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Determination of the full statistics of quantum observables using the maximum-entropy method
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Numerical methods for the description of nonequilibrium many-particle quantum systems such as equation of
motion techniques often cannot compute the full statistics of observables but only moments of it, such as mean,
variance, and higher order moments. We employ here the maximum-entropy method to numerically construct
unbiased statistics based on the knowledge of moments. We verify the feasibility of the proposed method by
numerical simulation of a simple birth-death model for quantum-dot-microcavity lasers, where the full photon
and carrier statistics are available for comparison. We show that not only the constructed statistics but also the
computed entropy and the Lagrange multipliers, which appear here as a by-product, provide valuable insight into
the physics of the considered system. For example, the entropy reveals that, in contrast to common wisdom, the
photon statistics of the microcavity laser above threshold is better described by a Gaussian distribution than by a
Poisson distribution. Our approach is general and can be applied to many other systems emerging in physics and
related fields.
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I. INTRODUCTION

The study of semiconductor quantum dot (QD) micro-
cavities has been a subject of considerable attention be-
cause of their high potential, e.g., for single-photon sources
[1], sources of entangled photon pairs [2,3], and ultra-low-
threshold lasing [4]. The resonator of such a novel laser is
given by an optical microcavity [5] with small mode volumes
and small cavity losses, which can be used to increase the
spontaneous emission factor of the laser, leading to the so-
called thresholdless laser [6,7].

From the theoretical point of view, QD microcavities
are driven-dissipative quantum many-particle systems. A
straightforward way to describe the dynamics of such a
nonequilibrium system is to numerically solve the von
Neumann–Lindblad equation for the reduced density operator
[8]. However, this is only feasible for highly symmetric [9] or
sufficiently small systems, such as a single-QD laser [10]. For
other systems, it is more appropriate to derive the equations
of motion (EoM) directly for the quantities of interest [11],
such as expectation values of photon numbers 〈n〉 or higher
moments 〈n2〉 etc. In this way, however, an infinite hierarchy
of coupled differential equations is unfolded which has to
be truncated in one way or the other. EoM techniques have
been used successfully to realize microscopic descriptions of
quantum systems and are a way to systematically incorpo-
rate many-particle correlations into the description of exciton
dynamics in semiconductor quantum wells [12], ultracold
Bose gases [13], spin dynamics [14], photoluminescence
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from quantum wells [15] and QDs [16–18], resonance flu-
orescence from quantum wells [19], cavity phonons [20],
cavity-quantum-electrodynamics [21], QD-microcavity lasers
[22–25], and superradiant emission from QD-microcavity sys-
tems [26,27]. A freely available source code for EoM schemes
is provided in Ref. [28].

The problem with EoM techniques is that they do not pro-
vide the full statistics but only moments of an order limited by
the truncation level. For instance, the approach in Ref. [22] for
QD-microcavity lasers gives 〈n〉 and 〈n2〉, which is enough to
determine the intensity and the second-order autocorrelation
function

g(2)(0) = 〈n2〉 − 〈n〉
〈n〉2

(1)

of the emitted light, but it is not enough to determine higher
order moments of the photon statistics (the photon number
distribution pn) needed for the computation of higher order
autocorrelation functions g(3)(0) and g(4)(0) which can be also
measured nowadays [4,29]. Moreover, in some cases more
details of the photon statistics pn are required for a clear
interpretation of, e.g., single-photon sources based on a few
QDs [30] and mode competition in two-mode microcavity
lasers [23]. Recent experiments allow to determine the full
photon statistics pn of a single-mode light source using a
transition-edge sensor [31].

The maximum-entropy method (MEM) is a widely used
procedure to estimate a probability distribution by maximiz-
ing the Shannon information for given constraints [32]. Orig-
inally, the method was introduced to determine the density
operator and the entropy in equilibrium statistical mechan-
ics [33]. The MEM has been extended to nonequilibrium
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situations within the concept of observation levels which in-
cludes all known moments into the construction of the density
operator; see, e.g., Ref. [34].

The aim of this paper is to exploit the MEM for an
extension of the range of applications of EoM techniques.
The moments computed by an EoM technique can be used
as constraints to determine approximately the full statistics
of a given quantum mechanical system in an unbiased way.
The MEM not only provides the full statistics but also the
entropy and the Lagrange multipliers. We demonstrate that
these quantities can be used to characterize QD-microcavity
systems. As a benchmark model, we consider the birth-death
model by Rice and Carmichael [6] of a microcavity laser
with discrete light emitters. This kind of master equation is
phenomenological in nature but has the advantage that the full
statistics can be computed for comparison.

The outline of the paper is as follows. In Sec. II we
briefly review the MEM. The birth-death model is explained
in Sec. III. In Sec. IV, we discuss in detail the implementation
of our method. Numerical results are presented in Sec. V.
Conclusions are given in Sec. VI.

II. MAXIMUM-ENTROPY METHOD

The method of entropy maximization has its roots in a
Bayesian, information-theoretical view of statistical physics
developed by Jaynes [33]. As a result of uncertainty, random-
ness, or exorbitant complexity of physical problems, one often
has only few data. The aim of this method is a reasonable
statistical inference from available knowledge, like values of
moments, to lacking system probability distributions. In gen-
eral, there are many admissible extensions out of the known
data, so the point is to select a guideline that is justifiable by
objective reasoning. A good attempt is made by the MEM,
where the inference is done by choosing the most unbiased
probability distribution that satisfies the conditions of known
a priori information.

The bias can be quantified by an information measure
named entropy or Shannon information. For a discrete proba-
bility distribution p = (pn)∞n=0, it is defined by [33]

S(p) = −
∑

n

pn ln pn. (2)

This is up to the Boltzmann constant kB exactly the ther-
modynamic Gibbs entropy, whereby pn plays the role of
a microstate’s probability. Mathematically, S is a concave,
positive functional on the space of probability distributions.

Actually, entropy can be seen as the measure of uncer-
tainty of the statistical distribution to predict the measurement
outcome. For example, a distribution (1, 0, 0, . . . , 0), which
predicts the outcome with certainty, has a minimal entropy
of zero. On the other hand, the maximum-entropy distri-
bution with n possible different values is the equiprobable
( 1
n
, 1

n
, . . . , 1

n
) that exhibits the smallest forecasting power. The

other distributions interpolate between these two limits: with
smaller entropy, the concentration of probability increases.

Furthermore, the entropy is invariant under reordering of
the probabilities, and thus the Shannon information is unable
to distinguish between unimodal and multimodal distribu-
tions, because it is always possible to sort the probabilities

into a unimodular distribution. Moreover, the concentration
quantified by the entropy is nonlocal in the sense that the prob-
abilities are interchangeable and thus do not have neighbors
from the entropy’s point of view.

Having understood the entropy as a measure of uninforma-
tiveness, we can recall the maximum-entropy principle (MEP)
for statistical inferences [33]: When an inference is made
on the basis of incomplete information, it should be drawn
from the probability distribution that maximizes the entropy
subject to the constraints on the distribution. We call such
a distribution a maximum-entropy distribution (MED). It is
important to note that in general the existence of a MED
cannot be guaranteed [35]; some necessary conditions will be
given in Sec. IV B.

Yet, the most convenient statistical information is the
knowledge of expectation values, like moments. For illus-
trating and making use of the MEP, let the first k moments
be 〈n〉 = μ1, 〈n2〉 = μ2, . . . , 〈nk〉 = μk as known partial in-
formation as basis for inference. We formulate these as con-
straints for a distribution (pn)∞n=0,

〈ni〉 =
∑

n

nipn = μi, i = 1, . . . , k. (3)

To obtain the MED with the MEP, it is sufficient to solve the
following concave optimization problem:

maximize S(p), subject to 〈ni〉 = μi, i = 1, . . . , k.

Using the ordinary procedure of maximization under con-
straints with Lagrange multipliers (λi )ki=1, one uniquely [36]
obtains the so-called kth-order MED [33],

pMED
n = 1

Z(λ)
exp

(
−

k∑
i=1

λin
i

)
, (4)

with (λi )ki=1 determined self-consistently by (μi )ki=1 in the
way that the constraints (3) are fulfilled. The normalization
constant is a partition function like in statistical physics

Z(λ) =
∑

n

exp

(
−

k∑
i=1

λin
i

)
.

For such MED to exist on N0 = {0, 1, . . . ,∞}, the first
necessary condition is a positive last Lagrange multiplier
λk � 0. Otherwise, the MED will grow to infinity for n → ∞
and thus will not be normalizable. This circumstance is re-
lated to the question of positivity of absolute temperature for
canonical ensembles; thus if the configuration space is N0,
then T > 0. On the contrary, for a finite configuration space,
also negative absolute temperatures are possible [37].

III. BIRTH-DEATH MODEL

In this article, we test the MEM by considering the birth-
death model of Rice and Carmichael [6]. We would like to
stress that our method is not limited to this model nor to
quantum optics. Moreover, many later discussions are pure
mathematical or numerical, and so they can be used for other
models emerging in physics, biology, and economy.

The birth-death model is a stochastic model and serves
as a description of the quantized single-mode light field
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FIG. 1. Schematic description of the birth-death model. n is the photon number in the laser mode and N is the atom or carrier number in
the upper level. In the left picture, the processes in Eq. (5) are symbolized for a chosen d

d t
pn,N : The circles stand for states and the arrows

represent transition rates in or out (depending on arrow direction) of the state (n,N ), which is represented as red circle. The corresponding
rate weights are written along the arrows. In the right picture, the phenomenological processes listed in Table I are visualized.

coupled via single-electron excitations in atomic or QD
systems. Instead of using the complete density matrix ρ

(see, e.g., Ref. [38]) whose dynamics is described by the von
Neumann–Lindblad equation, it characterizes the system only
by the diagonal elements of ρ: the probability pn,N of states
with n photons in the laser mode and N atoms or carriers in
the upper level. This reduces the dimensionality and allows
us to compute the full statistics.

There are three approaches to derive the birth-death mas-
ter equation. The first is the approximation of the von
Neumann–Lindblad equation by adiabatically eliminating the
off-diagonal matrix elements of ρ to get a closed system for
pn,N [39]. The second is a mathematical extrapolation out of
rate equations by replacing the moments by weighted proba-
bilities [8]. The third and most direct way is to let all relevant
processes act as phenomenological transition rates between
probabilities, which we use in the following discussion. Thus,
the time derivative of pn,N is determined by neighboring states
pn±1,N∓1, pn,N∓1, pn±1,N , and pn,N itself.

In the model, five phenomenological processes, illustrated
in Fig. 1 and listed in Table I, are taken into account, each with
its own rate normalized with the total spontaneous emission
rate 1/τsp.

If one takes into account all in- and outgoing rates for
each pn,N , and especially weighs outgoing rates negatively
and incoming positively, then it results the birth-death master

TABLE I. Phenomenological processes in Rice and Carmichael’s
birth-death model.

Fig. 1 Rate Process

(a) P Pump
(b) β Spontaneous emission into the lasing mode
(c) β Stimulated emission into the lasing mode
(d) 1 − β Spontaneous emission into nonlasing modes
(e) κ Cavity losses

equation [6]

d

dt
pn,N = −κ[npn,N − (n + 1)pn+1,N ]

−β[nNpn,N − (n − 1)(N + 1)pn−1,N+1]

−β[Npn,N − (N + 1)pn−1,N+1]

− (1 − β )[Npn,N − (N + 1)pn,N+1]

+P (pn,N−1 − pn,N ). (5)

For the pump process (n,N ) → (n,N + 1), represented as
up arrows in the left part of Fig. 1, the strength of the
pump process rate is Ppn,N . The oppositely oriented down
arrows correspond to spontaneous emission into nonlasing
modes (n,N ) → (n,N − 1) with the strength (1 − β )Npn,N .
Furthermore, the spontaneous and stimulated emission into
the laser mode (n,N ) → (n + 1, N − 1) with the strengths
βNpn,N and βnNpn,N are represented as diagonal down-right
arrows. Finally, the cavity losses (n,N ) → (n − 1, N ) shown
as horizontal left arrows have the strength κnpn,N .

The spontaneous emission coupling factor β describes the
rate of spontaneous emission into the lasing mode. Corre-
spondingly, (1 − β ) describes the rate of spontaneous emis-
sion into the nonlasing modes. In the case β = 1, the mean
photon number 〈n〉 increases linearly with P , and thus no
threshold as kink in the input-output curve is visible [6] [cf.
Figs. 5(a) and 5(b)]; hence, we refer to this as a thresholdless
laser.

From the master equation (5), one can obtain equations
of motions (EoM) for expectation values of the mean photon
number in the lasing mode 〈n〉 and mean number of excited
atoms 〈N〉 by using 〈n�Nk〉 = ∑∞

n,N=0 n�Nk pn,N :

d

dt
〈n〉 = −κ〈n〉 + β〈nN〉 + β〈N〉,

d

dt
〈N〉 = −〈N〉 + P − β〈nN〉. (6)
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These equations couple via contributions representing
stimulated emission 〈nN〉 to the higher order moments; fur-
thermore, all EoMs form an infinite hierarchy of coupled
equations for moments, which corresponds to the infinite
number of differential equations for probabilities in Eq. (5).
Thus, if one chooses a finite number of EoMs, then there
are always more moments as variables than equations, so any
such finite system is unsolvable. The most simple method to
truncate the hierarchy is to use factorization approximations
like setting in the first order in Eq. (6): 〈nN〉 = 〈n〉〈N〉. In this
way, one derives the well-known laser rate equations, which
was one of the motivations for introducing the birth-death
model [6]. Of course, it is also possible to use factorization
approximations on higher levels of the hierarchy. From the
resulting EoM, one can determine the correlation between
photon and carrier number expressed by the expectation
value 〈nN〉.

IV. IMPLEMENTATION OF THE METHOD

For a successful MEM construction, one first has to know
the values of chosen photon moments. While it is possible to
obtain these from the above-described laser rate equations or
truncated EoM [11], in several optical experiments the mean
photon number can be directly measured. With this a priori
information, we first discuss the mapping from moment values
to Lagrange multipliers in Sec. IV A and second consider
some limitations on the MEM in Sec. IV B.

A. Iterative Newton method

Determining the MED basically boils down to finding
the Lagrange multipliers in Eq. (4). A convenient way to
numerically calculate the optimal Lagrange multipliers λ̂ is
to solve the dual optimization problem λ̂ = arg min �(λ) as
proposed in Ref. [40]. Here the objective function � reads

�(λ) = 〈λ,μ〉 + ln Z(λ) , (7)

where 〈λ,μ〉 denotes the conventional inner product of vec-
tors λ = (λ1, λ2, . . . , λk ) and μ = (μ1, μ2, . . . , μk ). Since
the Hessian matrix is positive definite, the function � is
strictly convex and takes its unique minimum such that
∇�(λ̂) = 0 holds. Starting with an initial value λ(0) (usually
λ(0) = 0 is a decent choice), we use an iterative (relaxed)
Newton method with the update rule

λ(i+1) = λ(i) − α[H� (λ(i) )]−1 · ∇�(λ(i) ) . (8)

until convergence is reached, i.e., ‖∇�(λ(i) )‖ � ε with a
tolerance ε close to zero. The relaxation constant 0 < α < 1
ensures convergence and the gradient ∇� and Hessian matrix
H� are given with

∇�(λ) = μ − 〈x〉, (9)

H� (λ) = 〈x ⊗ x〉 − 〈x〉 ⊗ 〈x〉. (10)

Here ⊗ denotes the outer product and x is the vector of
moments calculated with the current Lagrange multipliers λ(i)

from iteration step i. Expectation values have to be evaluated
component-wise; hence, 〈x〉 = (〈n〉, 〈n2〉, . . . , 〈nk〉). In con-
trast to the general theory outlined in Sec. II, the numerical

implementation always has to take place on a finite space
{0, 1, . . . , nmax}.

B. Bounds on moments

It is important that not all possible value sequences (μk )∞k=1
are allowed for moments. For most, there will not be any sta-
tistical distribution fitting these moment values. Accordingly,
in so-called moment problems [41], one investigates existence
and uniqueness of the probability measure mapped from a
given (μk )∞k=1. In our case of photon number measurement,
the outputs are positive, and thus we have the Stieltjes moment
problem and the corresponding necessary condition for mo-
ments. For all n = 0, 1, 2, . . . ,∞, the following determinants
of Hankel matrices must be strictly positive [41]∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

1 μ1 · · · μn

μ1 μ2 · · · μn+1
...

. . .
...

μn · · · μ2n

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

μ1 μ2 · · · μn+1

μ2 μ3 · · · μn+2
...

. . .
...

μn+1 · · · μ2n+1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
> 0.

As a proposition, we derive in the case n = 1 a lower bound
for 〈n2〉: 〈n〉2 < 〈n2〉. Consequently, we can derive a condition
for the autocorrelation function g(2)(0)

〈n〉2 < 〈n2〉 = g(2)(0)〈n〉2 + 〈n〉 ⇒ [1 − g(2)(0)]〈n〉 < 1.

For g(2)(0) � 1, this inequality is trivially satisfied, whereas
in the other case g(2)(0) < 1 we get an upper bound on
the photon number expectation value only by knowing the
autocorrelation value

〈n〉 <
1

1 − g(2)(0)
, if g(2)(0) < 1.

This purely statistical bound may be important for the com-
parison of experimental results for single-photon sources.

So far, we have obtained only lower bounds on moments;
however, for a MED to exist, it has to fulfill special upper
bounds. For the continuous range [0,∞), this was shown
in Ref. [36] as Theorem 2, but one can use results in the
discrete case N0, too. We formulate these like in Ref. [36]: If
the MED for the k − 1 moments μ1, μ2, . . . , μk−1 associated
with λ1, λ2, . . . , λk−1, so-called (k − 1)th-order MED, exists,
then MED for k moments (kth-order MED) exists only if a
priori moment μk is smaller than the kth moment of (k − 1)-
order MED:

μk � μk,max :=
∑

n

nk

Z(λ)
exp

(
−

k−1∑
i=1

λin
i

)
. (11)

This upper moments bound, if existing, offers a criterion for
gradual application of MEP. If the MEP was successful in the
(k − 1)th order, then one can check with Eq. (11) whether
it is reasonable to try the next step k. Nevertheless, this
kth inequality is necessary only for the MED of kth order.
Furthermore, if the kth order is not existing, one should try
MEP in the next (k + 1)th order, where MED might still exist.
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For the second-order MED exp(−λ1n − λ2n
2)/Z(λ) to ex-

ist, it results from Eq. (11) that the Dowson-Wragg inequality
[42] 〈n2〉 � 2〈n〉2 is required, because the first-order MED
always exists for μ1 > 0, since for exp(−λ1n)/Z(λ) follows
λ1 = ln(1 + 1/μ1) > 0. Furthermore, for the first-order MED
the following applies: 〈n2〉 = 2〈n〉2.

Consequently, like mentioned in Ref. [43], only in the
case g(2)(0) � 2 may it be possible to find a second-order
MED, but it is also possible to find a third-order MED with
g(2)(0) > 2.

In numerical implementations of this method, we always
choose an approximation space {0, 1, . . . , nmax} instead of the
configuration space N0 to work with. In this finite situation,
there are no upper bounds like Eq. (11) and especially there
are second-order MEDs with g(2)(0) > 2 for sufficiently large
nmax [44]. The necessary and sufficient conditions for the
existence of a maximum-entropy solution are identical to
the general ones for the finite moment problem. This means
that if one measures or calculates moments for a finite range,
which for numerical applications is the usual case, then the
MED exists for this finite range, even though the MED for
the corresponding infinite range may not exist.

V. NUMERICAL RESULTS

We first test in Sec. V A the MEM construction of station-
ary photon distributions and discuss some appearing issues.
Then in Sec. V B we introduce a new characterization of
the emitted light using the entropy and the first Lagrange
multiplier. After that, in Sec. V C we compare the entropy
curve to the entropy of other distributions and additionally
handle the consequences of g(2)(0) ≈ 1. Finally, in Sec. V D
the MEM is applied to determine the full statistics of photons
and carriers.

A. Photon distribution construction

In contrast to our original motivation, we here do not use
moments from EoM but instead we determine the moment
values μk = 〈nk〉 directly from the steady-state photon dis-
tribution pn of the birth-death model. By doing so, the perfor-
mance check of the MEM is not mixed up with truncation
errors of a given EoM. The latter are already discussed in
detail in the literature (see, e.g., Ref. [11]). In the following,
we present results based on numerically constructed MEDs up
to the tenth order.

Figure 2(a) shows the comparison of the original birth-
death model distributions and the second-order MEDs. Sur-
prisingly, for all three values of the pump rate, the constructed
distributions are almost identical to the original curves, so the
photon distribution has nearly the Gaussian form exp(−λ0 −
λ1n − λ2n

2) in this regime of pump rates. Because of the
bounds discussion in Sec. IV B, this indicates that g(2)(0) � 2
is also true for the original photon distribution.

The approximation quality, measured by the Kullback di-
vergence [45]

D(poriginal‖pMED) =
∑

i

p
original
i ln

(
p

original
i

pMED
i

)
, (12)

FIG. 2. (a) Photon statistics pn for pump rates P (like all rates
normalized by the total spontaneous emission rate 1/τsp) well be-
low, at and well above the laser threshold as characterized by the
sign change in the first Lagrange multiplier λ1 [see panel (b) and
Sec. V B]. Solid curves show the MED of second order, and dashed
curves show the original distributions. Although the distributions
nearly lie on top of each other, higher orders of MEM lead to even
better agreement. (c) Solid curves show the Kullback divergence
in Eq. (12) for MEDs that exist on N0, dashed curves indicate
MEDs (here third and fifth order) that do only exist for finite photon
numbers. The parameters are κ = 1 = β.

is getting better with higher order [Fig. 2(c)]; hence the
sequence of MEDs converges to the original distribution. We
use D(poriginal‖pMED) because it measures the informational
inefficiency of choosing pMED instead of the original distribu-
tions poriginal. Moreover, with the Kullback divergence, we are
able to estimate the summed absolute distance as 2D(p||q ) �∑

i |pi − qi | [45, p. 300]. In Fig. 2(c), we can observe that for
each order the highest errors lie in the pump rate transition
range between the lasing and the nonlasing regime, as in
this range the original distribution is the most complicated
one.

The behavior of the calculated MED depends strongly on
whether it is an even or odd order. The even-order MEDs
exist also on the global range N0, because each last Lagrange
multiplier λorder is positive, so that from a certain point on
the MEDs are rapidly decreasing for higher photon numbers.
In addition, all Lagrange multipliers do not depend on the
chosen size of the approximation space nmax. In this sense,
the even-order MEDs are well-defined approximations.

For the odd MEM orders, each λorder has a negative sign
and all Lagrange multipliers depend strongly on nmax. By the
discussion in the end of Sec. II, it becomes clear that the odd
MEDs cannot be expanded from the range {0, 1, . . . , nmax} to
the true configuration space N0. In contrast to the even orders,
for the odd orders the MED is growing at the border nmax to
a slope (inset of the right panel of Fig. 3). All this implies
that the MED is not existing on N0 for odd orders. In fact,
we can also conclude this nonexistence by testing the highest
moment with the inequality (11), because for the odd orders
this necessary condition is violated; see Table II.
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FIG. 3. (a) Normalized Lagrange multipliers for MEM of third
order for different maximum photon numbers nmax. Even orders of
MEM lead to nmax-independent Lagrange multipliers (not shown). In
contrast, odd orders produce nmax-dependent Lagrange multipliers
which are constant for small nmax and tend to the values of the
previous order for nmax approaching infinity. Furthermore, in the
odd-order case, the MED (b) exhibits increasing values for photon
numbers close to the maximum value nmax (inset). The parameters are
in panels (a) and (b) P = 40, κ = 1 = β and in panel (b) nmax = 200.

In Table II, the value of the second moment μ2 is smaller
than the second moment of the first-order MED μ2,max that
corresponds to the existence of the second-order MED. Since
the odd-order moments are strictly greater than allowed by
μorder,max, the odd-order MEDs cannot exist on N0. This
circumstance explains why the odd-order MEDs on approxi-
mation spaces {0, 1, . . . , nmax} do not converge for nmax → ∞
to a MED on N0. Also in this way the nmax dependence of
Lagrange multipliers, the slope on the space-limit nmax, and
the negative sign of the last λorder is clarified.

Intriguingly, for each odd order O = 2k + 1, k ∈ N0 in the
limit nmax → ∞ the Oth order MED converges to the MED
of the previous even (O − 1)th order, which exists globally.
Thus, λO ↗ 0 and other Lagrange multipliers converge to
previous-order Lagrange multipliers. The arising issue is that
the Oth moment value μorder of odd Oth-order MEDs is
strictly greater than the Oth moment value μorder, max of the
(O − 1)th-order MED (Table II). Effectively, for nmax → ∞
this error μorder − μorder, max is compensated by the distribution

TABLE II. Moments μk listed by order in comparison to max-
imal possible moment values μk,max from inequality (11) for MED
existence on a global range N0 for P = 10, κ = 1 = β. For some
orders, μk,max is lacking, because due to inequality (11) the MED of
the previous order on N0 does not exist.

Order μorder × 10−order μorder,max × 10−order Existence on N0

1 1.00000000 +∞ Yes
2 1.10996480 2.10000000 Yes
3 1.33934846 1.33080223 No
4 1.73473327 Yes
5 2.39038816 2.39011279 No
6 3.48107450 Yes
7 5.32975586 5.32971709 No
8 8.54326181 Yes
9 1.42872866 1.42872768 No

10 2.48546984 Yes

slope at nmax. At the same time, the probability weight of the
slope falls ∝ n−O

max, so that (O = 2k + 1)

nmax∑
i=1

∣∣pOth MED
i − p

(O − 1)th MED
i

∣∣ nmax→∞−−−−→ 0 .

Furthermore, for the odd orders, one in general observes
a kink in D(poriginal‖pMED) (not shown) and in all Lagrange
multipliers (λi )i at the same point nkink [Fig. 3(a)]. For the
lower nmax up to nkink, all λi = �i ∈ R stay constant, and
from nkink on these quantities behave for nmax → ∞ in the
way described above.

The constant values up to the kink can be explained as
follows. In the example visualized in Fig. 3(b), the third-order
MED can be generally separated into two parts: the Poisson-
like peak and the slope at the limit of the range. So it may
happen that the Poisson-like peak already fulfills the moment
constraints comparable to case nmax = 160. Nevertheless, the
range limit is far away from the peak, and additionally the
slope at nmax is so small that it does not influence the moment
values. Let

exp(−�1n − �2n
2 − �3n

3)/Z(�) (13)

be the MED for nmax = 160 with Lagrange multipliers
(�1,�2,�3). Now, if one restricts the MED (13) as math-
ematical function to {0, 1, . . . , nmax = 140} by leaving the
Lagrange multipliers invariant (λi = �i ∈ R for i = 1, 2, 3),
then the moment constraints are still fulfilled. The reason is
that in the remaining range {141, . . . , 160} the probabilities
are almost zero, and thus they do not contribute either to
the moment values or the partition function Z(λ). Hence, the
MED for nmax = 140 is the MED for nmax = 160 truncated
at n = 140. As a consequence, the Lagrange multipliers stay
constant below nmax = 160.

With higher nmax, the kink appears because for the MED
with (�1,�2,�3) the slope would explode for n > 200. To
shift this blowup beyond of the range {0, 1, . . . , nmax}, |�3|
gets smaller. Moreover, for nmax → ∞, the slope at nmax is
getting tighter, since pnmax gets much greater then the previous
probability pnmax−1 in the same MED. So, for greater nmax the
slope is fully determined by pnmax . Furthermore, it should be
noted that pnmax gets large enough so it can correct the moment
error μorder − μorder, max, e.g.,

μ3 − μ3, max ≈ n3
maxpnmax ⇒ pnmax ≈ μ3 − μ3,max

(nmax)3
. (14)

From the above formula (14), it also results n1
maxpnmax → 0

and n2
maxpnmax → 0, so that the slope does not have much

influence on the first and second moments. At the same
time, the Poisson-like part of the third-order MED converges
to the second-order MED. Thus, as shown in Fig. 4, the
kink position nkink is determined by the crossing point be-
tween the −�0 − �1n − �2n

2 − �3n
3 and the curve ln(μ3 −

μ3,max) − 3 ln(nmax) from Eq. (14), which describes the be-
havior of pnmax for high nmax.

In conclusion, if one only takes the Poisson-like part of
a third-order MED and thus restricts it on {0, 1, . . . , nkink},
then it is possible to consider this third-order MED as well
defined. Namely, it is valid that first below nkink the deviation
D(poriginal‖pMED) is smaller than above the kink, and second
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FIG. 4. Exponent of the third-order MED at P = 40, κ = 1 = β

for different approximation space ranges nmax. Up to nmax = 160, the
MEDs are restrictions of the same MED with the fixed Lagrange
multipliers (�1, �2, �3). The kink nkink [see Fig. 3(a)] appears at
the point where the MED with (�1, �2, �3) would cut the curve
ln(μ3 − μ3,max) − 3 ln(n) obtained from Eq. (14).

the Lagrange multipliers stay constant up to the kink. Simi-
larly, the analogous results can be derived for the higher odd
orders

pnmax ≈ μorder − μorder,max

(nmax)order
. (15)

B. Characterization of the emitted light

In this subsection, we introduce a new characterization of
the emitted light by the entropy and the first Lagrange multi-
plier. We demonstrate that the latter can be used to distinguish
between the nonlasing and the lasing regime. This is usually
done by observing the kink in the intensity, the steep increase
in the coherence time, and the step in the autocorrelation
function g(2)(0) as function of the pump rate [46,47]. Using
these quantities, a clear laser threshold can be located only for
small values of the spontaneous emission coupling factor β

[6]. For β close to unity, the kink in the intensity disappears
and the step in the autocorrelation function is smeared out.
Also, higher order autocorrelation functions indicate that it
might be better to speak about a threshold region rather than
a threshold point [11,28]. However, we show that the first
Lagrange multiplier allows to define, at least on a formal level,
an unambiguous threshold point.

For the numerical calculation, we choose two values of
the spontaneous emission coupling factor, β = 0.01 with a
kink in the input-output curve [Fig. 5(a)], and β = 1, where
the photon number (proportional to the detected intensity) in-
creases linearly with the pump power [Fig. 5(b)]. In the latter
case, no threshold can be identified in the photon number.
For β = 0.01, the autocorrelation function jumps in Fig. 5(c)
from g(2)(0) ≈ 2, indicating thermal light, to g(2)(0) ≈ 1,
indicating coherent light. For β = 1, the jump is smeared out
in Fig. 5(d), so the threshold still cannot be identified.

The entropy S increases with the pump rate P in both
cases, see Figs. 5(e) and 5(f), indicating that the photon
distribution is getting broader. Analogous to the observations
in Ref. [48] for a single-mode Scully-Lamb theory, there is
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FIG. 5. Comparison of possible threshold characterizations for
κ = 1 with β = 0.01 in panels (a), (c), (e), and (g) and β = 1 in
panels (b), (d), (f), and (h) by the photon number in panels (a) and (b),
the autocorrelation function g(2)(0) in panels (c) and (d), the original
photon entropy and the photon entropy of MEM-approximation S

in panels (e) and (f), and the first Lagrange multiplier λ1 in panels
(g) and (h). Vertical lines mark the pump rate P where λ1 is zero.

a kink in the entropy for β = 0.01 in Fig. 5(e), but not for
β = 1 in Fig. 5(f). The better way is to extract the photon
distribution properties directly from the first two moments via
the MEM. The transition from a thermal distribution below
the threshold to a Poisson distribution in the lasing regime
can be described by the transformation from a monotonically
decreasing function to a peaked one [38]. At some Pth, the
photon distribution develops an extremum, when pn has a zero
slope in n = 0. If one chooses as approximation the second-
order MED (Gaussian), then the existence of the extremum is
equivalent to

d

dn
exp

(−λ1n − λ2n
2
) = 0

⇒ λ1 + 2λ2n = 0 ⇒ λ1 � 0,

because n and λ2 are both non-negative. As a result, at the
pump power Pth with λ1 = 0 the MED develops a zero slope
at the first time. In particular, above Pth the multiplier becomes
λ1 < 0, so the photon distribution is a peaked Gaussian.

Consequently, we define the threshold pump power Pth by
the condition λ1 = 0. For β = 0.01 it is shown in Figs. 5(a),
5(c), 5(e), and 5(g) that Pth (visualized as vertical line) is
consistent with the other threshold definitions by the photon
number in Fig. 5(a), g(2)(0) in Fig. 5(c), and the entropy in
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FIG. 6. The first Lagrange multiplier λ1 of the second-order
MED with given 〈n〉 and g(2)(0) values. The zero level of λ1, where
the photon statistics changes its character, is drawn as the solid
curve. It converges monotonically to π/2, represented by the dotted
line, as the photon expectation value 〈n〉 increases. Additionally, the
dependency between 〈n〉 and g(2)(0) of the birth-death model for
β = 1, 0.1, 0.01, 0.001, and 0.0001 is shown as dashed curves.

Fig. 5(e). Moreover, in case of β = 1, this new Pth definition
by λ1 is the only possible one, because photon number,
g(2)(0), or entropy do not possess any kinks or jumps. As
already mentioned above, for large β the concept of a laser
threshold has been criticized [6]. However, we believe that our
definition of a threshold by λ1 = 0 is useful as this condition
marks a qualitative change in the photon statistics.

To show the usability of this threshold definition, we
relate the condition λ1 = 0 to a condition on g(2)(0), which
is directly observable. In fact, the determination of the λ1

value also requires the knowledge of the first moment, the
photon number 〈n〉, whereas in experiments only the detected
intensity is known. The value of 〈n2〉 is also needed for
the second-order MED, but can be directly calculated out of
the given 〈n〉 and g(2)(0) values. To avoid the necessity of
〈n〉, which is usually lacking, we calculate for each value
of 〈n〉 the g(2)(0) value where λ1 = 0. In Fig. 6 this (λ1 = 0)
curve separates the region with λ1 > 0 corresponding to a
thermal distribution and λ1 < 0 corresponding to a peaked
distribution. Also, the (λ1 = 0) curve converges for 〈n〉 → ∞
to the value π/2 ≈ 1.571, which can be easily calculated via
continuous integrals over the exp(−λ2n

2) distribution. More-
over, for the case 〈n〉 > 30 the λ1 = 0 curve is almost identical
to g(2)(0) = π/2. Thus, if we know that the phase transition
will happen at higher 〈n〉 > 30, then g(2)(0) = π/2 will be a
good criterion for the threshold. For the birth-death model, it
is the case for β � 0.001, where the relation g(2)(0) = π/2
provides more precise definition than the smooth jump from
g(2)(0) = 2 to g(2)(0) = 1. Yet, by our definition in the more
general case 〈n〉 � 1 the least possible value of the phase
transition is g(2)(0) = 1.1.

C. Distribution comparison by entropy

One can recover more information from the form of the
photon entropy curve by comparison with characteristic Pois-
son, Gaussian, and thermal entropy values. Below the thresh-
old power Pth, one expects that a thermal distribution ptherm

n =
exp(−λ1n)/Z(λ1) fits the photon distribution well. If one

TABLE III. Distributions and their entropies. For Poisson dis-
tribution, the entropy approximation for large 〈n〉 is given with
e = exp(1). The Gaussian entropy is approximated by the continuous
normal distribution entropy on (−∞,∞).

Distribution pn Entropy

Thermal
exp(−λ1n)

Z(λ1)
− ln〈n〉〈n〉 + ln〈n + 1〉〈n+1〉

Poisson
〈n〉n exp(−〈n〉)

n!
≈ 1

2 ln(2πe〈n〉)

Gaussian
exp(−λ1n − λ2n

2)

Z(λ)
≈ 1

2 ln[2πevar(n)]

chooses it with the same 〈n〉 as that of the photon distribution,
then (ptherm

n )∞n=0 is the first-order MED. It is straightforward to
derive its entropy value determined only by 〈n〉, cf. Table III.
In the lasing regime, one expects the Poisson distribution
pPoisson

n = 〈n〉n exp(−〈n〉)/n! with the same expected photon
number as a good approximation. Its entropy for large 〈n〉,
listed in Table III, depends only on 〈n〉.

Moreover, it is worth to add the Gaussian pGaussian
n =

exp(−λ1n − λ2n
2)/Z(λ) to the comparison, because the de-

viations of the MED in the second order from the photon
distribution are small and further for large values of 〈n〉 the
Poisson distribution is more similar to a Gaussian with expec-

tation value 〈n〉 and variance var(n) = 〈n2〉 − 〈n〉2 != 〈n〉. The
entropy for the continuous normal distribution on the range
(−∞,∞) depends only on its variance (Table III); hence, we
use this simple form to plot the Gaussian entropy directly from
the photon distribution variance.

In the case β = 0.01 [Fig. 7(a)] for the pump powers below
Pth, the thermal entropy fits the photon entropy very well;
however, above the threshold the Gaussian approximation is
best. Additionally, in the case β = 1, depicted in Fig. 7(b),
the Poisson entropy is also a good approximation of the
photon entropy for P > Pth. If one compares these plots with
Fig. 5, then one is likely to find that in both cases Pth is
close to the crossing point between each Gaussian and thermal

0 100 200
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2
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4

5

S

(a)

0 1.25 2 4
P

(b) photon

Poisson

Gaussian

thermal

FIG. 7. The entropy S of the photon distribution vs pump rate P

for κ = 1 in comparison to exact Poisson and thermal distribution
entropy values with the same expectation value, as well as approx-
imated Gaussian values with the same variance. (a) β = 0.01 and
(b) β = 1.
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approximation in Fig. 7. Thus, it is possible to indicate the
position of Pth by such a crossing.

Surprisingly, Fig. 7(a) shows that for pump powers above
threshold the Poisson entropy deviates from the photon en-
tropy. This is unexpected because g(2)(0) ≈ 1 in the lasing
regime indicates that the photon distribution should be a
Poisson distribution. Despite the fact that the first seven
autocorrelation functions g(n)(0) for β = 0.01 in Fig. 8(a) are
almost equal to unity at P = 250, the photon distribution is
still much broader than the Poisson distribution with the same
expectation value [Fig. 8(b)], in accordance with the Poisson
entropy discrepancy to the photon entropy in Fig. 7(a). This
circumstance can be explained as follows: g(2)(0) ≈ 1 does
not mean that

var(n) − 〈n〉 = 〈n〉2(g(2)(0) − 1) ≈ 0. (16)

An equality in the upper line would be one property of
the Poisson distribution. In fact, for our system var(n) − 〈n〉
grows with increasing P [Fig. 8(c)], because 〈n〉2 grows
faster than g(2)(0) converges to 1. Thus, since 〈n〉k ap-
pears in k-autocorrelation function denominators, the Poisson
characterization of probability distributions by g(k)(0) ≈ 1 is
subtle, because each equation g(k)(0) = 1 and g(k)(0)〈n〉k =
〈n〉k characterizes the Poisson distribution. While it may
be g(k)(0) → 1 and g(k)(0)〈n〉k �→ 〈n〉k , one would have to
choose whether assertion g(k)(0) ≈ 1 or g(k)(0)〈n〉k ≈ 〈n〉k is
the more important one. As a result, we conclude that for this
example the characterization of the Poisson behavior by the
entropy is in fact better than by the autocorrelation function
g(k)(0) ≈ 1.

D. Construction of the full statistics

The MEM is not limited to one-dimensional distributions
like pn, so one can, e.g., also construct the full statistical

TABLE IV. Mixed photon-carrier moments sorted by order.

Order Photon-carrier moments

1 〈n〉, 〈N〉
2 〈n2〉, 〈nN〉, 〈N 2〉
3 〈n3〉, 〈n2N〉, 〈nN 2〉, 〈N 3〉

distribution pn,N out of moments. For sorting, we define the
order of a given moment 〈niNj 〉 = ∑

n,N niNjpn,N by i + j

visualized in Table IV, and thus a MED of order k obtains
the values of moments 〈niNj 〉 = μi,j , i + j � k as a priori
information. The kth-order MED can be derived as in the
one-dimensional case [33]

pMED
n,N = 1

Z(λ)
exp

⎛
⎝−

∑
i+j�k

λi,j n
iNj

⎞
⎠ (17)

with the normalization constant Z(λ) =∑
n,N exp(−∑

i+j�k λi,j n
iNj ). The corresponding Lagrange

multipliers are functions of the moment values μi,j and can
be calculated by applying the Newton method described in
Sec. IV A.

After computing the second-order MED for P = 10 and
κ = 1 = β, one can compare it with the full statistics in
Fig. 9. The visible deviation from the proper statistics p

original
n,N

is small. In particular, the bell form has been reconstructed
very well. In the even higher orders, the approximation error
falls exponentially as demonstrated in Fig. 10, measured by
the �1 norm

‖poriginal − pMED‖�1 =
∑
n,N

∣∣poriginal
n,N − pMED

n,N

∣∣ , (18)

which is the summed-up pointwise absolute distance to the
original full statistics poriginal.

Until the ninth order, the MEM approximations ex-
ist on the approximation space (0, 40) × (0, 60). However,
only the even-order MEDs should be taken into account,
because only their Lagrange multipliers are independent
from the choice of the numerical approximation space
{0, 1, . . . , nmax} × {0, 1, . . . , Nmax}, indicating analogously to
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FIG. 9. Full statistics MEM construction for P = 10, κ = 1 = β

in second order. (a) The original photon distribution pn,N and (b) the
second-order MED approximation pMED

n,N .
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the one-dimensional case that, in contrast to the even orders,
for the odd orders the MEDs on the full physical range N0

do not exist. Furthermore, the general existence conditions
for multidimensional MED cases reveal a more complicated
structure than in one dimension [49].

VI. CONCLUSION

We have combined equations of motion techniques for
nonequilibrium many-particle quantum systems with the
maximum-entropy method. This extends the range of appli-
cability of the equations of motion techniques significantly
as the moments resulting from the steady state can be used
to construct unbiased statistics of quantum observables. After
reviewing the maximum-entropy method and our physical
example, the birth-death model for microcavity lasers with
quantum-dot gain, we have explained the mapping from the
moments to the Lagrange multipliers by using an iterative
Newton method. Moreover, we have discussed in detail the
moment problem, i.e., the fact that not all values of the set of
moments can be fitted by a probability distribution.

To confirm the feasibility of our approach, we have per-
formed numerical simulations of the birth-death model. From
the resulting moments, we constructed unbiased photon statis-
tics using the maximum-entropy method and compared them
to the directly computed photon statistics. Good agreement
has been observed which improves when higher order mo-
ments are successively included. The surprising fact that the
performance of odd orders is worse than that of the even ones
is reported and explained.

We have shown that the zero crossing of the first Lagrange
multiplier signals a qualitative change in the photon statistics.
We have therefore suggested to use this quantity to define
the laser threshold. For low spontaneous emission factor β,
this criterion gives a threshold pump power very similar to
the conventional measures. For β close to unity, where the
conventional measures fail, the first Lagrange multiplier still
allows us to define an unambiguous threshold.

Also the entropy, which, as the first Lagrange multiplier,
comes as a by-product of the maximum-entropy method,
provides valuable insight into the system. It shows here that
the transition of the photon statistics to a Poisson distribution
is much slower than the (higher order) autocorrelation func-
tions suggest. In fact, for pump powers not too far above the
threshold, the photon statistics are better approximated by a
Gaussian than by a Poisson distribution.

Finally, we have demonstrated that also the full statis-
tics, including carrier-photon statistics, can be reliably
constructed.
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