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Parametric resonances in a temporal photonic crystal slab
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We have studied resonances in a dynamic slab whose permittivity and/or permeability are periodic functions
of time, namely, a temporal photonic crystal. We find strong and narrow resonances for frequencies that are equal
to 1/2 or 3/2, etc. of the modulation frequency provided that a certain geometric parameter (proportional to the
slab thickness and to the modulation frequency) assumes values such that the electric field in the slab is either
symmetric or antisymmetric with respect to the slab center. These resonances turn out to be absent whenever
the electric and magnetic modulations are in phase and have equal strengths, that is, when there are no band
gaps between k bands. The resonance peaks appear for all the modulation harmonics and are superimposed on
Fabry-Pérot–like background oscillations. For not very strong modulations, the resonances can be described in
terms of the relative impedance of the slab and a parameter that expresses the modulation strength.
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I. INTRODUCTION

Inspired by duality between space and time, dynamic
media—while studied much less than spatially structured
media—had aroused interest among numerous scientists for
many years. In some cases, this led to finding temporal
analogs to diverse, already known, spatial phenomena. For
example, the temporal equivalence of reflection and refraction
of optical rays at a spatial interface has the principal charac-
teristic that the role of the angle (in the spatial case) is played
by frequency shifts at a temporal interface [1]. Using two
such temporal interfaces that satisfy the condition of temporal
total internal reflection, it is possible to achieve a temporal
waveguide that can confine the wave [2,3] even when the
central region has a lower refractive index [2]. On the other
hand, when a wavefront of a refractive index is generated
moving along in a photonic crystal waveguide, it is possible
to control photonic transitions [4].

Also, studies were realized of wavelength conversion by
means of dynamic adjustment of the index of refraction in a
cavity. Unlike other conversion processes, this one is linear,
independent of the initial light intensity and is realizable in
any material with variable resonance. Moreover, there is no
necessity of phase coincidence and the conversion efficiency
is near to 100% [5].

Finally, there are also investigations of temporal modula-
tion in the presence of spatial nonuniformity; for example,
Ramezani et al. [6] show that a temporally modulated spatial
defect can cause nonreciprocity, namely allow propagation
in one direction, but not in the opposite direction. Lurie
et al. [7] deal with another system characterized by spa-
tiotemporal variation, having investigated wave amplification
in spatiotemporal waveguides. And, according to Ref. [8],
the interaction of a wave with a medium that varies in
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time results in energy interchange between the wave and the
medium, enabling either amplification or attenuation of the
wave.

The spatiotemporal variations of the permittivity in a
medium can be used to design asymmetrically aligned pho-
tonic bands in the direction of propagation; thus, with ap-
propriate optical excitation, this system can function as a
nonreciprocal optical device [9]. In addition, for oblique in-
cidence of the wave, such structures function as generators of
nonreciprocal harmonics and filters [10]. Such effects are of
great interest for nonreciprocal systems of antennas [11].

Less than a decade ago, our group initiated the study of
temporal photonic crystals, concluding that a medium with
permittivity that varies periodically in time gives rise to
a photonic band structure of wave-vector bands (k bands),
separated by wave-vector gaps (k gaps) [12]. This work has
been generalized recently to allow for the periodic modulation
in time of the permeability as well [13]. Indeed, the k gaps
were observed experimentally for the equivalent system of
a modulated, low-pass transmission line [14,15]. Further, in
the special case of permittivity modulation, it was shown
that resonances in the reflectivity and transmittivity can be
obtained if certain conditions are satisfied [16]. In addition,
very recently we found that waves whose frequency is one-
half of the modulation frequency are stationary [17]. And, in
Ref. [18] we also studied pulse propagation through a modu-
lated slab. The present paper generalizes Ref. [16] to include
periodic variation in time of the permeability, in addition to
the permittivity. We also allow for a possible phase difference
between these two modulations, leading to interesting effects.
The parametric resonances are derived as solutions of an
eigenvalue problem for the dynamic slab, as well as solutions
of the optical reflection and transmission response. Also,
we develop a convenient and transparent approach for weak
modulations that works surprisingly well even for substantial
modulations.

This paper is organized as follows. In the following section
(II A) we solve the eigenvalue problem for the dynamic slab in
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FIG. 1. Slab whose permittivity and/or permeability are oscillat-
ing periodically with time.

Fig. 1 (with no incident wave). Section II B addresses the res-
onances as solutions of the optical response problem derived
in Ref. [13]. Then, in Sec. II C we use the results of Sec. II A
to achieve a significant simplification for weak modulations.
In Sec. III we compare numerical results obtained from these
three methods and explore further an important parameter
that controls the resonances. Section IV investigates the re-
flection and transmission coefficients in the presence of the
resonances. Finally, the conclusions are presented in Sec. V.

II. RESONANCES

A. Eigenvalue problem

Our system is defined in Fig. 1: a slab of thickness D whose
permittivity and/or permeability are oscillating periodically in
time, bounded on both sides by a medium of constant per-
mittivity and permeability. While our theoretical calculations

below are general, for the numerical work (as well as our
“weak modulation approximation”) we will use the following
model for the relative permittivity (dielectric constant) and
relative permeability:

εr (t ) = ε̄r [1 + mε sin (�t )], (1a)

μr (t ) = μ̄r [1 + mμ sin (�t + θ )]. (1b)

Here, � is 2π times the frequency at which the slab medium is
modulated, ε̄r and μ̄r are the average values of εr (t ) and μr (t ),
and mε and mμ are the corresponding modulation strengths
(0 < mε,μ < 1). We also allow for the possibility of a phase
difference θ between the magnetic and electric modulations.

In this subsection no excitation is assumed (E0 = B0 = 0),
namely, we approach the question of resonance by asking the
following: does the system in Fig. 1 support self-sustained
oscillations of the electromagnetic fields?

The symmetry of our system implies that the electric
field E(x, t ) and magnetic induction B(x, t ) must be ei-
ther symmetric or antisymmetric with respect to the center
of the slab x = 0. Hence they are superpositions of, re-
spectively, cos(kpx) or sin(kpx), where p = 1, 2, . . .. Here,
k1(ω), k2(ω), . . . are the wave vectors of the plane waves that
can propagate in the dynamic slab at a circular frequency
ω [13].

The field E(x, t ) in the slab is a superposition of the
aforementioned plane waves (implying a summation over
the index p). Moreover, both inside and outside the slab, it
is a superposition of oscillations with frequencies ω − n�

(n = 0,±1,±2, . . .). The harmonics ω ± �, ω ± 2�, . . . are
induced by the modulation of frequency � [13]. Then we
write

E(x, t ) =
{∑∞

p=1

∑
n Epf (kpx)epne

−i(ω−�n)t , |x| � D/2,∑
n Fne

i(ω−�n)(
√

εbμbx/c−t ), x � D/2,
(2)

where

f (kpx) =
{

cos (kpx), for symmetric oscillations,

sin (kpx), for antisymmetric oscillations.
(3)

From the continuity of E(x, t ) at the boundary x = D/2 it follows that

∑
n

[ ∞∑
p=1

Epf (kpD/2)epn − Fne
i(ω−�n)

√
εbμbD/2c

]
e−i(ω−�n)t = 0.

Because this has to be satisfied at every instant t ,

Fn = e−i(ω−�n)
√

εbμbD/2c

∞∑
p=1

Epf (kpD/2)epn, n = 0,±1, . . . . (4)

This fixes E(x, t ) outside the slab in terms of the (yet undetermined) amplitudes Ep.
The B(x, t ) field is found from Faraday’s law,

∂B

∂t
= −∂E

∂x
=

⎧⎨
⎩

−∑∞
p=1

∑
n kpEpf ′(kpx)epne

−i(ω−�n)t , |x| � D/2,

−∑
n i(ω − n�)

(√
εbμb

c

)
Fne

i(ω−�n)(
√

εbμbx/c−t ), x � D/2,
(5)
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the prime on f (kpx) implying derivative with respect to the argument.

∴ B(x, t ) =
⎧⎨
⎩

−i
∑∞

p=1

∑
n kpEpf ′(kpx)epn

e−i(ω−�n)t

ω−�n
, |x| � D/2,

√
εbμb

c

∑
n Fne

i(ω−�n)(
√

εbμbx/c−t ), x � D/2.
(6)

Now we impose the continuity of the magnetic field H (x, t ) at x = D/2,

B(x = D/2−, t )

μ0μr (t )
= B(x = D/2+, t )

μ0μb

, (7)

where the periodicity of μr (t ) permits the Fourier expansion

μr (t ) =
∑

n

μne
in�t . (8)

Then we get that

∑
n

∞∑
p=1

{
ikpf ′

(
kp

D

2

)
epn

1

ω − n�
+ 1

c

√
εb

μb

f

(
kp

D

2

) ∑
n′

ep(n−n′ )μn′

}
ein�tEp = 0.

For this equation to be satisfied for all times t we must have
∞∑

p=1

∑
n′

{
1

c

√
εb

μb

μn−n′f

(
kp

D

2

)
(ω − n�) + ikp(ω)f ′

(
kp

D

2

)
δn′n

}
epn′Ep = 0,

n = 0,±1, . . . . (9)

This is an eigenvalue equation for the amplitudes Ep; in prin-
ciple, a set of an infinite number of homogeneous equations
for an infinite number of unknowns E1, E2, . . . for every value
of ω.

It is convenient to normalize the frequency ω and the wave
vectors kp by means of the modulation frequency �:

ω̂ = ω

�
, (10)

k̂p = kpc

�
√

ε̄r μ̄r

. (11)

We also define the relative average impedance

A =
√

μ̄r/ε̄r√
μb/εb

(12)

and the important parameter (proportional to the slab thick-
ness and to the modulation frequency)

ν = D�(ε̄r μ̄r )1/2/c. (13)

In terms of these definitions, Eq. (9) can be now rewritten
as

∞∑
p=1

∑
n′

{
Aμ̂n−n′f

(
k̂p

ν

2

)
(ω̂ − n) + ik̂p(ω̂)f ′

(
k̂p

ν

2

)
δn′n

}

× epn′Ep = 0, n = 0,±1, . . . . (14)

Here, μ̂n = μn/μ̄r is the normalized Fourier coefficient of the
relative permeability.

In this eigenvalue equation, either the reduced frequency
ω̂ or the parameter ν can be assigned an arbitrary value. If a
certain value of ν is chosen, Eq. (14) yields eigenvalues for
ω̂. On the other hand, selecting a certain value of ω̂, one gets
eigenvalues for ν. In Fig. 2 we graph the smallest eigenvalues

of ν as a function of ω̂; these depend on two parameters:
the electric modulation mε (assuming that mμ = 0), see Eq.
(1), and the average relative impedance A, Eq. (12). It is
evident that for all six combinations of mε and A chosen,
the eigenvalues are strongly centered around ω̂ = 1/2 (and,
although not shown, also around ω̂ = 3/2, 5/2, etc.). At half
height of the peaks, their relative widths δω̂/ ¯̂ω = 2δω̂ are,
respectively, 0.0016, 0.0010, 0.0010 for mε = 0.1, 0.3, 0.5
with A = 0.4364 [Fig. 2(a)] and 0.0016, 0.0016, 0.0014 for
A = 0.2, 0.4364, 1 with mε = 0.1 [Fig. 2(b)]. The fact that
δω̂/ ¯̂ω � 1 confirms the strong localization of our resonances
at ω = (1/2)�, (3/2)�, . . .—just like for parametric reso-
nances in many other situations in science and engineering.
However, as is clear from inspection of Fig. 2, there is an ad-
ditional condition, related to the thickness of the slab, namely,
that the parameter ν, Eq. (13), assumes a special value (one of
an infinite number that are possible) that depends on two pa-
rameter values. Recalling our former paper, Ref. [17], for ω =
(1/2)� [as well as for ω = (3/2)�, (5/2)�, . . .] the waves
are stationary, and we can state that our parametric resonances
correspond to stationary waves that are either symmetric or
antisymmetric with respect to the slab center. In practice,
the resonances are strongest for ω̂ = 1/2 so this value will
be our starting point and we will seek to determine the ν

eigenvalues. We note that the k̂p(ω̂) and epn(ω̂) are solutions
of the eigenvalue problem for the infinite medium problem
[13]. And, because these quantities are periodic (adding an
arbitrary integer to ω̂ leaves them unaltered), the same set of
eigenvalues ν is obtained for ω̂ = 1/2, 3/2, 5/2, . . ..

B. Optical response

As an alternative approach to the resonance problem, we
also make use of our former solutions for the reflection and
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(b)
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40
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FIG. 2. Smallest eigenvalue ν of Eq. (14) as function of the reduced wave frequency ω̂ = ω/� for six combinations of the modulation m

and the relative impedance A. (a) A = 0.4364 with mε = 0.1, 0.3, and 0.5 and (b) mε = 0.1 with A = 0.2, 0.4364, and 1.

transmission coefficients for the dynamic slab [13]. Now the
question is, taking ω̂ = 1/2, for what values of ν will these
coefficients assume maximum values? Numerical solutions
and comparisons between the two methods in Secs. II A and
II B will be given in Secs. III and IV.

C. Weak modulation approximation

Weak modulations of the permittivity and permeability are
defined by the inequalities, respectively, mε � 1 and mμ � 1.
In the limits mε → 0,mμ → 0 (the “empty temporal lattice”
approximation [13]) and considering the frequency range
0 < ω̂ � 1 and wave vector range 0 < k̂ � 1, the dominant
harmonics are n = 0 and n = 1 and the dominant wave vector
bands are p = 1 and p = 2. With these restrictions, the set of
Eq. (14) is reduced to just two equations for the amplitudes
E1 and E2:[

A(e10 + μ̂−1e11)f
(
k̂1

ν

2

)
ω̂ + ik̂1(ω̂)f ′

(
k̂1

ν

2

)
e10

]
E1

+
[
A(e20 + μ̂−1e21)f

(
k̂2

ν

2

)
ω̂

+ ik̂2(ω̂)f ′
(
k̂2

ν

2

)
e20

]
E2 = 0, (15)[

A(μ̂1e10 + e11)f
(
k̂1

ν

2

)
(ω̂ − 1) + ik̂1(ω̂)f ′

(
k̂1

ν

2

)
e11

]
E1

+
[
A(μ̂1e20 + e21)f

(
k̂2

ν

2

)
(ω̂ − 1)

+ ik̂2(ω̂)f ′
(
k̂2

ν

2

)
e21

]
E2 = 0. (16)

The approximate eigenvalues are obtained by setting to zero
the (two by two) determinant of the coefficients of E1 and E2.
The result turns out especially simple for ω̂ = 1/2:(

A2 − 1

A2 + 1

)
cos

(
ν

2

)
± cos

(
ν

8
M

)
= 0, (17)

where the + and − signs give rise to the symmetric and
antisymmetric electric fields, respectively, in the slab and

M = (
m2

ε − 2mεmμ cos θ + m2
μ

)1/2
. (18)

The resonance values of ν thus depend on only two param-
eters: the relative impedance A, defined in Eq. (12), and the
new “modulation parameter” M . Interestingly, the solutions
for ν do not depend separately on mε, mμ, and θ . In par-
ticular, interchanging the values of mε and mμ makes no
difference.

Consider first the special case of equal, in-phase modula-
tions, mε = mμ and θ = 0. Then M = 0 and Eq. (17) reduces
to

cos

(
ν

2

)
= ±

(
1 + A2

1 − A2

)
. (19)

The right-hand side being greater than 1, there are no
solutions—and no resonances. In Ref. [13] we found that, in
this special case, there are no k gaps, either. This suggests
that the resonances are intimately associated with these gaps,
which was also concluded in Ref. [16] in the absence of
magnetic modulation (mμ = 0).

A particularly simple situation results when the average
impedance of the slab medium is equal to the impedance
of the bounding medium, A = 1. Then Eq. (17) becomes
cos(Mν/8) = 0, which has the solutions

ν = 4π

M
,

12π

M
,

20π

M
, . . . . (20)

In this case of impedance matching in the average the solu-
tions for ν are equidistant and inversely proportional to the
modulation M .

Figures 3(a) for M = 0.162 and 3(b) for M = 0.2 show
vividly how the solutions for ν can be obtained from the
intersections of the two cosine functions in Eq. (17). In each of
these figures, three values of the parameter A are considered,
including the case A = 1, giving rise to the horizontal line
through the origin with the solutions of Eq. (20). Figure 3(c)
also demonstrates the actual resonances of the zero-order
transmission coefficient (for light transmitted at the same
frequency as the incident light) corresponding to Fig. 3(b),
modulation M = 0.2, and small absorption. It is this absorp-
tion that gives rise to the bandwidths in ν. The resonances
decrease in intensity with increasing values of ν.

Figures 3(a) and 3(b) suggest how to estimate the smallest
resonance value of ν. It is given by

± cos

(
νmin

8
M

)
∼= A2 − 1

A2 + 1
. (21)

For A � 1 this reduces to the simple result

νmin
∼= 16A

M
. (22)
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FIG. 3. Solutions of Eq. (17) for symmetric E(x, t ) fields (black
dots) and antisymmetric E(x, t ) fields (circles) for ω = �/2 and
modulations (a) M = 0.162 and (b) M = 0.2. In both (a) and (b)
the intersections of the two cosine functions in Eq. (17) are given
for A = 0.2, 0.4364, and 1 (horizontal line through origin). In (c)
the resonances of the zero-order transmission coefficient are shown,
corresponding to the case M = 0.2 and A = 0.4364, allowing for
small absorption [Im(εr ) = 0.01 and Im(μr ) = 0.01].

III. NUMERICAL RESULTS FOR THE PARAMETER ν

The former section emphasized the centrality of the pa-
rameter ν for the parametric resonances in a dynamic-periodic
slab. In Secs. II A, II B, and II C we developed three methods
to calculate ν: an exact method based on a classical eigenvalue
approach to resonance, resulting in Eq. (14), another exact
method based on optical response, see Ref. [13], and an
approximate method for weak modulations; see Eq. (17). In
Tables I–III we compare the lowest ν values obtained by
these three methods for three values of the relative impedance
A (same values as considered in Fig. 3). It is seen that
there is excellent agreement between the two exact methods

TABLE I. Comparison of values of the ν parameters calculated
by three methods: Eq. (14), Eq. (17), and Ref. [13] for 14 combina-
tions of the parameters mε, mμ, and θ . The impedance parameter is
assumed to be A = 1.

ν

Solution of Solution for Calculation of Order
eigenvalue weak mod., transmission of

mε mμ θ equation (14) Eq. (17) coefficient ν

0.1 0 0 122.66 125.66 122.63 1
0 0.1 0 122.66 125.66 122.63 1
0.2 0.1 0 123.98 125.66 123.99 1
0.2 0 0 60.00 62.83 60.27 1
0.3 0.1 0 61.04 62.83 61.04 1
0.3 0 0 41.49 41.88 41.49 1
0 0.5 0 22.91 25.13 22.89 1
0.9 0 0 12.56 13.96 12.66 1
0.1 0.1 π 59.63 62.83 59.56 1
0.1 0.1 π/2 85.02 88.85 85.3 1
0.5 0.5 π 15.62 12.56 15.39 1
0.5 0.5 π/2 17.64 17.77 17.34 1
0.9 0.9 π 5.11 6.98 5.31 1
0.9 0.9 π/2 12.58 9.87 12.56 1

and surprisingly good agreement between the approximate
method and the exact ones, with the exception of modulations
m close to 1. The general tendency is for νmin to diminish as
the modulation becomes stronger, implying that, for a given
modulation frequency, the resonance can be achieved for a
thinner slab. We also note that all three tables give identical
approximate results for three combinations of the parameters
(mε,mμ, θ ): (a) (0.2, 0, 0), (b) (0.3, 0.1, 0), and (c) (0.1,
0.1, π ). That is so because the parameter M , defined by Eq.
(18), has the same value in these three cases and, according
to Eq. (17), ν depends only on M . This conclusion, however,
does not extend to the exact results, implying that the precise
dependence on mε, mμ, and θ is more subtle.

TABLE II. As in Table I, for A = 0.4364.

ν

Solution of Solution for Calculation of Order
eigenvalue weak mod., transmission of

mε mμ θ equation (14) Eq. (17) coefficient ν

0.1 0 0 74.53 74.40 74.53 3
0 0.1 0 74.51 74.40 74.51 3
0.2 0.1 0 75.22 74.40 75.22 3
0.2 0 0 37.00 36.76 37.00 1
0.3 0.1 0 37.48 36.76 37.48 1
0.3 0 0 24.59 24.24 24.59 1
0 0.5 0 23.25 22.48 23.25 3
0.9 0 0 11.74 10.58 11.74 1
0.1 0.1 π 36.82 36.76 36.82 1
0.1 0.1 π/2 49.73 49.57 49.73 1
0.5 0.5 π 10.63 10.28 10.63 1
0.5 0.5 π/2 17.15 16.14 17.15 3
0.9 0.9 π 9.00 8.44 8.95 2
0.9 0.9 π/2 12.50 13.70 12.46 4
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TABLE III. As in Table I, for A = 0.2.

ν

Solution of Solution for Calculation of Order
eigenvalue weak mod., transmission of

mε mμ θ equation (14) Eq. (17) coefficient ν

0.1 0 0 37.26 37.19 37.26 1
0 0.1 0 37.25 37.19 37.25 1
0.2 0.1 0 37.61 37.19 37.61 1
0.2 0 0 24.35 24.19 24.35 3
0.3 0.1 0 24.69 24.19 24.69 3
0.3 0 0 12.29 12.10 12.29 1
0 0.5 0 11.76 11.35 11.76 3
0.9 0 0 11.93 10.32 11.93 3
0.1 0.1 π 24.23 24.19 24.23 3
0.1 0.1 π/2 24.83 24.74 24.82 1
0.5 0.5 π 10.48 10.10 10.48 3
0.5 0.5 π/2 17.18 16.04 17.18 5
0.9 0.9 π 9.89 8.62 9.89 2
0.9 0.9 π/2 12.87 14.19 12.88 4

Figure 4 gives a good general idea about the dependence
on M of the three lowest ν values, as predicted by Eq. (17)
and, again, for the three values of A considered in the tables.
We see that ν diverges as M → 0; this confirms that there are
no resonances when there are no gaps between the k bands.
The steplike structure in Figs. 4(b) and 4(c) can be traced
to transitions between symmetric and antisymmetric fields
E(x, t ); see Figs. 3(a) and 3(b).

The importance of the phase difference θ between the
magnetic and electric modulations (assuming that mε = mμ)
is investigated in Fig. 5. As seen, ν increases rapidly with
decreasing phase difference. This figure also reconfirms the
excellent accord between our three methods of calculation.

IV. TRANSMISSION AND REFLECTION COEFFICIENTS

In Fig. 3(c) we pictured the fundamental (zero-order) trans-
mission coefficient for the frequency ω = �/2 as a function
of the thickness parameter ν. A series of resonances was
obtained, as manifested in peaks of diminishing amplitude
as ν increases. In the present section we use the results of
Ref. [13] to provide additional information on the paramet-
ric resonances. In addition to the fundamental transmission
coefficient (order n = 0), in Fig. 6 we also provide results
for the order n = 1, −1, and 2 transmission and reflection
coefficients as functions of the reduced frequency ω̂. Here,
the resonance parameter has been restricted to the value ν =
41.49 and allowance has been made for minor absorption
(small imaginary parts of ε̂r and μ̂r ). It is notable that the
parametric resonance at ω̂ = 1/2 is obtained for all the har-
monics n and for the reflectance, as well as transmittance.
In addition, in the background, Fabry-Pérot–like oscillations
appear.

In Fig. 7 we compare the zero-order transmission spec-
trum for weak modulation (m = 0.1) with the corresponding
spectrum for the unmodulated slab. In the latter case, the
resonance peak is, of course, missing. As for the Fabry-Pérot
oscillations, these are remarkably similar to the off-resonance

(b) 

(a) 

(c) 

FIG. 4. First three values of the resonance parameter ν, in the
weak modulation approximation, as function of the modulation
parameter M , defined in Eq. (18). (a) A = 1, (b) A = 0.4364, and
(c) A = 0.2.

oscillations in the presence of modulation. This justifies their
interpretation as “Fabry-Pérot–like oscillations.”

The phases of the transmission and reflection coefficients
corresponding to Fig. 6 are shown in Fig. 8. The abrupt

FIG. 5. Smallest ν value as function of the phase difference θ

between the modulations of μ(t ) and ε(t ), assuming that they are
equal. Three methods of calculation of ν are compared.
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FIG. 6. Magnitude of transmission and reflection coefficients as
function of reduced frequency for the harmonics n = 0, 1, −1,

and 2. The parameter values are ν = 41.49, mε = 0.3, mμ = 0, and
A = 1.

phase changes are directly related to maxima and minima
in the magnitude of the transmission and reflection coef-
ficients. These phase transitions occur between the values
0,±1/2,±1, with the exception of the case ω̂ = 1/2.

It is also interesting to inquire, if we fix the thickness
parameter ν, the impedance parameter A, and the modula-
tion parameters mε = mμ, are resonances obtained for some
values of the phase difference θ between the magnetic μ(t )
and electric ε(t ) modulations? Indeed, Fig. 9 displays trans-
mission peaks at two values of θ for each of the three sets
of parameters ν and m. Absorption is neglected in (a), while
small imaginary parts added to ε̄r and μ̄r cause broadening in
(b). These structures display no symmetry.

V. CONCLUSIONS

In this paper we explored resonances in a dynamic-periodic
slab whose permittivity and/or permeability vary periodically
in time, namely, a temporal photonic crystal. These reso-
nances are strongest when the frequency of the excitation
is 1/2, or 3/2, etc. of the modulation frequency. As shown

FIG. 7. Transmission spectrum of the fundamental harmonic
(n = 0) for the first three resonances (at ω = �/2, 3�/2, and
5�/2). The parameter values are ν = 12.25, A = 0.4364, mε =
0.7, and Im(εr ) = 0.01. Off the strong parametric resonances the
spectra resemble Fabry-Pérot resonances, which are also shown for
the unmodulated (mε = 0) slab.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

ph
as

e 
of

 th
e 

am
pl

it
ud

e 
co

ef
fi

ci
en

t

normalized frequency

n = 0 n = 1

n = -1 n = 2

transmission
reflection

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 8. Phase of transmission and reflection coefficients corre-
sponding to Fig. 6.

in Ref. [17], precisely for these frequencies, the waves are
stationary. However, an additional, geometric, condition has
to be fulfilled: the parameter ν, given by Eq. (13), must
assume one of a series of special (“resonant”) values that
depend, principally, on a modulation parameter M , given by
Eq. (18), and on the relative impedance, Eq. (12). These
resonances occur when the electric field in the slab is either
symmetric or antisymmetric with respect to the slab’s center.
We presented two methods for exact calculations of ν: as a
solution of an eigenvalue problem and as derivation of the
optical response for the slab. The results of these calculations

FIG. 9. Zero-order (n = 0) transmission coefficient as function
of phase difference θ without (a) and with (b) absorption [Im(εr ) =
0.01 and Im(μr ) = 0.01]. Here, A = 0.2.
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are in excellent agreement. The resonances occur not only
for the fundamental response, but also for harmonics such
as ω ± �, ω ± 2�, etc. and in both the reflectance and the
transmittance. We also developed an approximate method,
appropriate for weak modulation, M � 1. Surprisingly, as
long as M is not quite near to 1, this method predicts ν values
in reasonable agreement with the accurate calculations. It also
reveals that values of the electric and magnetic modulations,
mε and mμ, and the phase difference θ between these mod-
ulations affect the resonances only through M , Eq. (18), as
long as M � 0.5. In addition to the resonances in the ampli-
tudes of the transmission and reflection coefficients, they also
reveal Fabry-Pérot–like oscillations. Moreover, the phases of
these coefficients display corresponding abrupt transitions.
As can be expected, small imaginary parts, added to the

average permittivity and permeability, cause broadening of the
resonance lines.

Modulated low-pass transmission lines being intimately
related to temporal photonic crystals [14,15], we expect that
the resonance effects predicted in the present paper can be
realized experimentally for long-wavelength waves in period-
ically modulated, low-absorption transmission lines. Similar
resonance phenomena can be also expected in other modu-
lated systems, such as a slab whose elastic constants and/or
mass density are periodic functions of time.
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