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Coherent phonon lasing in a thermal quantum nanomachine
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The notion of nanomachines has recently emerged to engage and use collective action of ensembles of
nanoscale components or systems. Here we present a heat-gradient driven nanomachine concept which through
appropriate coupling between quantum nanosystems is capable of realizing and maintaining an inversion. Based
on a Lindblad form of the quantum master equation with a semiclassical coupling to the lattice displacement
phonon field we show that this positive inversion can be harnessed to generate coherent optomechanical
oscillations and phonon lasing.
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I. INTRODUCTION

In nature, an inversion of the occupation probabilities of
quantum states is clearly quite exotic since the standard ther-
mal situation leads to the very opposite—i.e., to a Boltzmann
distribution of the energy levels in which the lower levels
are populated exponentially larger than higher ones. Typically
such an inversion is achieved by pumping the system, e.g.,
electrically or optically. Once achieved, an inversion will
allow an initially very small field to be amplified by several
orders of magnitude paving the route to lasing. This prompts
the question of whether it is possible to use a simple temper-
ature difference not only to drive a system such as a steam
engine, but also to promote coherent amplification and lasing.

In this paper, we will address this matter by considering a
nanomachine working with and emitting phonons (rather than,
e.g., photons), a concept which has recently been the focus
of a number of studies [1–6]. We will, in particular, explore
if there is a possibility of an amplification of phonon waves,
which in analogy to optical lasing, could lead to the concept
of a phonon-laser or saser [7,8] used, e.g., in innovative highly
precise nondestructive measurements [9]. Not surprisingly,
several proposals for phonon lasing have been suggested, e.g.,
schemes based on optomechanical systems [1,3,6,10] or on
semiconductor quantum-well structures [11]. Here, we will
aim to establish a route to phonon lasing on the nanoscale,
in a nanomachine driven by a heat gradient.

II. NANOMACHINE SYSTEM

Our nanomachine is composed of three coupled quantum
systems (QSs), which are subject to a heat gradient as dis-
played in Fig. 1(a). The active medium is the middle three-
level system (QS M). As we shall discuss in further detail in
the following, this central quantum system interacts with two-
level subsystems (QS L/R) at each side, which act as energy
filters. Such filtering is necessary, because a direct coupling
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to the two heat baths (each with a different temperature)
would lead to a thermal occupation of the system and not
to an inversion. In our nanomachine each filter is coupled
to a heat bath, where the left bath has a significantly higher
temperature (TH) than the right one (TC). As a consequence
of the temperature difference, a flow of excitation takes place.
We will show that for characteristic parameters the exclusive
thermalization of the resonant transitions may lead to a crucial
inversion in the upper two levels of the central system. The
inversion can then result in the emission of coherent phonons
at the central quantum system.

The Hilbert space of the nanomachine is spanned by the
product of the basis states in the QSs as depicted in Fig. 1(a).
The relative energies of the states in the two-level systems are
parametrized by δL/R and in the central three-level system by
δM+/M− . The system Hamiltonian reads

Ĥsys = ĥ(L) + ĥ(M) + ĥ(R), (1)

where ĥ(L)/(M)/(R) are the Hamiltonians of the QSs with

ĥ(L) =
∑

n

ε (L)
n P (L)

nn ⊗ 1̂(M) ⊗ 1̂(R). (2)

Here, ε (L)
n are the energies, P̂ (L)

nm = |n〉(L)(L)〈m| is the projec-
tion operator, and 1̂(M)/(R) denote unity operators in the space
of the respective subsystem. The Hamiltonians ĥ(M) and ĥ(R)

are constructed in the same way.
The QSs are coupled in a way that excitations can be

exchanged between adjacent sites as denoted in Fig. 1(a), i.e.,
the middle system interacts with both sides, while the direct
interactions between the left and right system is suppressed.
The corresponding Hamiltonian reads

Ĥint = λML(ĥ(LM) ⊗ 1̂(R)) + λMR(1̂(L) ⊗ ĥ(MR)), (3)

where λML/MR is the coupling parameter. The coupling

ĥ(LM) = P̂
(L)
21 ⊗ (

P̂
(M)
12 + P̂

(M)
13 + P̂

(M)
23

) + H.c. (4)

is given by the respective projection operators and analogous
for ĥ(MR). The coupling is taken to be weak such that the
energy contribution of the interaction is small compared to
the energy contained in the system.
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FIG. 1. (a) Schematic setup of the thermally driven nanoma-
chine. (b) Occupations ni of the middle QS as function of time for
temperatures TH = 400 K and TC = 100 K as well as the inversion
I = n3 − n2. (c) Inversion as function of energy mismatch �. The
dashed lines marks an analytic expression of the (ideal) inversion
according to Eq. (9).

Each of the two edge QSs is coupled locally to a heat bath
of different temperature. To describe the coupling, we make
use of a quantum master equation within a Lindblad form,
which accounts for the nonequilibrium situation in our system
[12]. For this, we set up the equation of motion for the density
matrix ρ̂ via

dρ̂

dt
= − i

h̄
[Ĥsys + Ĥint, ρ̂] + D̂H(ρ̂) + D̂C(ρ̂). (5)

D̂H and D̂C are the dissipators to the hot (left) and cold (right)
heat bath, respectively,

D̂H(ρ̂ ) =
2∑

k=1

�k (TH)

(
L̂

(L)
k ρ̂L̂

(L)†
k − 1

2

[
L̂

(L)†
k L̂

(L)
k , ρ̂

]
+

)
, (6)

with the Lindblad operators

L̂
(L)
1 = P̂

(L)
21 ⊗ 1̂(M,R), L̂

(L)
2 = P̂

(L)
12 ⊗ 1̂(M,R).

The effectiveness of the heat coupling is given by the rates �k

chosen by a phenomenological ansatz for the spectral density
of an environment of Ohmic kind [12] with

�k (TH) = γ

1 + exp{(−1)k−1δL/kBTH} , (7)

containing the distribution function. The dissipator describing
the coupling to the cold (right) heat bath D̂C(ρ̂) is analog.

Our goal is to achieve an inversion between states |3〉(M)

and |2〉(M), which later will be coupled to a phonon mode.
The energy of typical acoustic phonons lies in the order of
a few meV. Setting the energy of the lower state |1〉(M) to
zero, we accordingly chose δM+ = 30 meV and δM− = 25
meV, thus δM+ − δM− = 5 meV. The energies of the edge
states are set to δL = δM+ = 30 meV and δR = δM− = 25
meV. If not stated otherwise, the parameters are set to λ =
λML = λMR = 0.03 meV, γ = γH = γC = 3 ps−1. As initial
condition we assume that the whole system is in its ground
state, |1〉(L) ⊗ |1〉(M) ⊗ |1〉(R).

in
ve

rs
io

n

-0.1

0

0.1

0.2

T s
ys

(K
)

0

0.1

0.2

0.3

500

400

300

200

ze
ro

 in
ve

rs
io

n

in
ve

rs
io

n

0 100 200 300
T

(a)

(b)
600

FIG. 2. (a) Inversion as function of temperature difference �T

for a constant temperature of the colder bath TC = 100, 200, and
300 K. (b) Color map of the inversion as a function of temperature
difference and the mean temperature of the system Tsys = (TH +
TC)/2. The symbols (white circle, pentagon, and triangle) correspond
to the curves from the upper panel. The yellow line depicts zero
inversion.

III. INVERSION IN THE NANOMACHINE

By solving the equation of motion we calculate the occu-
pations ni = 〈P (M)

ii 〉 of the three states in QS M. The time
evolution of the occupations for a hot bath with temperature
TH = 400 K and a cold bath of TC = 100 K is shown in
Fig. 1(b). When the heating gradient is switched on at t = 0,
the occupation n1 decreases in favor of n2 and n3. After a few
hundreds of picoseconds a stationary state is reached. Due to
the heat gradient and the energy filtering an inversion in the
central system is achieved (red solid line). It is interesting to
compare the achieved inversion to the ideal case in which the
occupations ni will follow the Boltzmann distribution,

n3

n1
= exp

{
− δM+

kBTH

}
,

n2

n1
= exp

{
− δM−

kBTC

}
. (8)

The inversion in the ideal case is then

I = n3 − n2 = A − B

1 + A + B
, (9)

where A = exp { − δM+
kBTH

} and B = exp { − δM−
kBTC

}. Inserting the
TH = 400 K and TC = 100 K into the equation we obtain
an inversion of I ideal = 0.247, which is slightly above the
numerically calculated value of I num = 0.244. Hence, we can
conclude that through the filters the heat gradient applied at
the edge systems leads to an inversion in the middle system.

The creation of an inversion depends sensitively on the
energy filters as seen when introducing an energy mismatch �

between the filter systems and the middle system in Fig. 1(c).
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FIG. 3. Stationary values of the inversion as function of (a) QS
coupling parameter λ and (b) heath bath coupling constant γ . The
bath temperatures are TH = 400 K and TC = 100 K. The thin black
line marks the ideal inversion.

Note that the mismatch is given such that the energy of state
|3〉(M ) increases to δM+ + �. With increasing � the inversion
decreases dramatically and for � > 8 meV it changes its sign
returning to a normal condition.

Establishing that a simple heat gradient is, indeed, upon
application of appropriate filters able to create a population
inversion, we now consider the range of temperatures for
which a population inversion is possible. Figure 2(a) shows
for fixed temperature of the cold bath TC the dependence of the
inversion on the temperature difference �T = TH − TC. As
expected, for higher temperature differences �T the inversion
increases. However, an inversion is only reached over a certain
threshold given by the ratio TH/TC > 1.2. This threshold
depends not only on the temperature difference, but also on
the absolute values of the baths. Figure 2(b) shows a color
representation of the inversion as a function of the temperature
difference of the heat baths (for the wider temperature range)
and the mean temperature of the system defined as Tsys =
(TH + TC)/2. The results in Fig. 2(b) clearly underline the
fact that a minimal temperature difference is needed to achieve
inversion.

The inversion is also sensitive to other system parameters,
like system coupling parameter λ or the heat bath coupling
parameter γ . Figure 3(a) displays the stationary inversion as
function of λ while keeping all other parameters fixed. The
temperatures are TH = 400 K and TC = 100 K. For small
values of λ the inversion increases, reflecting that an increas-
ingly efficient heat coupling enables an increasingly efficient
transfer of the excitation to the center system. Subsequently,
the inversion saturates and remains constant over a large range
of λ up until a point when for high values of λ the inver-
sion decreases again. At this point, the interaction between
the systems is not weak anymore and the new eigenstates
become a superposition of the uncoupled states. In Fig. 3(b)
we present the impact of the coupling of each two-level
system to their environment on the inversion. The parameter
γ determines how fast the edge systems, and subsequently
the middle system, are thermalized. With a higher value of
γ the thermalization becomes faster and as a consequence the
inversion reaches nearly the ideal value of I ideal marked by the
black line [cf. Eq. (9)].
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FIG. 4. (a) Phonon-lasing relaxation oscillations of the inversion
(red) and the amplitude of the lattice displacement field (blue) for
TH = 400 K and TC = 100 K. (b) Stationary amplitude of the lattice
displacement field as function of temperature difference for TC =
100 K (orange) and TC = 200 K (brown).

IV. PHONON LASING

Having seen that the heat gradient does in our simple
nanomachine, indeed, induce an inversion, we are now ready
to test if this inversion can actually be utilized for a phonon
laser. For simplicity, we assume a single acoustic-phonon
mode, as realized in a cavity formed, e.g., in semiconductor
superlattices [13–16]. While in the following embracing the
characteristic properties of phonons in coupled semiconductor
quantum systems, our concept can readily be transferred to
optomechanical systems involving phonon lasing in nanome-
chanical oscillators [17–19]. Denoting b, b† as the bosonic
operators of the phonon mode and ω its frequency, the phonon
Hamiltonian is composed of the free phonon system and the
carrier-phonon coupling

Ĥph = h̄ωb̂†b̂ + Ĥc−ph. (10)

The energy of the phonon is chosen to be resonant with the
energy difference in QS M with h̄ω = 5 meV. The phonon
mode is coupled only to the middle QS M via

Ĥc−ph = 1̂(L) ⊗ ĥ(M) ⊗ 1̂(R) (11)

with

ĥ(M) = h̄g
(
b̂†P̂ (M)

23 + b̂P̂
(M)
32

)
. (12)

Here g is the real coupling constant between the QS and
phonon mode. We assume that the system can relax from the
state |3〉(M) to state |2〉(M) by the emission of a phonon, while
the reverse transition is possible by absorbing a phonon.
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A measurable quantity for the phonons is the lattice dis-
placement, which is linked to the phonon operators via

〈û〉 = u0(〈b̂†〉 + 〈b̂〉) = u(+) + u(−), (13)

where we defined u(+) = u0〈b̂〉 and u(−) = u0〈b̂†〉 as well as
the single phonon amplitude u0.

Introducing the phonon coupling, we extend the equations
of motion to

dρ̂

dt
= − i

h̄
[Ĥsys + Ĥint + Ĥph, ρ̂] + D̂H(ρ̂) + D̂C(ρ̂). (14)

For the lattice displacement this leads to the following rate
equation:

du

dt
= −�u − iC

(
ρ

(M)
23 (t ) + ρ

(M)
32 (t )

)
, (15)

where we introduced the phonon dephasing rate � and de-
fined the coupling constant C = u0g. For our simulations we
assume � = 2 ps−1, g = 2.25 ps−1, u0 = 20 pm. We further
assume that always a very small, but finite displacement is
present.

Figure 4(a) shows the evolution of the inversion (red) in
comparison to the amplitude of the lattice displacement field
(blue). The heat-bath temperatures are set to TH = 400 K and
TC = 100 K. We observe phonon lasing relaxation-oscillation
dynamics similar to the well-known optical relaxation oscilla-
tions of conventional optical semiconductor lasers. For small
times the inversion of the system builds up according to the
thermalization of the middle QS M. When the inversion is
close to its maximum the lattice displacement starts to in-
crease. Then the inversion and the lattice pitched against each
other in the relaxation oscillations. After some time a steady

state is reached with a lattice displacement of u∞ = 0.43 pm.
In this quasisteady state a constant flow of coherent phonons
occurs—phonon lasing. In Fig. 4(b), we show the amplitude
of the phonon flow as a function of the temperature difference
�T . Keeping the cold bath fixed at TC = 100 K (solid line),
we increase the hot bath temperature. For a classical laser such
an output curve should exhibit a characteristic onset of lasing
at a given threshold [20]. Indeed, we find a characteristic
onset of phonon lasing at �Ton = 85 K, where for tempera-
ture difference below �Ton no phonons are emitted and the
phonon amplitude rises significantly for temperature differ-
ences above �Ton as expected for lasing. Like the inversion,
the threshold depends not only on the temperature difference,
but also on the absolute values of the temperature. If we fix
the temperature of the cold bath to TC = 200 K (dashed line),
the threshold increases to �T ′

on = 150 K.

V. CONCLUSIONS

We have presented and studied the properties of a heat-
gradient driven nanomachine concept which, through appro-
priate coupling between quantum nanosystems, is capable of
realizing and maintaining an inversion. Based on a Lindblad
form of the quantum master equation with a semiclassical
coupling to lattice displacement phonons we have shown that
this positive inversion can be harnessed to generate coherent
optomechanical oscillations and phonon lasing. Remarkably,
despite the opening of a strong heat conducting channel
between the hot and the cold reservoirs due to the phonon-
lasing action, the system shows an amplification of the lattice
amplitude and displays laser characteristics such as dynamic
relaxation oscillations of the phonon displacement amplitude
and the inversion as well as a pronounced threshold behavior.
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