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Controlled mobility of compact discrete solitons in nonlinear Lieb photonic lattices

Bastián Real and Rodrigo A. Vicencio
Departamento de Física and Millennium Institute for Research in Optics (MIRO), Facultad de Ciencias

and Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

(Received 3 August 2018; published 26 November 2018)

We study the mobility of localized solutions in a nonlinear Lieb photonic lattice. We characterize different
families of nonlinear solutions looking for different regions of parameters to observe coherent transport across
the system. In particular, we analytically derive a family of compact discrete solitons, which originate at the flat
band of this lattice at zero power. For low level of power, we found a transparent region where two well-localized
nonlinear modes, which are close in Hamiltonian, show a very good mobility. We numerically observe a perfect
transport across the system with negligible radiation, where two compact solutions adiabatically transform one
into the other. Although the ring mode stabilizes for larger power, it is not parametrically connected to any other
stationary solution and, therefore, it is not allowed to move across the system for high power.
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I. INTRODUCTION

For several decades, researchers have been interested on
finding the right conditions to observe localization and mo-
bility across a given lattice [1–3]. The problem essentially
consisted on defining a lattice geometry and looking for sta-
tionary solutions at the bulk or surfaces, considering different
nonlinearities and/or effective linear interactions. Many theo-
retical and experimental observations were performed and the
conditions for controlling the energy on a discrete nonlinear
system are nowadays well understood, although good discrete
mobility has been experimentally elusive so far.

Recently, a new interesting topic started to be explored
deeply, the one considering nonconventional lattice geome-
tries. Specifically, it was found that for some specific lattices
a nonstandard linear spectrum appears, which includes at
least one or even more zero-dispersion bands [4–8]. This
unusual linear spectrum allows the existence of completely
linear localized profiles, which somehow solved trivially the
problem of localizing energy on a given discrete system [9]. In
fact, these localized states occupy only few lattice sites, they
are completely stable, and they can be linearly superposed
to form complex patterns at will [10–13]. Additionally, they
exist for powers and energies as low as the detection level
of the devices used to measure them. All these properties are
crucial when trying to effectively apply the discrete lattice
phenomena into concrete photonic applications [14].

On the other hand, coherent transport in two-dimensional
(2D) nonlinear discrete systems has been proposed to occur
in different lattice geometries [2,3]. However, most of these
predictions have been performed at low level of power, where
localized solutions are broader and spatially similar to wide
Gaussian profiles. At this regime the Hamiltonian differences
between fundamental stationary solutions are very small [15]
and, therefore, the Peierls-Nabarro (PN) barrier is easily over-
come by a simple phase gradient [16,17]. Alternatively, the
mobility of high power and well-localized solutions has been
also showed in saturablelike systems [18–22]. A nonlinear

saturation mechanism is necessary in order to obtain a simul-
taneous increment of the peak amplitude and the solutions
width. This is important to reduce the Hamiltonian differences
and, consequently, the effective PN barrier, which finally
facilitates the mobility of localized excitations.

The mobility at low level of power and for highly localized
solutions is not allowed in standard geometries. However, it
was recently shown [23] that the existence of a flat band
(FB) at the bottom of the linear spectrum made possible a
very interesting stability exchange mechanism. For a non-
linear kagome lattice, a ring FB mode bifurcates at the FB
frequency at zero power. When considering a defocusing
nonlinearity, the FB mode evolves directly into the gap, being
initially stable and having a participation ratio of only six
sites. A one-peak solution can be constructed by linearly
superposing two ring modes, which bifurcate exactly at the
FB energy (this is completely different to the standard bifur-
cation mechanism where one-peak solutions bifurcate from
an extended linear mode at the edge of the linear spectrum).
This solution has initially a participation ratio larger than 6
and, as a consequence, occupies a larger area and possesses
a larger Hamiltonian, being therefore unstable. As the ring
mode preserves its area for any level of power, there must
be a stability exchange between these two solutions because
the one-peak state rapidly decreases its participation ratio for
an increasing power (being, in fact, just one for an infinite
norm). Even though it was shown that for kagome lattices
good mobility is possible, other FB lattices have not showed
the same phenomenology. For example, a nonlinear kagome
ribbon [24] or a dimerized Lieb lattice [25] has showed no
effective transport at all.

In this work, we study the dynamical properties of an
homogeneous nonlinear Lieb photonic lattice. We focus on
the identification of the main properties of a defined set
of fundamental nonlinear stationary solutions. We look for
conditions to observe multistability regimes that could open a
dynamical window of good transport in the parameter space.
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For low level of power, we find very good transport as a
consequence of a smooth transformation between single-peak
and ring discrete solitons. We observe an stabilization of the
FB nonlinear mode for larger powers, but no connection of
this solution with any other fundamental mode implying, as a
consequence, no transport at high energy.

II. MODEL

We model the propagation of light in a weakly coupled
system using a set of discrete nonlinear Schrödinger (DNLS)
equations with Kerr-type nonlinearity. We assume a Lieb
geometry and describe the light evolution on this lattice by
using the following set of coupled equations [2,3]:

−i
dψ�n
dz

= β�nψ�n +
∑
�m �=�n

V�n, �mψ �m + γ |ψ�n|2ψ�n. (1)

Here, z is the propagation coordinate or dynamical variable,
which in other contexts corresponds to time. β�n corresponds
to the propagation constant at the �nth site, and for an homoge-
neous lattice we simply set β�n = 0, without loss of generality.
We define the lattice geometry through the definition of the
coupling interaction V�n, �m between sites �n and �m of the lattice,
considering the geometry sketched in Fig. 1(a). γ corresponds
to the nonlinear cubic coefficient, and its sign defines the
focusing (positive) and defocusing (negative) cases. Model (1)
possesses two conserved quantities, the power (or norm)

P ≡
∑

�n
|ψ�n|2, (2)

and the Hamiltonian (or energy)

H ≡ −
∑

�n

⎡
⎣

⎛
⎝∑

�m�=�n
V�n, �mψ �mψ∗

�n + c.c.

⎞
⎠ + γ |ψ�n|4

2

⎤
⎦. (3)

We use these fundamental quantities to classify different
solutions as well as to check the accuracy of our numerical
simulations.

In general, the linear properties of any periodical system
are contained in the definition of V�n, �m coefficients, which
describe the linear interactions between different lattice sites.
We solve the linear stationary problem (γ = 0) by using a
plane-wave (Bloch) ansatz of the form

ψ�n(z) = φ�nei�k·�neikzz.

Here, �k ≡ {kx, ky} represents the propagation vector in the
transversal plane, and kz the longitudinal propagation constant
(along the text, we will also call it frequency [3]). By inserting
this ansatz into model (1), we obtain the following set of
coupled stationary equations

kz(�k)φ�n =
∑
m�=n

V�n, �mφ �m ei�k·( �m−�n). (4)

The number of sites per unitary cell defines the number of
different amplitudes φ�n to be considered in order to solve
(4). Our system has three sites per unitary cell [sites A, B,
and C, as shown in Fig. 1(a)] and, therefore, we will require
only three different amplitudes to completely characterize the

0

(b)

x

yz

(a)

FIG. 1. (a) A Lieb photonic lattice, where the unitary cell is
composed of three sites: A, B, and C. (b) Linear spectrum of an
isotropic and homogeneous Lieb lattice: Vx = Vy = 1.

linear properties of our system. By solving the eigenvalue
problem (4), we obtain the linear spectrum or band structure
of a homogeneous Lieb lattice

kz(kx, ky ) = 0, ±2
√

V 2
x cos2(kxd ) + V 2

y cos2(kyd ). (5)

Two dispersive bands are found in this system (showing a
particle-hole symmetry [26]), which are connected at kz = 0
by one Dirac cone located at the center of the first Brillouin
zone. Additionally, at kz = 0 a complete zero-dispersion flat
band is found, which is one of the main linear properties of
this lattice. Figure 1(b) shows the three linear bands consid-
ering an isotropic system (Vx = Vy). The flat band, whose
group velocity and diffraction coefficient are identically zero,
implies the existence of completely localized states which do
not diffract upon propagation [8,9,11,27]. Modes belonging
to this FB satisfy the condition A = −C and B = 0, for an
isotropic lattice system [8,28].

III. NONLINEAR LOCALIZED SOLUTIONS

Now, we look for nonlinear stationary solutions using an
ansatz similar to the previous one: ψ�n(z) = ψ�n exp(−ikzz),
where ψ�n and kz correspond to the amplitude profile and the
nonlinear propagation constant (frequency), respectively. We
look for real solutions (ψ�n ∈ R) and by inserting the ansatz
into model (1), we get

kzψ�n =
∑
�m �=�n

V�n, �mψ �m + γψ3
�n . (6)

Due to the symmetry of the linear spectrum, any localized
nonlinear solution obtained with defocusing nonlinearity has
a counterpart in the focusing regime, excepting a trivial
phase transformation [2,3]. This means that the sign of the
nonlinearity does not play a fundamental role on the profile
of localized solutions. Therefore, without loss of generality,
we simply set γ < 0 (defocusing nonlinearity). Along this
work, we will also assume an isotropic (Vx = Vy) and a
homogeneous (β�n = 0) Lieb lattice.

First of all, we study the nonlinear continuation of funda-
mental localized flat band states; i.e., a four-sites profile with
B = 0 and A = −C [8,11,27]. After inserting this profile into
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FIG. 2. (a) P versus kz diagram for the following modes: (b1)
R mode, (b2) A mode, (b3) B mode, (b4) 2s mode, (b5) 3s mode,
and (b6) 2R mode, represented by black, red (gray), blue (dot-
dashed), brown (dashed), orange (dotted), and green (light-gray)
lines, respectively. The shaded area in (a) shows half of the linear
band. Inset in (a): zoom at low power.

Eq. (6), we obtain the analytical solution

kz = γA2 =⇒ P = 4kz

γ
and H = −γP 2

8
,

with P = 4A2 for this localized solution. Consequently, the
flat band profile is also an exact stationary solution in the
nonlinear regime. As this solution corresponds to a perfectly
localized nonlinear mode, without any tail, it can be classified
as a perfect compacton solution [29–31]. The frequency of
this state grows linearly with power as plotted in Fig. 2(a) (see
black straight line), having the four-sites profile showed in
Fig. 2(b1). Since this nonlinear solution does not correspond
to a linear FB state, we called it simply R mode due to its
ringlike structure [32].

To numerically compute standard nonanalytical nonlinear
stationary solutions, we consider a Lieb photonic lattice com-
posed of 225 waveguides, with fixed boundary conditions.
We implement a multidimensional Newton-Raphson iterative
method to solve model (6), considering two different cases:
one controlling the frequency kz and one controlling the power
P . By varying the frequency, we look for solutions with
different geometry and we construct the corresponding power
versus frequency diagrams. Specifically, we first look for the
main fundamental solution of any nonlinear discrete system,
the so-called one-site solution (also known as odd mode).
This state corresponds to the geometrically simplest funda-
mental nonlinear discrete mode, which bifurcates from an
extended linear state at the band edge [33]. For larger powers
it transforms into a very localized entity, which helps us to
find it numerically in the so-called anticontinuous limit [2,3].
We construct two different families of one-site solutions: the
A and B modes, which depend on the number of nearest
neighbors (in the isotropic case, a one-peak solution at site

C is completely equivalent to the one at site A). Red (gray)
and blue (dot-dashed) curves in Fig. 2(a) show the dependence
of these two solutions, respectively, while Figs. 2(b2) and
2(b3) show their profiles at kz = −10. The B mode follows
a standard 2D dependence [33], including a direct bifurcation
from a staggered band-edge mode at kz ≈ −2.8, which is
expected due to the simpler geometry of this nonlinear so-
lution. However, the A mode possesses a different evolution.
It separates from the B mode around kz ≈ −5 and it gains
power faster while increasing its frequency. After a frequency
threshold around kz ≈ −3.5, it continues the increment of its
power but now by decreasing its frequency up to a point where
it finally fuses with a three-sites solution [orange (dotted)
curve in Fig. 2(a)].

In order to understand the dynamical connection between
A and B states, we look for another nonlinear solution having
similar amplitudes at sites A and B. This solution is showed
in Fig. 2(a) by a brown (dashed) curve and its profile at
kz = −10 is showed in Fig. 2(b4) [for an isotropic lattice,
this solution can be excited in any pair of neighbor sites].
In standard lattices, this state is called a two-sites solution
or even mode, and we call it here a 2s state. For a Lieb
lattice, this solution is asymmetric for a decreasing value of
power due to the different connections experienced by A and
B sites. In fact, this mode is closer to an intermediate state
of saturablelike models [18–22], which corresponds to a state
that dynamically connects two fundamental solutions, which
share stability properties. In the context of a Lieb lattice, it is
important to find the possible dynamical connection between
A, B and 2s solutions as we will describe below. As we
observe in Fig. 2(a), the 2s mode monotonously decreases
its power up to drastically converging to the A mode curve.
This means that this solution transforms into a broader profile,
while increasing its frequency. In fact, it becomes identical to
the A-mode profile at the connecting point around kz ≈ −3.5.

Additionally, we explore another type of solution, which
possesses three sites on a row, of similar amplitude and with
a staggered phase structure, which we call a 3s solution [see
Fig. 2(b5), also for kz = −10]. The diagram for this mode is
showed in Fig. 2(a) by an orange (dotted) curve. We observe
that the 3s solution monotonously decreases its power while
its frequency increases. Around kz ≈ −3.6, this solution fuses
with the A mode. Then, it continues decreasing its power
following a standard 2D behavior, including a power thresh-
old close to kz ≈ −3. Finally, it connects to the bifurcating
branch originated at the band edge (similar to the B-mode
dependence, but having a larger norm).

The last nonlinear solution we consider in our analysis
exactly bifurcates at the flat band frequency. This solution
is formed as a linear combination of two linear FB modes
(horizontally oriented in this case). To find this solution, we
use an iterative method, which varies the power in order to
construct a family of, what we call, 2R solutions, as shown
in Fig. 2(a) by a green (light-gray) curve. The profile of this
mode at P = 0.001 is presented in Fig. 2(b6). The 2R solution
exists only in a small region inside the band, and it rapidly
diverges in power due to a rapidly increasing background or
tail. This is a direct manifestation of resonances with the linear
spectrum, which is usually responsible of an abrupt increment
of power [21,34]. This also implies a rapid reduction of the
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FIG. 3. (a) G-P and (b) H -P diagrams. (a1) zoom at low power
and (a2) zoom at P ∼ 6.5. (b1) zoom at P ∼ 0.95. Colors indicate
the same solutions showed in Fig. 2(a).

convergency of our iterative method, which suddenly stops
the numerical continuation. It is important to mention that
the R and the 2R modes bifurcate from the FB at zero level
of power. This picture is similar to what was predicted for a
nonlinear kagome lattice [23], and it is completely different
to the standard bifurcation phenomenology of 2D nonlinear
discrete systems [2,3,33].

In order to understand deeply the main properties of these
six nonlinear stationary solutions, we implement a linear
stability analysis by following a standard method [35]. We
linearly perturb the nonlinear solutions and obtain a set of
equations for the perturbation, which yields to a linear eigen-
value spectrum. We look for the largest eigenvalue G, which
indicates the most unstable perturbation mode and, hence, the
degree of linear instability of a given solution (perturbation
modes start to grow on a distance z ∼ 1/G). Therefore, in our
analysis, stable and unstable nonlinear modes correspond to
G = 0 and G �= 0, respectively. Fig. 3(a) shows a G versus P

diagram for all the nonlinear solutions described above.
The R and 2R solutions show an interesting stability

evolution for low level of power [see Fig. 3(a1)]. Once the
R solution becomes nonlinear (for |kz| > 0), it immediately
develops a weak destabilization process due to resonances
with extended waves inside the linear band. The 2R mode is
essentially stable, with only weak fluctuations very close to
G = 0. Then, there is a region where both solutions become
simultaneously weakly unstable around P ≈ 0.75. Afterward,
the 2R mode becomes more unstable than the R state, and

close to P ≈ 3.7 this mode is not continued anymore due
to the lack of convergency. For larger powers the R solution
tends to stabilize again, but it does not become completely
stable as showed in Fig. 3(a2). In fact, this region looks
promising as well to observe coherent transport across the lat-
tice, as a possible multistable region. Over this level of power,
the R solution becomes even more unstable achieving its
maximum instability close to the region where its frequency is
close to the band edge. Then, its coefficient G decreases as a
manifestation of a predominant linear localized perturbation,
which starts to resonate strongly with the R-mode profile.
The R instability goes finally to zero at P ≈ 25, where the
main localized linear perturbation coincides with the solution
profile. Again, this stabilization process could be a good
indication of a multistable regime, which has been shown to
be a good scenario for nonlinear discrete mobility [18–23].

Solutions A, B, 2s, and 3s are stable for a low-power
regime, where they fuse and become indistinguishable. While
the power increases, the 2s and 3s solutions become highly
unstable with a divergent G curve [see Fig. 3(a) for P � 4].
A and B single-peak solutions are unstable in their power
threshold regions, where the curvature in P -kz space changes
and the stability follows a standard Vakhitov-Kolokolov cri-
terion [36]. However, both solutions become linearly stable
again when P -kz curves change their slopes again. They re-
main completely stable for higher level of power with G = 0
for P � 4 (3) for the A (B) mode [both one-peak solutions
transform into the ground state of the system, at different
generic lattice positions, as Fig. 2(a) shows].

One additional quantity to be analyzed in DNLS-like sys-
tems is the Hamiltonian H . In Fig. 3(b), we observe the
Hamiltonian versus power diagram for all the solutions found.
H gives us a good indication about the possible transversal
mobility of a given solution, when this nonlinear mode is
compared to another stationary solution. In Fig. 3(b1) we
observe a clear crossing of Hamiltonians between the R

and 2R solutions, which occurs for low level of power. For
P � 1, the 2R mode has a smaller Hamiltonian compared to
the R solution, being effectively more stable as predicted in
Fig. 3(a1). Afterward, both solutions share (weak) instability,
their Hamiltonian cross each other at P ≈ 0.95, and then the
R mode becomes a solution having a smaller H value, being
also less unstable than the 2R mode. Consequently, this region
becomes an interesting scenario in which to study a possible
coherent mobility between these two modes, because the PN
barrier [16] becomes very small and solutions remain quite
localized in space.

In general, the ground state of the system will be the one
having the smaller H value, for a given power P . As H is
determined by linear and nonlinear interactions, a solution
with more connections (broader profile) will generally have
a larger H value and, hence, will be unstable compared to a
more localized solution. In this sense, a ring mode possesses
a larger H value compared to both one-peak (A and B)
solutions. Additionally, although the B mode has four main
nearest neighbors, its excited area occupies a smaller region
compared to the one of an A mode; therefore, HB < HA as
showed in Fig. 3(b) [the blue (dot-dashed) curve is always
bellow the red (gray) one]. In general, we observe that A, B,
2s, and 3s solutions exist in a region far away in Hamiltonian
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from the R and 2R modes, without any possibility of crossing
in the whole space of parameters. As a consequence, the
possible mobility regimes commented above, when finding
multistability regions for P ∼ 6.5 or P ∼ 25, are not really
possible for this lattice due to the large effective energy
barriers. Although for larger power A, B, and R modes are
simultaneously stable, they are not dynamically connected
and no mobility will be observed between these solutions.
There is also a possibility to observe mobility between A

and B modes, passing through a 2s unstable state. However,
as we see in Fig. 3(b), the differences in Hamiltonian are
very large between these modes. There is also an interesting
region close to the connecting point (P ∼ 4), but in this region
the solutions are broader and no localized mobility can be
observed. Additionally, the 2s solution is highly unstable in
this region. Therefore, any attempt to pass through it by, for
example, kicking an A or B solution will produce strong
radiative waves that will destroy the kicked solution and the
overall transport.

IV. EFFECTIVE TRANSPORT

After studying the main properties of a set of six funda-
mental solutions, we look for conditions to observe mobility
on a nonlinear Lieb lattice. The stability and Hamiltonian
analysis give us information about the regions of parameters
where a possible coherent mobility could be observed. For a
very low level of power, the ring mode is weakly unstable,
while the 2R mode is almost stable (there is a fluctuating
regime for the stability of this mode, with values very close
to zero, which implies an effectively stable propagation for
typical propagation distances). When both modes bifurcate
at kz = 0, their effective area is quite similar, so there is
no a clear distinction of solutions in terms of frequency,
power, stability, and Hamiltonian. In fact, we found a clear
Hamiltonian crossing close to P ≈ 0.95 [see Fig. 3(b1)]. As
this region looks promising for trying to observe coherent
mobility, we numerically integrate model (1) considering a R

mode as initial condition, with different input powers around
P = 1. We integrate the dynamical equations on a lattice
having 225 sites up to a given distance zmax. As the R mode is
a static stationary solution, we perturb it by applying an initial
kick to its profile: ψ�n(0) = ψR

�n exp(iky �n), with ky a horizontal
wave vector and ψR

�n the R-mode profile. This kick imprints
a phase structure at the input condition, forcing the R mode
to move on a horizontal direction. In order to characterize
the mobility of ring modes on a Lieb nonlinear lattice, we
made a sweep of parameters varying the input power in the
interval {0, 2} and ky in the interval {0, 1}. Using the hor-
izontal center of mass, defined as Y (z) ≡ ∑

yn|ψ�n(z)|2/P ,
with yn being the horizontal lattice position, we measure the
propagated distance dy (z) ≡ |Y (z) − Y (0)|. For a given set
(ky, P ), we generate a set of distances dy , in the interval
z ∈ {0, zmax}, and look for the largest value defined as dmax.
Figure 4, left collects our results, where we observe that for
powers below ≈0.3, mobility is only marginal. Then, we do
not observe a simple tendency and, in fact, we observe a
rather chaotic dynamics, with large fluctuations for very close
input conditions (this effect is also enhanced because dmax

is measured at different distances). We observe some islands

FIG. 4. dmax versus power P and horizontal kick ky , for an R-
mode input condition.

of enhanced mobility and we simply focus on the largest
dmax values [see Fig. 4, right]. Around parameters (ky, P ) ≈
(0.5, 1.3), we find that the center-of-mass transport could be
as much as a displacement of six sites. As the transport is
occurring mainly in the horizontal direction, in Fig. 5(a) we
plot the vertically integrated dynamics (i.e., we simply sum
the intensity along the vertical direction) versus propagation
distance z. We clearly observe that the ring profile is moving
coherently, without the emission of noticeable radiation. The
nonlinear R mode is able to jump four rings positions, moving

(b)

1

0(a)

FIG. 5. (a) Vertically integrated intensity for an R-input condi-
tion at the bulk of a Lieb lattice. The input power is P = 1.3 with a
horizontal kick of ky = 0.5. (b) Intensity profiles at different z values.
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its horizontal center of mass from position 10 to position 2 (the
emitted radiation produces a larger effective ring translation
than center-of-mass displacement). After reaching the lattice
border, the profile is reflected back and tries to continue
moving. However, we observe the emission of radiation and
the consequently reduction of the power, what immediately
changes the dynamical regime, stops the transport, and even
destroys the ring profile. In Fig. 5(b) we directly show how
this coherent transport is occurring. We clearly see that the
ring profile is smoothly changing its form from a R mode at
z = 0 to a 2R profile at z = 32, and then to a new R state at
z = 70, located two sites away from the original profile. Then,
as the figure shows, the coherent transport continues until the
profile reaches the lattice edge. During the propagation, we
do not observe neither a noticeable destruction of the profile
nor a relevant reduction of power; so, we are in the presence
of a very nice example of discrete coherent transport on a
Lieb nonlinear photonic lattice. This transport is occurring
for highly localized profiles and for very low level of power,
which is an important aspect when considering the control of
optical signals on a photonic device.

It is possible to think that an increment in the system
size would imply a direct improvement in the transported
distance; however, this is not necessarily the case due to the
rather chaotic results presented in Fig. 4. The emitted radiation
at the beginning and during the transport could generate a
completely different dynamic, which depends very strongly
on the input conditions. We repeated the numerical integration
for lattices with different system sizes, and also considering
different input positions. We found that every system has
its own dynamical phenomenology, which is expected due
to the rather chaotic behavior commented before. Multiple
reflections on different surfaces could contribute to achieve
an improved mobility or simply the opposite. When trying
to move a localized stationary solution by adding a kick, we
are forcing a static profile to move across the lattice. This
always produces radiation of energy to the rest of the system
that could enhance or diminish the effective mobility. The
observed phenomenology strongly depends on the particular
system size and specific input conditions.

Finally, we add a short comment about considering a binary
Lieb lattice; i.e., a lattice having a binary profile for the

propagation constant β�n, such that the linear spectrum still
includes a flat band (this is obtained by taking βA = βC ,
independent of βB). We implemented this in order to study
the effect of opening a gap of size |βA − βB | in between the
FB and the lower dispersive band. However, we find that the
2R mode gets unstable for even smaller powers; therefore,
the multistability regime at low power is in fact reduced.
Furthermore, we ran different sweeps such as the one shown
in Fig. 4 and we did not find better mobility results compared
to the ones presented above.

V. CONCLUSIONS

In conclusion, we studied the main properties of Lieb non-
linear photonic lattices. We focused on six different nonlinear
stationary solutions to construct a dynamical picture for this
lattice. We found that two of these solutions bifurcate exactly
at zero power at the FB of the linear spectrum. The rest of
the solutions follow a standard bifurcation process from an
extended mode at the band edge. By analyzing the Hamilto-
nian and stability properties of these solutions, we conclude
that there is only one regime for finding good mobility in
this lattice, where the R and 2R modes posses effectively
the same H value. This occurs for a low level of power,
where these two modes are highly localized solutions. This is
quite important when looking for concrete applications using
photonic lattices, due to the goal of achieving good signal
control at low level of power and, simultaneously, occupying
a reduced spatial area. In addition to previous findings consid-
ering other FB lattices [23], our present results show that well-
known standard properties of nonlinear cubic systems can
dramatically change when nonconventional lattice geometries
are considered.
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and M. Johansson for fruitful discussions at the beginning of
this work. The authors acknowledge financial support from
Millennium Institute for Research in Optics (MIRO) and
FONDECYT Grant No. 1151444.

[1] D. K. Cambpell, S. Flach, and Y. S. Kivshar, Phys. Today 57,
43 (2004).

[2] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008).

[3] S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2008).
[4] S. Deng, A. Simon, and J. Köhler, J. Solid State Chem. 176, 412

(2003).
[5] S. Miyahara, K. Kubo, H. Ono, Y. Shimomura, and N. Fu-

rukawa, J. Phys. Soc. Jpn. 74, 1918 (2005).
[6] D. L. Bergman, C. Wu, and L. Balents, Phys. Rev. B 78, 125104

(2008).
[7] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S.

Desyatnikov, Europhys. Lett. 105, 30001 (2014).
[8] L. Morales-Inostroza and R. A. Vicencio, Phys. Rev. A 94,

043831 (2016).

[9] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys.: X 3,
1473052 (2018); D. Leykam and S. Flach, APL Photonics 3,
070901 (2018).

[10] R. A. Vicencio and C. Mejía-Cortés, J. Opt. 16, 015706
(2014).

[11] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real,
C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina,
Phys. Rev. Lett. 114, 245503 (2015).

[12] S. Xia, Y. Hu, D. Song, Y. Zong, L. Tang, and Z. Chen,
Opt. Lett. 41, 1435 (2016).

[13] Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su, Y. Li,
and Z. Chen, Opt. Express 24, 8877 (2016).

[14] B. Real, C. Cantillano, D. López-González, A. Szameit, M.
Aono, M. Naruse, S. Kim, K. Wang, and R. A. Vicencio,
Sci. Rep. 7, 15085 (2017).

053845-6

https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1063/1.1650069
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1016/S0022-4596(03)00239-1
https://doi.org/10.1016/S0022-4596(03)00239-1
https://doi.org/10.1016/S0022-4596(03)00239-1
https://doi.org/10.1016/S0022-4596(03)00239-1
https://doi.org/10.1143/JPSJ.74.1918
https://doi.org/10.1143/JPSJ.74.1918
https://doi.org/10.1143/JPSJ.74.1918
https://doi.org/10.1143/JPSJ.74.1918
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1088/2040-8978/16/1/015706
https://doi.org/10.1088/2040-8978/16/1/015706
https://doi.org/10.1088/2040-8978/16/1/015706
https://doi.org/10.1088/2040-8978/16/1/015706
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OE.24.008877
https://doi.org/10.1364/OE.24.008877
https://doi.org/10.1364/OE.24.008877
https://doi.org/10.1364/OE.24.008877
https://doi.org/10.1038/s41598-017-15441-2
https://doi.org/10.1038/s41598-017-15441-2
https://doi.org/10.1038/s41598-017-15441-2
https://doi.org/10.1038/s41598-017-15441-2


CONTROLLED MOBILITY OF COMPACT DISCRETE … PHYSICAL REVIEW A 98, 053845 (2018)

[15] E. Arévalo, Phys. Rev. Lett. 102, 224102
(2009).

[16] Yu. S. Kivshar and M. L. Quiroga-Teixeiro, Phys. Rev. A 48,
4750 (1993).

[17] R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, Opt. Lett. 28,
1942 (2003).

[18] R. A. Vicencio and M. Johansson, Phys. Rev. E 73, 046602
(2006); U. Naether, R. A. Vicencio, and M. Johansson, ibid.
83, 036601 (2011).

[19] U. Naether, R. A. Vicencio, and M. Stepić, Opt. Lett. 36, 1467
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