USC regime. Finally we show that the output
field bears a clear signature of the spectral collapse.

This paper is organized as follows. In Sec. II we present the
design of a nondipolar circuit QED scheme and we derive a
quantum-optical model. In Sec. III we derive an input-output
theory valid for all interaction regimes and we analyze the
quantum-optical properties of the proposed system. Finally
in Sec. IV we provide conclusive remarks and discuss the
perspectives opened by our proposal.

II. CIRCUIT SCHEME

The proposed circuit is shown in Fig. 1(a). It is composed
of a flux qubit and a superconducting quantum interference
device (SQUID), galvanically coupled through a small induc-
tance L. The SQUID is operated in the linear regime and, at
relevant energy scales, it supports a single quantum harmonic
mode. In the following we show that the nonlinear coupling
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FIG. 1. (a) Sketch of the circuit scheme, a flux qubit (cyan) and a
SQUID (red) galvanically coupled through a linear inductive element
(green). Panels (b)–(e) show an analysis of the system’s physical
parameters as a function of the SQUID-loop flux bias. Straight gray
lines pinpoint the values of parameters for g2/ωc = 0.23. For the
SQUID and coupling inductance we have set EC = 2 × 10−3EJ and
EL = 30EJ . The flux qubit parameters have been chosen in order
to meet the two-photon resonance condition ωq = 2ωc. Accordingly,
ẼJ ≈ 11.6EJ , ẼC = ẼJ /80, and α = 0.8.

mediated by the coupling inductance is well approximated
by a TPI between the qubit and the resonator mode. More
details on the derivation of the circuit model can be found
in Appendix A. We divide the total circuit Lagrangian into
three terms: L = LSQUID + LFQ + LL. By applying the flux-
quantization rule, the SQUID Lagrangian can be written as

LSQUID = Cφ̇2
+ + 2EJ cos

(
ϕL + fs

2

)
cos(ϕ+), (1)

where we defined the symmetric variable ϕ+ = ϕa+ϕb

2 . The
SQUID Josephson junctions have the same Josephson energy
EJ and they are shunted by a capacitance C. Here and in
the following, ϕi = φi/φ0 is the gauge-invariant phase of the
junction i. We also introduced the superconducting phase
difference ϕL across the coupling inductance, the reduced
magnetic flux quantum φ0 = h̄/2e, and the frustration fs =
φext

s /φ0 due to a constant magnetic flux threading the SQUID
loop. The term LFQ is the standard Lagrangian of a flux
qubit [36,37], with a modified magnetic bias. The correspond-
ing inductive potential is given by

U = −2ẼJ cos(ϕp ) cos(ϕm) − αẼJ cos(2ϕm + f ), (2)

where ẼJ is the Josephson energy of the junctions forming the
flux qubit, and α is a dimensionless parameter that renormal-
izes the parameters of the second junction [37]. We have also
defined the flux-qubit symmetric and antisymmetric variables
φp = φ1+φ3

2 and φm = φ1−φ3

2 . The frustration f = ϕL + fq is
the sum of the constant contribution fq = φext

q /φ0 due to
the flux flowing through the qubit loop and the coupling-
inductance phase variable ϕL. Finally, the Lagrangian of the

coupling inductance is LL = C+2αC̃
4 φ̇2

L − φ2
L

2L
, which corre-

sponds to an LC resonator of frequency ωL =
√

2
L(C+αC̃ )

.

Notice that in practical implementations the coupling induc-
tance could be replaced by a Josephson junction operated in
the linear regime [15]. The small correction C̃ is due to the
capacitance of the qubit junctions. Direct inductive coupling
between the SQUID and the flux qubit is negligible for typical
qubit loop dimensions.

In the following we take a perturbative approach con-
sidering the coupling inductance L as a small parameter.
Accordingly, we perform two approximations: we linearize
the Lagrangian with respect to the coupling-inductance phase
variable φL, and then we eliminate the corresponding de-
gree of freedom with a Born-Oppenheimer approximation.
To simplify the expressions, let us define the constants K =
2EJ cos ( fs

2 ) and S = EJ sin ( fs

2 ) and the variable �m =
αẼJ sin (2ϕm + fq ). First, we Taylor-expand Eqs. (1) and (2)
up to first order in φL. We then take the coupling inductance
L to be a small parameter and we adiabatically eliminate
φL (see Appendix A). Accordingly, we assume that ωL is
much larger than the relevant system frequencies and that
φ̇L = 0. The Euler equation ∂L/∂φL = 0 then results in φL =
− L

φ0
S cos (ϕ+) − L

φ0
�m. The system Hamiltonian can be de-

rived by defining the conjugate variables pi = ∂LTOT/∂ϕ̇i

and implementing the corresponding Legendre transforma-
tion. Finally, we replace the classical conjugate variables with
quantum-mechanical operators pi → p̂i and ϕi → ϕ̂i , such
that [ϕ̂i , p̂i] = ih̄.

Let us discuss the different Hamiltonian terms resulting
from this derivation. In Ĥ0 we gather all noninteracting terms
that depend on the SQUID phase variable:

Ĥ0 = 1

4φ2
0C

p̂2
+ − K cos(ϕ̂+) − S2

4EL

cos(ϕ̂+)2. (3)

We assume now that the phase of the SQUID junctions is
small compared to the magnetic flux quantum φ+/φ0 � 1.
This approximation is valid in the limit of large Josephson
energy EJ � EC = e2/(2C). Accordingly, we expand the
cosine functions depending on the phase variable ϕ̂+, neglect-
ing terms of the order of ϕ̂4

+. Under this approximation the
SQUID Hamiltonian is that of a quantum harmonic oscillator
Ĥ0 = h̄ωcâ

†â, where the creation and annihilation operators

are defined as ϕ̂+ =
√

h̄ωcLeff

2φ2
0

(â†+â) and p̂+ = i

√
h̄φ2

0
2ωcLeff

(â†−â).

The frequency of this bosonic mode is given by ωc =
√

1
2CLeff

,

where Leff = φ2
0

(K+ S2
2EL

)
.

The qubit energy contribution is given by the stan-
dard Hamiltonian Ĥ standard

FQ of a flux qubit [36] plus two
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corrections:

ĤFQ = Ĥ standard
FQ − �̂2

m

4EL

− S

4EL

�̂m. (4)

The large anharmonicity of the flux qubit allows us to perform
a two-level approximation, such that Ĥ standard

FQ = h̄ωFQσ̂z. We
now assume that the flux qubit is operated at the symmetry
point [36]. Hence, in the two-level subspace we can write [38]
�̂m ∝ sin (2ϕ̂m + fq ) ∝ σ̂x , and the first correction in Eq. (4)
does not couple the qubit ground and excited states. The
second correction term S

2EL
�̂m corresponds to a rotation in the

qubit basis that can be compensated by a small modification of
the qubit flux bias with respect to the sweet spot fq/φ0 = 0.5.

The interaction Hamiltonian ĤI = S
4EL

�̂mϕ̂2
+ corresponds

to a nondipolar interaction between the qubit and the res-
onator, which is a direct consequence of the nonlinear cou-
pling of Eq. (1). Accordingly, the total system Hamiltonian
is well approximated by the two-photon quantum Rabi model
with full-quadratic coupling:

Ĥ2ph = ωcâ
†â + ωq

2
σ̂z + g2σ̂x (â† + â)2. (5)

The two-photon coupling strength is given by

g2 = S

4EL

√
EC(

K + S2

2EL

) 〈0|�̂m|1〉, (6)

where |0〉 and |1〉 are the qubit ground and excited states,
respectively.

Let us now analyze the regimes of parameters accessible
with the proposed scheme. In Fig. 1, we show the dependence
of the system parameters on the SQUID flux bias. The effec-
tive qubit parameters have been obtained via numerical diag-
onalization of the Hamiltonian of Eq. (4). As the SQUID flux
bias fs increases, the two-photon coupling strength g2 grows,
while the resonator frequency decreases. In Fig. 1(b) we show
that the ratio g2/ωc can be brought into the nonperturbative
USC regime [39], making it possible to reach the vicinity of
the spectral collapse. Notice that for TPI with full-quadratic
coupling [35] the collapse takes place for g2 = 0.25ωc. We
take here as a reference the coupling strength g2/ωc = 0.23.
As we see in the following, this value is sufficient to observe
a clear signature of the spectral collapse. Such value can be
achieved with fs = 0.86, where the resonator frequency is
approximatively half the value it takes when no flux bias is
applied to the SQUID loop ωc = 0.47ω

(fs=0)
c .

Notice that to obtain Eq. (5) we have neglected terms of the
order ϕ̂4

+ in the resonator energy and in the coupling Hamil-
tonian. In Fig. 1(d) we show the ratio between the fourth-
order g4 and the two-photon g2 coupling parameters and the
ratio between the size of the quartic correction � and the
resonator frequency ωc. The explicit expressions of higher-
order terms can be found in Appendix A. Both corrections
are 3 orders of magnitude smaller than the terms considered,
until the SQUID flux bias approaches the degeneracy point.
Note that, as a higher-order effect, the validity of the two-level
approximation is also expected to break down at the collapse
point [40]. On the other hand, the validity of the adiabatic
elimination of the coupling inductance is enhanced for high
values of the coupling strength, as shown in Fig. 1(e).

III. QUANTUM OPTICAL PROPERTIES

A. Fluorescence spectrum

Let us now characterize the response of the system when
the cavity or the qubit is driven by a monochromatic coherent
field and both are coupled to a dissipative environment. The
total time-dependent Hamiltonian of the system is

Ĥ (t ) = Ĥ2ph + F cos(ωdt )(ĉ + ĉ†), (7)

where F is the amplitude of the driving field, ωd is its
frequency, and ĉ is either â (cavity driving) or σ̂− (qubit
driving).

We assume that dissipation occurs via the coupling of
the system to one-dimensional waveguides, described by the
following Hamiltonian:

HSB ∝
∫

dω
√

ω(ĉ − ĉ†)(b̂ω − b̂†ω ), (8)

where ĉ ∈ {â, σ̂−} and b̂ω are annihilation operators of the
waveguide modes. A Markovian master equation for the den-
sity matrix ρ(t ) is obtained following a microscopic deriva-
tion in the weak-coupling limit. The equation has the standard
Lindblad form, with jump operators involving transitions be-
tween eigenstates of Ĥ2ph [41,42]. The dissipative part reads

Lρ =
∑

p,q=±

∑
k,j

�
(
�

pq

jk

)(
�

pq

jk + K
pq

jk

)
D

[∣∣�p

j

〉〈
�

q

k

∣∣], (9)

where the quantities �
pq

jk and K
pq

jk are the rates of transition
from the dressed state |�q

k 〉 to |�p

j 〉 due to the atomic decay
and the cavity decay, respectively. They read

�
pq

jk = γ
�

pq

jk

ωc

∣∣〈�p

j

∣∣(â − â†)
∣∣�q

k

〉∣∣2
, (10)

K
pq

jk = κ
�

pq

jk

ωq

∣∣〈�p

j

∣∣(σ̂− − σ̂+)
∣∣�q

k

〉∣∣2
. (11)

The variables p, q ∈ {+,−} denote the parity of the number
of photons, which is a symmetry of Ĥ2ph. Within a given parity
subspace, the eigenstates are labeled in increasing order of
the energy, E

p

j > E
p

i for j > i. The quantity �(x) is a step
function, i.e., �(x) = 0 for x � 0 and �(x) = 1 for x > 0,
and �

pq

jk = E
q

k − E
p

j . We have also introduced the notation
D[O] = OρO† − 1

2 (ρO†O + O†Oρ). Note that the system
Hamiltonian on which the derivation is based does not include
the external driving. For the system parameters considered
here, the driving is sufficiently weak not to change the form of
the jump operators (there is no “dressing of the dressed states”
by the external field).

We characterize the system through correlation functions
of the output field, considering that the resonator is coupled
to a one-dimensional waveguide. As shown in Ref. [42], the
output field in the ultrastrong coupling is proportional to the
operator Ẋ+, defined in the dressed-state basis as

Ẋ+ =
∑
p=±

∑
k,j

�
(
�

pp̄

jk

)
�

pp̄

jk

∣∣�p

j

〉〈
�

p

j

∣∣i(â† − â)
∣∣� p̄

k

〉〈
�

p̄

k

∣∣.
(12)
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FIG. 2. (a) Energy spectrum of the two-photon Rabi Hamiltonian (without driving). Red solid lines indicate energy levels with an even
number of photons while black dotted lines correspond to an odd number of photons. (b) and (c) Fluorescence spectrum in arbitrary units as a
function of the coupling strength for 0.05 � g2/ωc � 0.165 in panel (b) and 0.165 � g2/ωc � 0.23 in panel (c). (d) Second- and third-order
autocorrelation functions g(2)(0) and g(3)(0) as a function of g2/ωc. The dissipation and driving parameters are γ /ωc = κ/ωq = 10−3 and
F/γ = 1.

We first focus on the fluorescence spectrum, extracted
from the two-time correlation function g(t, t + τ ) =
〈Ẋ−(t )Ẋ+(t + τ )〉. Given the absence of a rotating frame
in which the Hamiltonian is time independent, g(t, t + τ )
depends both on t and τ , but it is periodic in t . The Fourier
transform (relative to τ ) S(ω, t ) = ∫ +∞

−∞ dτeiωτ g(t, t + τ ) is
then also periodic in t and the fluorescence spectrum is given
by its zeroth Fourier component [43]. The function g(t, t + τ )
is computed numerically by means of the quantum regression
theorem [44]. In the present case, one efficient way to exploit
the quantum regression theorem without performing the
numerical integration of the differential equation governing
g(t, t + τ ) is to follow a Floquet-Liouville approach [45,46].
Within this framework, all the information about the dynamics
of the system is contained in the eigvalues and eigenvector
of the Floquet-Liouvillian. For the fluorescence spectrum
presented in Fig. 2, we have checked that both numerical
integration and diagonalization of the Floquet-Liouvillian
give similar results. A derivation within the Floquet-Liouville
theory is given in Appendix A.

Before discussing the numerical results, let us recall that,
in addition to the parameters of the Hamiltonian, the fluores-
cence spectrum also depends on the particular driving scheme
that we choose (i.e, on the driving frequency ωp and the
driving amplitude F/γ ). In all what follows, ωp is assumed
to be resonant with the transition |�+

0 〉 → |�+
2 〉, i.e, from the

ground state to the second excited state in the even-parity
subspace [see the energy spectrum in Fig. 2(a)]. Note that
coupling two states with the same parity is possible only
when driving the qubit [ĉ = σ̂− in Eq. (7)]. As we see below,
this driving scheme is well suited to capture two main features
of the USC regime: (i) the breaking of the selection rules
and the change in symmetry due to counter-rotating terms,
and (ii) the onset of the spectral collapse for g2/ωc → 0.25.
Another important point is that the fluorescence photons that
we consider result from the emission of resonator photons
into the output waveguide. Therefore, as shown in Eq. (12),
only the operators a and a† enter in the definition of the
output field, which means that only transitions changing the
parity contribute to the fluorescence spectrum. In particular
|�+

2 〉 → |�+
0 〉 and |�+

2 〉 → |�+
1 〉 are excluded.

Fluorescence spectrums for different values of the coupling
strength, ranging from g2/ωc = 0.05 to g2/ωc = 0.23, are

presented in Figs. 2(b) and 2(c). For the sake of clarity they are
separated into two parts. In Fig. 2(b), we observe the breaking
of the selection rules and the approximate symmetry due to the
rotating-wave approximation (RWA) as one enters the USC
regime. For g2/ωc = 0.005 the spectrum has only two peaks
corresponding to the transitions |�+

2 〉 → |�−
0 〉 and |�−

0 〉 →
|�+

0 〉, which is what we expect in the regime where the RWA
is valid. Indeed, the RWA implies the conservation of the
weighted excitation number 2a†a + σz [35] and the vanishing
matrix elements 〈�+

2 |a|�+
1 〉 = 〈�+

2 |σ−|�+
1 〉 = 0. This is no

longer the case when one increases the coupling strength and
enters the USC regime. A third resonance at the frequency
of the transition |�+

1 〉 → |�−
0 〉 appears for g2/ωc = 0.1 and

g2/ω = 0.165, which means that the transition |�+
2 〉 → |�+

1 〉
is no longer forbidden by selection rules. In other words,
the approximate RWA symmetry is not valid anymore and
counter-rotating terms start to play an important role in the
dynamics.

The structure of the fluorescence spectrum changes drasti-
cally when the coupling strength is increased further. As seen
in Fig. 2(c), multiple additional peaks emerge for g2/ωc =
0.2. This feature is related to a level crossing occurring in
the energy spectrum of the two-photon QRM for g2 = gcross ≈
0.17 [see Fig. 2(a)]. For g2 > gcross, the energy of the driven
state E+

2 becomes higher than that of E−
1 , which implies

that many different paths leading to the emission of output
photons are now allowed when going from |�+

2 〉 to the ground
state. More importantly, for g2/ωc = 0.23, the resonances
appearing in the spectrum are globally red-shifted, i.e., the
same number of resonances is spread over a smaller inter-
val. The highest frequency, for example, shifts from 1.8ωc

(g2/ωc = 0.2) to 1.3ωc (g2/ωc = 0.23). This gets more and
more pronounced as the coupling strength tends to 0.25ωc

and is a clear signature of the onset of the spectral collapse
predicted for the two-photon QRM.

B. Two-photon blockade

The fluorescence spectrum for g2 < gcross is also a signa-
ture of a two-photon analog of the celebrated photon blockade
effect [23]. Namely, in the fluorescence spectrum for g2/ωc =
0.1, the three resonances are the signature of two decay chan-
nels, |�+

2 〉 → |�−
0 〉 → |�+

0 〉 and |�+
2 〉 → |�+

1 〉 → |�−
0 〉 →
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|�+
0 〉. As |�+

2 〉 → |�+
1 〉 does not give rise to the emission

of an output photon, these channels result in emissions of
single photons or photon pairs. In addition, the anharmonic-
ity of the spectrum ensures that no higher-order transitions
are resonant with the driving frequency. More insight into
this phenomenon can be gained by computing the second-
and third-order autocorrelation functions of the output field
defined as g(2)(0) = 〈Ẋ−Ẋ−Ẋ+Ẋ+〉/〈Ẋ−Ẋ+〉2 and g(3)(0) =
〈(Ẋ−)3(Ẋ+)3〉/〈Ẋ−Ẋ+〉3. The two-photon blockade is char-
acterized by “two-photon” antibunching, i.e., the conjunction
of g(2)(0) > 1 and g(3)(0) < 1. As shown in Fig. 2(d), we
always have g(2)(0) > 1 for the driving scheme we consider.
On the other hand, g(3)(0) shows very rich higher-order
photon correlations due to the TPI. First, focusing on the
global behavior, we observe that the output field shows strong
two-photon antibunching in the USC regime until g2 = gcross.
The increase in g(3)(0) for g2 > gcross is a direct consequence
of the level crossing in the energy spectrum and the mul-
tiple decay channels available after this point. Second, it
shows sharp peaks at g2/ω ≈ 0.13 and g2/ω ≈ 0.19. This
suppression of the two-photon antibunching occurs because
the energy spectrum becomes less anharmonic at these points,
allowing transitions to higher-energy levels.

IV. CONCLUSIONS

In this work we have analyzed quantum optical properties
of a nondipolar cavity QED system in the USC regime. First,
we have proposed a superconducting quantum circuit which
achieves the nonperturbative USC regime of a two-photon in-
teraction between a single qubit and a single-mode microwave
quantum resonator. Then, we have derived an input-output
theory, valid in all coupling regimes, which describes the
optical response of the system under coherent driving. Our
analysis of the fluorescence spectrums and output field corre-
lation functions reveals fundamental differences with respect
to standard dipolar interactions.

In particular, we have proposed a driving protocol that
allows one to observe fundamental features of ultrastrong
two-photon couplings. First, we have shown that the ap-
pearance of an additional peak in the output fluorescence
spectrum reveals the breakdown of the rotating-wave approx-
imation. This result provides a simple method for witnessing
the transition from the strong- to the ultrastrong-coupling
regime of a nondipolar light-matter interaction. In addition the
measurement of higher-order autocorrelation functions of the
output field would exhibit a rich phenomenology, related to
the successive enhancement and breakdown of the two-photon
blockade effect for increasing interaction strength.

Finally, we have shown that the output fluorescence spec-
trum presents a clear signature of the onset of the spectral
collapse. The implementation of the proposed protocol would
help to solve the debate on whether the spectral collapse is
only an interesting mathematical feature or a genuine physical
effect with observable consequences.

ACKNOWLEDGMENTS

We acknowledge insightful discussions with Pol
Forn-Díaz, Juan José Garcia-Ripoll, and Daniel Braak.

S.F. acknowledges support from the French Agence
Nationale de la Recherche (SemiQuantRoom, Project No.
ANR14-CE26-0029) and from the PRESTIGE program,
under the Marie Curie Actions-COFUND of the FP7. M.J.H.
was supported by the ERC Synergy grant BioQ.

APPENDIX A: CIRCUIT MODEL

In this section we provide a detailed derivation of the
circuit model presented in the main text.

1. Lagrangian

The system Lagrangian is given by the sum of three terms:

LSQUID = C

2
φ̇2

a + C

2
φ̇2

b + EJ

[
cos

(
φa

φ0

)
+ cos

(
φa

φ0

)]
,

(A1)

LFQ = C̃

2

[
φ̇2

1 + φ̇2
3

] + αC̃

2
φ̇2

2 + ẼJ

[
cos

(
φ1

φ0

)
+ cos

(
φ3

φ0

)
+α cos

(
φ2

φ0

)]
, (A2)

LL = −φ2
L

2L
. (A3)

We define the reduced magnetic flux quantum as φ0 =
�0/2π = h̄/2e. We define symmetric and antisymmetric
SQUID variables as φ+ = φa+φb

2 and φ− = φa−φb

2 . Applying
the flux-quantization rules for the SQUID loop φa − φb =
φL + φext

s , we can express the antisymmetric variable in terms
of the coupling-inductance phase and the external flux flowing
through the SQUID loop φ− = φL

2 + φext
s

2 . Assuming a con-
stant external flux φ̇ext

s = 0, simple trigonometric relations
allow us to rewrite the SQUID Lagrangian as

LSQUID = Cφ̇2
+ + C

4
φ̇2

L + 2EJ cos

(
φL+φext

s

2φ0

)
cos

(
φ+
φ0

)
.

(A4)

We define symmetric and antisymmetric variables for
the flux qubit as φp = φ1+φ3

2 and φm = φ1−φ3

2 . The flux-
quantization rule for the qubit loop φ1 − φ2 − φ3 = −φL −
φext

q allows us to eliminate the phase variable of the smaller
junction φ2 = 2φm + φL + φext

q . Notice that φext
s is defined in

the opposite direction with respect to φext
q . We assume that the

classical flux biasing the flux qubit is also constant, φ̇ext
q = 0,

so that

LFQ = C̃φ̇2
p + C̃φ̇2

m + αC̃

2
(2φ̇m + φ̇L)2

+ ẼJ

[
2 cos

(
φp

φ0

)
cos

(
φm

φ0

)
+α cos

(
2φm + φL + φext

q

φ0

)]
. (A5)

Let us now detail the two main approximations performed
in Sec. II, that is, the linearization of the Lagrangian with
respect to the coupling-inductance phase variable φL, and the
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adiabatic elimination of the corresponding degree of freedom.
To simplify the expressions, we define the gauge-invariant
phase variables ϕi = φi/φ0 and the frustrations fs = φext

s /φ0

and fq = φext
q /φ0.

a. Linearization. We assume that the flux variable φL is
small with respect to the magnetic flux quantum, and so we
linearize Eq. (A4) with respect to φL:

LSQUID = Cφ̇2
+ + C

4
φ̇2

L + 2EJ

[
cos

(
fs

2

)
− sin

(
fs

2

)
ϕL

2

]
× cos(ϕ+). (A6)

We also linearize Eq. (A5) with respect to φL:

LFQ = Lqubit + αC̃

2

(
φ̇2

L + 4φ̇Lφ̇m

)αẼJ

φ0
sin(2ϕm + fq )φL,

(A7)

where with Lqubit we denote the standard Lagrangian of a flux
qubit [36,37]:

Lqubit = C̃φ̇2
p + (1 + 2α)C̃φ̇2

m + EJ [2 cos(ϕp ) cos(ϕm)

+α cos(2ϕm + fq )]. (A8)

b. Adiabatic elimination. Let us now focus on the
branch variables relative to the coupling inductance, the free
Lagrangian term in (φL, φ̇L) is given by

Lcoupler =
(

C + 2αC̃

2

)
φ̇2

L

2
− φ2

L

2L
, (A9)

which corresponds to a harmonic oscillator of frequency ωL =√
2

L(C+αC̃ )
. L being a small parameter in our development,

we assume that ωL is much larger than all other system
frequencies, and we adiabatically eliminate the corresponding
degree of freedom, imposing φ̇L = 0. In order to simplify the
expressions, in the following we make use of the following
parameters:

K = 2EJ cos

(
fs

2

)
, S = EJ sin

(
fs

2

)
, (A10)

�m = αẼJ sin(2ϕm + fq ). (A11)

From Euler’s equation we obtain the dependence of φL on the
remaining dynamic variables:

∂LTOT

∂φL

= 0 −→ φL = − L

φ0
S cos(ϕ+) − L

φ0
�m. (A12)

The total Lagrangian is obtained by adding the Eqs. (A6),

(A7), and (A3), LTOT = LSQUID + LFQ + φ2
L

2L
, and it can be

written as

LTOT = Cφ̇2
+ + [K − SϕL] cos(ϕ+) + Lqubit − �mϕL

− φ2
0

2L
ϕ2

L. (A13)

By replacing ϕL with Eq. (A12), we obtain finally

LTOT = Cφ̇2
+ + K cos(ϕ+) + S2

4EL

cos(ϕ+)2

+ Lqubit + �2
m

4EL

+ S

2EL

�m cos(ϕ+), (A14)

where we define the inductance energy as EL = φ2
0/2L. The

first line in Eq. (A14) corresponds to the free energy terms of
the SQUID, while the first two terms in the second line give
the corrected bare energy of the flux qubit.

2. Hamiltonian

The system Hamiltonian can be finally derived by defin-
ing standard conjugate variables pi = ∂LTOT/∂ϕ̇i and imple-
menting the Legendre transformation. We replace now the
classical variables with quantum operators and we start using
the hat formalism to avoid confusion. The Hamiltonian can be
written as

Ĥ = ĤSQUID + ĤFQ + ĤI . (A15)

Let us discuss the three terms independently. Using the pa-
rameters defined in Eq. (A10), the SQUID Hamiltonian is
given by

ĤSQUID = p̂2
+

4Cφ2
0

− K cos(ϕ̂+) − S2

4EL

cos(ϕ̂+)2. (A16)

The Hamiltonian ĤFQ is given by the standard flux-qubit
Hamiltonian, plus a correction proportional to the small pa-
rameter L:

ĤFQ = p̂2
p

4C̃φ2
0

+ p̂2
m

4C̃φ2
0 (1 + 2α)

− EJ [2 cos(ϕ̂p ) cos(ϕm)

+ α cos(2ϕ̂m + f q )] − �̂2
m

4EL

. (A17)

The last term in Eq. (A15) corresponds to the nondipolar
coupling Hamiltonian:

ĤI = − S

2EL

�̂m cos(ϕ̂+). (A18)

We show in the following that, in a broad regime of parame-
ters, such nondipolar coupling can be reduced to a two-photon
interaction plus an additional correction to the flux-qubit
Hamiltonian.

3. Effective model

Let us now assume that the phase of the SQUID junctions is
small compared to the magnetic flux quantum ϕ+ = φ+/φ0 �
1. This approximation is valid in the limit of large Josephson
energy. Expanding the cosines in Eq. (A16) we obtain

ĤSQUID = p̂2
+

4φ2
0C

+
(

K + S2

2EL

)
ϕ̂2

+
2

−
(

K + 2S2

EL

)
ϕ̂4

+
24

.

(A19)

We keep orders up to ϕ̂4
+ and we discard constant terms.

Similarly, from Eq. (A18)

ĤI = − S

2EL

�̂m + S

2EL

�̂m

(
ϕ̂2

+
2

− ϕ̂4
+

24

)
, (A20)

where the first term is a free energy term of the qubit, while
the second term is the origin of the nondipolar coupling.

We now define the standard ladder operators of the quan-
tum Harmonic oscillator corresponding to the quadratic part
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of the SQUID Hamiltonian in Eq. (A19):

ϕ̂+ =
√

h̄ωcLeff

2φ2
0

(â† + â), p̂+ = i

√
h̄φ2

0

2ωcLeff
(â† − â),

(A21)

where we define

Leff = φ2
0(

K + S2

2EL

) , (A22)

ωc =
√

1

2CLeff
= 1

h̄

√
4EC

(
K + S2

2EL

)
, (A23)

and where we introduce the charging energy EC = e2/2C.
Equation (A19) can be then rewritten as

ĤSQUID = h̄ωâ†â − �(â† + â)4, (A24)

where � is the size of the first nonlinear correction to the
harmonic approximation of the SQUID Hamiltonian and reads

� = EC

(
K + 2S2

EL

)
24

(
K + S2

2EL

) . (A25)

The total qubit Hamiltonian is given by Eq. (A17) plus the
free term in Eq. (A20):

ĤFQ = Ĥstandard
FQ − �̂2

m

4EL

− S

2EL

�̂m, (A26)

which corresponds to the standard Hamiltonian of a flux qubit
plus two corrections. In the qubit subspace we can write �̂m =
αẼJ 〈0| sin (2ϕ̂m + fq )|1〉σ̂x = αẼJ T (fq )σ̂x ; therefore the
first correction corresponds to a constant energy offset while
the second one can be compensated by a small adjustment of
the frustration fq .

Finally, the second term in Eq. (A20) corresponds to the
nondipolar interaction Hamiltonian between the qubit and the
resonator mode:

ĤI = g2σx (â† + â)2 + g4σx (â† + â)4, (A27)

where we define the two- and four-photon coupling strengths
g2 and g4, respectively.

g2 = S

4EL

√
EC(

K + S2

2EL

)αẼJ T (fq ), (A28)

g4 = S

48EL

EC(
K + S2

2EL

)αẼJ T (fq ). (A29)

To conclude, the total system Hamiltonian up to fourth
order in φ̂+ is given by the sum of Eqs. (A24), (A26), and
(A27). In the main text we report the results of numerical
simulations of the system Hamiltonian, showing that in a large
region of physical parameters the quartic corrections � and
g4 are negligibly small. Accordingly, the system Hamiltonian
is faithfully approximated by the two-photon quantum Rabi
model. Notice that the higher-order contributions will become
relevant to renormalize the spectrum of the physical model
once the spectral collapse takes place.

APPENDIX B: FLUORESCENCE SPECTRUM WITHIN
FLOQUET-LIOUVILLE THEORY

We derive in this section a semianalytical expression
for the fluorescence spectrum within the framework of the
Floquet-Liouville theory.

1. Floquet-Liouville propagator

Due to the external driving field, the total Hamlitonian is T

periodic, with T = 2π/ωd . The Floquet-Liouville approach
allows us to get rid of the explicit time dependence of the
master equation by reformulating the dynamics in the space
Op(H) ⊗ T , of time-periodic operators, where H is the un-
derlying Hilbert space of physical states and T is the space of
periodic functions. Using the following convention for Fourier
series of periodic functions, f (t ) = ∑∞

n=−∞ f (n)e−inωd t , one
can define a scalar product on Op(H) ⊗ T as

〈〈A|B〉〉 =
∑

n

Tr[A(n)†B (n)], (B1)

which derives from the usual scalar product on T , (f |g) =
1
T

∫ T

0 f ∗(t )g(t )dt , and the scalar product on Op(H), 〈A|B〉 =
Tr[A†B]. Within this framework the dynamics is encoded
in the eigenvalues and eigenvectors of the Floquet-Liouville
superoperator L , which is time independent. For a complete
derivation, see Refs. [45,46]. The central eigenvalue problem
is then

L |Rα,k〉〉 = �α,k|Rα,k〉〉, (B2)

where 0 � α � dim(H)2 − 1 and k ∈ Z. Note that the object
|Rα,k〉〉 defines a periodic matrix, i.e., for each time t , Rα,k (t ) ∈
Op(H). As L is not Hermitian, it is necessary to distinguish
the right eigenvectors defined above from the left eigenvectors
obeying

L †|Lα,k〉〉 = �∗
α,k|Lα,k〉〉. (B3)

Using these notations, one can write a propagator for the
master equation

ρ(t + τ ) = U (t + τ, t )[ρ(t )]

=
∑
α,k

e−i�α,kτ 〈〈Lα,k|ρ〉〉Rα,k (t + τ ). (B4)

2. Quantum regression theorem and fluorescence spectrum

In the ultrastrong-coupling regime, there is no rotating
frame in which the Hamiltonian is time independent. As a
result, the correlation function

g(t, t + τ ) = 〈Ẋ−(t )Ẋ+(t + τ )〉 (B5)

depends on both t and τ . In the present context, due to the
periodic driving, it is periodic in t . We can therefore define the
periodic spectrum S(ω, t ) = ∫ +∞

−∞ eiωτ g(t, t + τ ). Following
the derivation of the standard Wiener-Khinchin theorem, we
find that the relevant quantity is the zeroth Fourier component
of S(ω, t ):

S(ω) = lim
t0→∞

[
1

T

∫ t0+T

t0

∫ +∞

−∞
eiωτ g(t, t + τ )dtdτ

]
. (B6)
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The function in Eq. (B5) is computed by applying the quantum
regression theorem. For any operators â and b̂ and time τ > 0,
we have

〈a(t )b(t + τ )〉 = Tr{bU (t + τ, t )[ρ(t )a]}. (B7)

Injecting the expression of the propagator into this last expres-
sion we find

〈Ẋ−(t )Ẋ+(t + τ )〉
=

∑
α,k

e−i�α,kτ 〈〈Lα,k|ρ∞Ẋ−〉〉Tr[Ẋ+Rα,k (t + τ )] (B8)

=
∑
α,k,m

e−i(�α,k+mωd )τ−imωd t 〈〈Lα,k|ρ∞Ẋ−〉〉Tr
[
Ẋ+R

(m)
α,k

]
.

(B9)

Explicit calculation for τ < 0 can be avoided by
inverting the order of the integrals in Eq. (B6). The

spectrum then reads S(ω) = 2Re[
∫ ∞

0 dτeiωτ g+(τ )], with

g+(τ ) = limt0→∞ 1
T

∫ t0+T

t0
g(t, t + τ )dt . Since averaging on t

selects the component m = 0 in Eq. (B9), we find

g+(τ ) =
∑
α,k

e−i�α,kτ 〈〈Ẋ−, 0|Rα,k〉〉〈〈Lα,k|ρ∞Ẋ−〉〉. (B10)

The final semianalytical expression for the fluorescence spec-
trum is then

S(ω) = −2Re

[∑
α,k

〈〈Ẋ−, 0|Rα,k〉〉〈〈Lα,k|ρ∞Ẋ−〉〉
i(ω − �α,k )

]
. (B11)

Due to the dissipative nature of the system, the eigenvalues
�δη,k are complex and satisfy Im[�α,k] � 0. If Im[�α,k] = 0,
the denominator has to be understood as

−1

i(ω − �α,k + i0+)
= πδ(ω − �α,k ) + iP

1

ω − �α,k

, (B12)

where P stands for Cauchy’s principal value.
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