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Relativistic and pseudorelativistic formulation of nonlinear envelope equations
with spatiotemporal dispersion. II. Saturable systems
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We consider an envelope equation with space-time symmetry for describing scalar waves in systems with
spatiotemporal dispersion and a generic saturable nonlinearity. Exact bright and gray solitons are derived
by direct integration methods and coordinate transformations, with the results for cubic-quintic systems [see
companion article— Phys. Rev. A 98, 053842 (2018)] recovered in the limit of weak saturation. Classic
predictions from a nonlinear Schrödinger formulation of the propagation problem are shown to emerge
asymptotically as subsets of the more general spatiotemporal solutions. The robustness of the new solitons
against perturbations to the local pulse shape is then tested by deploying integral stability criteria, symmetry
principles, and numerical analysis.
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I. INTRODUCTION

Solitons and solitary-wave phenomena are elementary ex-
citations, pervasive throughout nature, that play a key role
in modern understandings of nonlinear systems [1]. Regard-
less of the physical context—optical or fluidic, mechani-
cal or electromagnetic, biological or chemical, classical or
quantum—the emergence of these robust particlelike wave
states generally requires just two basic ingredients: linear
dispersion and nonlinearity [2]. Models supporting envelope
solitons are historically rooted in universal equations such as
the nonlinear Schrödinger (NLS) type, and in the simplest
case they describe wave forms that are localized in time t

and traveling through space z. Longitudinal modulations to
a rapidly varying harmonic signal are typically assumed to
take place on a scale length that is much greater than the car-
rier wavelength [the slowly varying envelope approximation
(SVEA)].

The SVEA is often a valid starting point for analyses [3],
and the undoubted success of NLS-based models in predict-
ing experimentally observed phenomena (e.g., in optics [4])
has allowed them to become linchpins of conventional pulse
theory [5]. The SVEA is usually complemented by a Galilean
transformation, where for convenience one boosts from the
laboratory frame to a local-time frame moving at the group
velocity vg , as defined by coordinates zloc ≡ z and tloc ≡
t − z/vg . It is instructive, however, to pose questions about
the properties of wave packets beyond this more traditional
level of description. What are the governing equations? Do
they have exact nontrivial solutions? Can invariance laws and
conserved quantities be identified? What are the implications
for stability? Can predictions be reconciled with the SVEA?
etc. We have made some progress in answering these funda-
mental questions by proposing a spatiotemporal formulation
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based on generic envelope equations that respect space-time
symmetry [6].

The spatiotemporal nomenclature has different interpre-
tations, so it is helpful to begin by clarifying the terminol-
ogy used throughout. (The situation is akin to nonparaxial
when discussing beams in spatial optics [7].) It is often
associated with the phenomenon of wavelike “bullets” where
the interplay between nonlinearity, group-velocity dispersion
(GVD), and diffraction can sustain (at least in the short
term) wave self-confinement in transverse and longitudinal
spatial directions in addition to being localized in time [8].
One also encounters the term in Ginzburg-Landau contexts
when analyzing pattern emergence, bifurcations, and chaotic
dynamics under the combined action of gain and loss [9].
Here, we take it to mean the simultaneous presence of both
spatial and temporal dispersion in any wave-based system [6].

Mathematically, our quite general conception of spatiotem-
poral dispersion lies with the appearance of both ∂2/∂z2 and
∂2/∂t2 operators in the envelope equation (which may or
may not also involve formal diffractive considerations). It has
application in the field of nonlinear optics, supplementing
the widely known SVEA-based models of light propagation
[3–5] with a more complete geometrical theory [6]. It also has
practical uses in terms of modeling condensed-matter effects
in some special classes of semiconductor (e.g., ZnCdSe/ZnSe
superlattices). Biancalana and Creatore [10] have previously
demonstrated that material spatial dispersion due to photon-
exciton coupling cannot be captured by SVEA-type frame-
works and that retaining full generality of ∂2/∂z2 facilitates
an adequate description.

To date, the classic cubic [11] and cubic-quintic (see
companion article [12]) nonlinearities have been investigated
in some detail, with particular emphasis placed on deriving
exact bright and dark solitons. One of the most self-evident
and intriguing results is that our spatiotemporal formulation
has strong analogs with special relativity [13]. The invariance
laws are either relativistic or pseudorelativistic (depending on
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the interplay between spatial and temporal dispersion), and as
a consequence, (inverse) velocities add geometrically through
a rule that is reminiscent of the familiar Lorentz form. Perhaps
most striking is the recovery of SVEA-type results. They
emerge asymptotically through a multiple-limit procedure that
is entirely equivalent to the way Newtonian physics reappears
from special relativity at low speeds. For completeness, there
remains one final class of system nonlinearity that needs to be
addressed.

Saturation is a universal phenomenon that tends to inhibit
unphysical runaway effects. In optics, for example, it is a prin-
cipal feature of Maxwell-Bloch cavity models involving the
continuous interaction between a circulating light beam and
a system comprising atoms with two discrete energy levels
[14]. Such a system tends to exhibit saturation in its medium
polarization and population inversion when electric-dipole
coupling is subjected to high-intensity pumping. In cavityless
configurations, such as a dispersive waveguide, one might in-
tuitively expect the nonlinear dielectric response (e.g., permit-
tivity or refractive index) of the core material [15] to support a
maximum allowable change before approaching the threshold
for optical damage. However, the standard cubic (i.e., Kerr)
[3,16] and cubic-quintic [17,18] approximations permit ar-
bitrarily large contributions to self-interaction effects. These
models are based on simple scalar power series (or, more
rigorously, on tensor expansions of the medium polarization
and the introduction of nonlinear susceptibilities [16,19]) that
are truncated after a finite number of terms (e.g., on the
basis of order-of-magnitude considerations). In contrast, the
plateauing that characterizes saturation (i.e., where a physical
property can sustain no further self-induced variation) does
not always lend itself well to polynomial-type representations
that, inevitably, fail at sufficiently high light intensity.

The saturating responses of many optical materials have
been measured over the years. Such experimental studies have
included some semiconductor-doped glasses (e.g., CdSSe
and Schott OG 550 glass) [20], ion-doped crystals (e.g.,
GdAlO3:Cr3+) [21], bio-optical media [22], π -conjugated
polymers [23], and various photorefractive crystals (e.g.,
LiNbO3 and SBN) [24].

While several trial functions are available for describ-
ing a saturable refractive index [25–27], all of which share
similar qualitative features, our principal interest lies with
that proposed by Wood et al. [28]. Their model appears
to be unique in that it allows the corresponding governing
equations to be integrated exactly—for instance, families of
transverse guided modes in dielectric planar waveguides were
obtained by solving the Helmholtz equation and enforcing
continuity conditions at the boundary between substrates.
More pertinently, exact bright [29] and dark [30] solitons
derived by Krolikowski and Luther-Davies are also known
within the context of Schrödinger equations. It is these latter
solution classes that we seek to generalize here and, in so
doing, more fully develop our understanding of waves in
space-time-symmetric systems by accounting for saturation
effects. Known spatiotemporal cubic-quintic [12] and cubic
[11] solitons are then expected to emerge as special cases,
forming a natural hierarchy of solutions.

The layout of this paper is as follows. In Sec. II, we
explore the spatiotemporal envelope equation in the context

of the saturable nonlinearity and formulate the intensity-
phase quadrature problem. Exact bright and dark solitons
are derived in Secs. III and IV, respectively, with coordinate
transformations deployed in Sec. V to obtain more general
results (including a discussion of nondegenerate bistability
characteristics). Rigorous asymptotic analyses are detailed in
Sec. VI with regard to various important physical limits, with
predictions about soliton stability made and tested against
full simulations in Sec. VII. We conclude, in Sec. VIII, with
some remarks about connections to other potential research
avenues.

II. SPATIOTEMPORAL MODEL

A. Envelope equation

We consider the governing equation for a dimensionless
envelope u that is given by

κ
∂2u

∂ζ 2
+ i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2

+1

2

2 + |u|2/ρsat

(1 + |u|2/ρsat )2
|u|2u = 0, (1)

where ζ and τ are normalized space and time coordinates,
respectively, as measured in the laboratory frame. The linear
part of the wave operator in Eq. (1) is generic (in terms of its
dispersive contributions and space-time symmetry), while the
nonlinear part is homogeneous and parametrized by ρsat (the
normalized saturation intensity). We assume a set of units such
that GVD is controlled by s = ±1 (+1 for anomalous, −1 for
normal) and the parameter α is a ratio of group velocities.
Spatial dispersion is determined by κ � O(1) and it is taken
to be positive without loss of generality. An example scaling
is given in Appendix A.

To clarify, here we define relativistic and pseudorelativistic
scenarios as being those characterized by s = −1 and s = +1,
respectively, whereupon the transformation laws of Eq. (1)
correspond to skews and rotations in the (τ, ζ ) plane [11].

In the context of Eq. (1), the SVEA is embodied by the
inequality κ|∂2u/∂ζ 2| � |∂u/∂ζ |. Throughout, we purposely
avoid that regime (both analytically and computationally)
until considering the position of conventional model pre-
dictions within the wider soliton hierarchy. Neglecting the
operator κ∂2/∂ζ 2 will then be shown as synonymous with a
simultaneous multiple limit in the algebra of spatiotemporal
solutions. Moreover, we have found that κ∂2/∂ζ 2 can be ac-
commodated in many exact analyses and thus it does not need
to be treated perturbatively (e.g., through order-of-magnitude
considerations [31]).

B. General quadrature equations

Solutions to Eq. (1) are sought that have a general form
described by the Madelung-type ansatz

u(τ, ζ ) = ρ1/2(τ, ζ ) exp[iψ (τ, ζ )], (2a)

where ρ and ψ are real functions determining the intensity
and (total) phase, respectively, of u. Substituting Eq. (2a) into
Eq. (1) and collecting the real and imaginary parts yields the
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following pair of coupled equations:

2

ρ

(
∂2ρ

∂τ 2
+ 2sκ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

+ 2sκ

(
∂ρ

∂ζ

)2
]

− 4

[(
∂ψ

∂τ

)2

+ 2sκ

(
∂ψ

∂ζ

)2
]

− 8s

(
∂ψ

∂ζ
+ α

∂ψ

∂τ

)

+ 8s
2 + ρ/ρsat

(1 + ρ/ρsat )2

(ρ

2

)
= 0, (2b)

ρ

(
∂2ψ

∂τ 2
+ 2sκ

∂2ψ

∂ζ 2

)
+

(
∂ψ

∂τ

∂ρ

∂τ
+ 2sκ

∂ψ

∂ζ

∂ρ

∂ζ

)

+ s

(
∂ρ

∂ζ
+ α

∂ρ

∂τ

)
= 0. (2c)

(Neglecting all the κ-dependent terms leads to the well-known
fluid-type equations [32] for ρ and ψ in the corresponding
SVEA-type model.) One can now eliminate the carrier-wave
part of the solution by setting

ψ (τ, ζ ) = �(τ, ζ ) + Kζ − ζ

2κ
. (3)

Here, � denotes the phase distribution for the solitary ex-
citation, K is the propagation constant, and the final factor
describes the rapidly oscillating component inherent to the
solutions of models that are second order in ζ [11]. Quadrature
equations (2b) and (2c) may then be written as

2

ρ

(
∂2ρ

∂τ 2
+ 2sκ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

+ 2sκ

(
∂ρ

∂ζ

)2
]

− 4

[(
∂�

∂τ

)2

+ 2sκ

(
∂�

∂ζ

)2
]

− 8s

(
α

∂�

∂τ
+ 2κK

∂�

∂ζ

)

− 8s

[
β − 2 + ρ/ρsat

(1 + ρ/ρsat )2

(ρ

2

)]
= 0 (4a)

and

ρ

(
∂2�

∂τ 2
+ 2sκ

∂2�

∂ζ 2

)
+

(
∂�

∂τ

∂ρ

∂τ
+ 2sκ

∂�

∂ζ

∂ρ

∂ζ

)

+ s

(
α

∂ρ

∂τ
+ 2κK

∂ρ

∂ζ

)
= 0. (4b)

Here, we have defined the dispersion relation by identifying
κK2 − 1/4κ ≡ β so that

K = ± 1

2κ

√
1 + 4κβ, (4c)

and where the ± sign denotes propagation in the forward (+)
or backward (−) longitudinal direction.

C. Space-time coordinate transformation
and symmetry reduction

Inspection of Eqs. (4a) and (4b) demonstrates that there
is a symmetry between space and time derivatives that does
not appear in the conventional approach to pulse modeling.

Such symmetry can be exploited by introducing the lumped
space-time coordinate ξ ≡ ξ (τ, ζ ), effectively a single new
independent variable, where

ξ (τ, ζ ) ≡ τ − V0ζ√
1 + 2sκV 2

0

, (5)

and V0 is a constant intrinsic velocity that parametrizes
the transformation. By implementing a change of variables
(5) through the replacement of partial differential operators
∂/∂τ and ∂/∂ζ and combinations thereof—see Ref. [12] for
details—we can use Eqs. (4a) and (4b) to write down a pair
of coupled ordinary differential equations for the ρ and �

quadratures in terms of ξ :

d

dρ

[
1

ρ

(
dρ

dξ

)2
]

− 4

(
d�

dξ

)2

− 8s

⎛
⎝ α − 2κKV0√

1 + 2sκV 2
0

⎞
⎠d�

dξ

− 8s

[
β − 2 + ρ/ρsat

(1 + ρ/ρsat )2

(ρ

2

)]
= 0, (6a)

ρ
d2�

dξ 2
+ d�

dξ

dρ

dξ
+ s

⎛
⎝ α − 2κKV0√

1 + 2sκV 2
0

⎞
⎠dρ

dξ
= 0. (6b)

To find particular (e.g., soliton) solutions, Eqs. (6a) and (6b)
must be supplemented by appropriate boundary conditions on
ρ(ξ ) and �(ξ ).

III. BRIGHT SOLITON PULSES

One expects bright solitons to exist in the case of anoma-
lous GVD (where s = +1). In the following analysis, the
“b” subscript is introduced to denote bright solitons through
ρ(ξ ) → ρb(ξ ), �(ξ ) → �b(ξ ), β → βb, K → Kb, and the
intrinsic velocity is flagged by V0 → V0b.

A. Intensity quadrature

To obtain the quadrature equations for bright solitons, we
look for particular solutions where �b = 0 so that there is no
phase change across the temporal width of the pulse. Equation
(6a) becomes

d

dρb

[
1

ρb

(
dρb

dξ

)2
]

= 8

[
βb − 2 + ρb/ρsat

(1 + ρb/ρsat )2

(ρb

2

)]
, (7a)

and direct integration with respect to ρb leads to(
dρb

dξ

)2

= 8βbρ
2
b − 4ρ2

sat

(
ρ2

b

ρsat
+ ρb

1 + ρb/ρsat

)
+ c2bρb,

(7b)
where c2b is a constant to be determined from the solu-
tion boundary conditions. As ξ → ±∞, the intensity profile
must decay to zero sufficiently rapidly so that ρb → 0 as
(dρb/dξ )2 → 0. Applying these limits to Eq. (7b) shows that
c2b = 4ρ2

sat. (Note that, in the cubic-quintic regime [12], the
corresponding constant of integration vanishes.) Similarly,
when ξ → 0 the intensity tends to its peak value, denoted by
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FIG. 1. Bright soliton intensity distributions obtained by solv-
ing Eq. (9a) for ρ0 = 1.0. These profiles are universal since they
are insensitive to variations in κ , α, and V0b. The dilation (pulse-
broadening) effect appears for anomalous GVD (s = +1) when
considering these curves as functions of τ rather than of ξ [12].

ρ0, so that

βb = 1

1 + ρ0/ρsat

(ρ0

2

)
. (7c)

The bright soliton propagation constant Kb, given in Eq. (4c),
is then fully determined.

By combining the algebraic results for c2b and βb, the
right-hand side of Eq. (7b) can be factorized to yield the more
compact structure(

dρb

dξ

)2

= 4ρ2
b

(ρ0 − ρb)

(1 + ρ0/ρsat )(1 + ρb/ρsat )
. (8)

A second integration uncovers an implicit result describing
the spatiotemporal pulse intensity profile which, for ease of
comparison, we express in a form similar to that introduced
by Krolikowski and Luther-Davies [29]:

tan−1 (ηb) + 1

2

(
ρsat

ρ0

)1/2

ln

[
(ρ0/ρsat )1/2 + ηb

(ρ0/ρsat )1/2 − ηb

]

= ρ
1/2
sat

(1 + ρ0/ρsat )1/2 ξ , (9a)

where

ηb[ρb] ≡
(

ρ0 − ρb

ρsat + ρb

)1/2

(9b)

is a positive real parameter and ηb(ξ ) ≡ ηb[ρb(ξ )]. Equations
(9a) and (9b) can then be solved numerically to obtain ρb(ξ )
(see Fig. 1). One finds that at fixed ρ0, pulse widths tend to
decrease with increasing ρsat.

One of the most notable aspects of the preceding analysis
is that a closed-form prediction for the soliton profile can be
obtained. It is surprising, then, that while the complicated
nonlinearity of Wood et al. [28] yields exact results, much
simpler variants do not [29]. Indeed, Gatz and Herrmann have
shown that NLS-type bright solitons of two other saturable
refractive-index models (involving two-level atoms [25] and
double doping [27]) may be obtained only in the form of
integral equations (to be solved iteratively) or through di-
rect numerical solution of the quadrature problem. Similar

intractability is also present in spatiotemporal regimes, since
the system of ordinary differential equations often turns out
to be the same (e.g., see Appendix B) but where ξ and the
local-time coordinate are effectively interchangeable.

B. Intrinsic velocity

One must now ensure that Eq. (6b) is also rigorously
satisfied where, for �b = 0, it assumes the simple form

(α − 2κKbV0b)
dρb

dξ
= 0. (10a)

In order for Eq. (10a) to hold true for arbitrary gradients
dρb/dξ , one must have α − 2κKbV0b = 0, or equivalently,
V0b = α/2κKb. Hence,

V0b = ± α√
1 + 4κβb

(10b)

and where the structure of V0b here is identical to that for other
known bright spatiotemporal solitons [11,12]. Such a structure
arises from the space-time symmetry inherent to the linear part
of the wave operator in Eq. (1). In contrast, the connection
between βb and ρ0 [cf. Eq. (7c)] depends upon the details of
the system nonlinearity.

Since the pulse travels (in dimensional units) at a velocity
that is proportional to 1/V0b (a quantity defined in dimen-
sionless units), one can immediately see that spatiotemporal
solitons must be assigned speeds that have a weak dependence
on intensity. This type of effect is not typically encoun-
tered in NLS-type models, but it is nonetheless present in
other universal nonlinear wave equations. For instance, the
canonical Korteweg–de Vries model with third-order linear
dispersion and a quadratic self-steepening term predicts a
fundamental sech2-shaped soliton with an amplitude that is
directly proportional to its speed (an essential component for
describing wave-breaking phenomena) [1].

IV. DARK SOLITON PULSES

One expects dark solitons to exist in the case of normal
GVD (where s = −1). Since the localized component of u

resides as a dip traveling across a background continuous-
wave (cw) solution, we set ρ(ξ ) → ρd(ξ ), �(ξ ) → �d(ξ ),
and V0 → V0d, where the “d” subscript denotes dark solitons.
The remaining two parameters are labeled as β → βcw and
K → Kcw with reference to the cw component.

A. Continuous-wave solutions

The cw solutions of Eq. (1) have a uniform intensity ρ0 and
may be assigned a finite frequency shift � so that

ucw(τ, ζ ) = ρ
1/2
0 exp [i(−�τ + Kcwζ )] exp

(
−i

ζ

2κ

)
(11a)

and |ucw|2 ≡ ρ0. Substitution of ansatz (11a) in Eq. (1) yields
the dispersion relation

κK2
cw − �

(
α − s

�

2

)
− 1

4κ
= βcw, (11b)
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which is parametrized by

βcw ≡ 2 + ρ0/ρsat

(1 + ρ0/ρsat )2

(ρ0

2

)
. (11c)

Note that dispersion relation (11b) is either elliptic (when
s = +1) or hyperbolic (when s = −1) and thus always has
two branches corresponding to propagation in the forward and
backward longitudinal senses [11].

The stability of the cw background, which is essential for
the dark soliton, can be addressed through linear analysis (see
Appendix C for details with regard to generic nonlinearity
functionals). Solution (11a) is perturbed by a small-amplitude
periodic spatiotemporal modulation with temporal frequency
�p. Any long-wavelength disturbance then grows whenever

�2
p

2
− 2s

ρ0

(1 + ρ0/ρsat )3 < 0. (12)

Instability is clearly present in the anomalous GVD regime,
but it disappears entirely for normal GVD since inequality
(12) can never be satisfied for any ρ0 � 0. Hence, the cw
background of spatiotemporal dark solitons in saturable sys-
tems has the desired modulational stability properties.

B. Quadrature equations

Having established the modulational instability (MI) char-
acteristics of the cw solutions to Eq. (1), we now turn our
attention to its dark solitons. The quadrature equations are

d

dρd

[
1

ρd

(
dρd

dξ

)2
]

= 4

(
d�d

dξ

)2

− 8

⎛
⎝α − 2κKcwV0√

1 − 2κV 2
0d

⎞
⎠d�d

dξ

− 8

[
βcw − 2 + ρd/ρsat

(1 + ρd/ρsat )2

(ρd

2

)]
(13a)

and

d

dξ

⎡
⎣

⎛
⎝d�d

dξ
− α − 2κKcwV0d√

1 − 2κV 2
0

⎞
⎠ρd

⎤
⎦ = 0. (13b)

Integration of Eq. (13b) leads to a result for the phase deriva-
tive,

d�d

dξ
=

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠ + c1d

ρd
, (14a)

where c1d is a constant to be determined by considering the
behavior of �d as ξ → ±∞. Eliminating the d�d/dξ terms
from Eq. (13a) using Eq. (14a) leaves an equation solely for
the intensity quadrature:

d

dρd

[
1

ρd

(
dρd

dξ

)2
]

= 4
c2

1d

ρ2
d

− 4

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2

− 8

[
βcw − 2 + ρd/ρsat

(1 + ρd/ρsat )2

(ρd

2

)]
.

(14b)

Equations (14a) and (14b) are the dark-soliton analogs of
Eqs. (10a) and (7a), respectively, describing bright solitons.
They can be solved to provide an exact solution.

C. Intensity quadrature

Integration of Eq. (14b) with respect to ρd gives

(
dρd

dξ

)2

= 4ρ2
sat

(
ρ2

d

ρsat
+ ρd

1 + ρd/ρsat

)

− 4

⎡
⎣2βcw +

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2⎤
⎦ρ2

d

+ c2dρd − 4c2
1d. (15)

By writing (dρd/dξ )2 = 4D(ρd − ρ1)(ρ0 − ρd )2/(1 +
ρd/ρsat ), one may expand the numerator and compare
the coefficients of ρn

d with n = 3, 2, 1, and 0. The result is a
system of four auxiliary algebraic equations:

D ≡ 1 + c3d

ρsat
, (16a)

−D(2ρ0 + ρ1) ≡ c2d

4ρsat
+ ρsat + c3d, (16b)

D
(
ρ2

0 + 2ρ0ρ1
) ≡ c2d

4
− c2

1d

ρsat
+ ρ2

sat, (16c)

Dρ2
0ρ1 ≡ c2

1d, (16d)

and where we have introduced the parametrization

c3d ≡ −
⎡
⎣2βcw +

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2⎤
⎦ (16e)

for compactness. Equations (16a)−(16d) can be solved se-
quentially to yield algebraic expressions for constants D, c2d,
and c1d:

D =
(

1 + ρ0

ρsat

)−2(
1 + ρ1

ρsat

)−1

, (17a)

c2d = 4D

[
ρ2

0

(
1 + ρ1

ρsat

)
+ 2ρ0ρ1

]
− 4ρ2

sat, (17b)

c2
1d = ρ2

0ρ1

(1 + ρ1/ρsat )(1 + ρ0/ρsat )2 , (17c)

though only D and c1d are used from here onwards. It then
follows that Eq. (15) may be replaced by the factorized form

(
dρd

dξ

)2

= 4
(ρ0 − ρd )2(ρd − ρ1)

(1 + ρ0/ρsat )2(1 + ρ1/ρsat )(1 + ρd/ρsat )
.

(18)
In the domain where ξ > 0, the intensity gradient dρd/dξ

must be positive. With these signs in mind, one can perform an
integration of Eq. (18) to arrive at an implicit spatiotemporal
solution for ρd(ξ ) that we express in the form first presented
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FIG. 2. Dark soliton intensity distributions obtained by solving
Eq. (19a) with ρ0 = 1.0 and ρ1 = 0.3. These profiles are universal
since they are insensitive to κ , α, and V0b. The contraction (pulse
narrowing) appears for normal GVD (s = −1) when considering
these curves as functions of τ rather than of ξ [12].

by Krolikowski and Luther-Davies [30]:

(
ρ0 + ρsat

ρ0 − ρ1

)1/2

tanh−1

[(
ρ0 + ρsat

ρ0 − ρ1

)1/2

ηd

]

− tanh−1 (ηd ) = ρ
1/2
sat

(1 + ρ0/ρsat )(1 + ρ1/ρsat )1/2 ξ , (19a)

where

ηd[ρd] ≡
(

ρd − ρ1

ρd + ρsat

)1/2

(19b)

is a positive real parameter and ηd(ξ ) ≡ ηd[ρd(ξ )]. Equations
(19a) and (19b) describe the exact (although implicit) dark
soliton intensity profile, and they may be solved numerically
to yield ρd(ξ ) (see Fig. 2). For fixed ρ0 and ρ1, the width of the
pulse increases as ρsat decreases. The physical nature of this
inverse relationship follows directly from the nonlinearity-
dispersion balance required for stationary states to exist (any
reduction in self-phase modulation must be accompanied by a
commensurate weakening of linear spreading) [1,16].

D. Intrinsic velocity

An expression for the intrinsic velocity V0d can be derived
by respecting the asymptotic behavior of the solution. As ξ →
±∞, the intensity tends towards its cw value ρ0 and the phase
gradient d�d/dξ tends to zero. From Eq. (14a), it thus follows
that

α − 2κKcwV0d√
1 − 2κV 2

0d

= −c1d

ρ0
. (20a)

Agreement between Eqs. (16a) and (16b) demands that
ρsat (1 − B ) − 2βcw = Bρ1 (a result that can be confirmed
algebraically). It is then straightforward to show that V0d

satisfies the quadratic equation[
(2κKcw)2 + 2κV 2

0d loc

]
V 2

0d

− 2α(2κKcw)V0d + (
α2 − V 2

0d loc

) = 0, (20b)

where we have defined V0d loc ≡ c1d/ρ0. Analysis of the two
roots of Eq. (20b) must be performed with the two branches
of Kcw in mind [cf. Eq. (11b)]. Under these conditions, and
being careful to choose the correct sign for forward- (+) and
backward-traveling (−) solitons, one finds that the intrinsic
velocity is given by

V0d(F ) = ±V0d loc(F ){1 + 2κρ0(1 + ρ0/ρsat )−2[2 + ρ0/ρsat + F 2(1 + F 2ρ0/ρsat )−1] − 2κα2}1/2 + α
√

1 + 4κβcw

1 + 2κρ0(1 + ρ0/ρsat )−2[2 + ρ0/ρsat + F 2(1 + F 2ρ0/ρsat )−1]
, (21a)

where the physical interpretation of

V0d loc(F ) ≡ ρ
1/2
0 F

(1 + ρ0/ρsat )(1 + F 2ρ0/ρsat )1/2
(21b)

will become clear in Sec. VI B. Here, the dark soliton contrast
parameter F 2 ≡ ρ1/ρ0, with A2 + F 2 = 1 and 0 < F 2 � 1,
has been introduced for universal notation [5,11]. Inspection
of Eq. (21b) also shows that, unlike for the competing cubic-
quintic nonlinearity [12], there is generally no upper limit on
the allowed value of ρ0.

E. Phase quadrature

By combining Eqs. (14a) and (20a), it can be shown that
the soliton phase �d(ξ ) is given by the integral

�d(ξ ) =
(

c1d

ρ0

)∫
dξ

(
ρ0 − ρd

ρd

)
+ �d0, (22a)

where �d0 is a constant that can be set to zero without loss
of generality. The intensity profile is not known explicitly as

a function of ξ , but by deploying Eq. (18) an exact expression
for the phase can be obtained wherein the integration is over
ρd. In the domain ξ � 0,

�d[ηd] = tan−1

[(
1

F

)(
ρsat

ρ0

)1/2

ηd

]

+ F

(
ρ0

ρsat

)1/2

tanh−1 (ηd ), (22b)

and we note that �d(−ξ ) = −�d(ξ ). As expected, the parity
of the dark soliton is determined by the sign of F , so under
the change F → −F the phase profile is reversed in the ξ

coordinate. The phase change across the dark soliton, ��d ≡
�d(+∞) − �d(−∞), can be expressed as

��d = π − 2 tan−1

[(
F

A

)(
1 + ρ0

ρsat

)1/2
]

+ 2F

(
ρ0

ρsat

)1/2

× tanh−1

[
A

(
ρ0

ρsat

)1/2(
1 + ρ0

ρsat

)−1/2
]
. (23)
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Under some conditions, ��d can be greater than π radians
(regimes in which the solution has been designated “darker
than black” by Krolikowski et al. [33]).

V. MORE GENERAL SOLUTIONS

A. Frequency-velocity relations

The covariance of Eq. (1) under rotations or skews of the
space-time coordinate axes means that one may always ob-

serve the waves it describes from any arbitrarily defined frame
of reference. This degree of freedom permits one to construct
more general solution families that involve a finite frequency
shift, denoted here by �, so that now ub ∝ exp(i�τ ) and
ud ∝ exp(−i�τ ).

Following the methods established in Refs. [11] and
[12], one may relate � to a transformation parameter
Vb or Vd characterizing the coordinate change according
to

Vb,d(�) = (� + α)
√

1 + 4κβb,cw − 4sκ�(α + �/2) − α
√

1 + 4κβb,cw

1 + 4κβb,cw − 2sκ (� + α)2 , (24)

and where Vb,d has a status analogous to the transverse velocity typically introduced into the analysis of obliquely propagating
nonlinear beams [7].

In the spatiotemporal formulation, velocities can be shown
to combine geometrically (akin to those in special relativity
[13,15], as determined by the Lorentz rule) rather than ad-
ditively (as in Galilean relativity). Hence, the net velocity
parameters Wb,d defined in the laboratory frame, being the
resultant of the intrinsic and transverse contributions, can be
obtained through a rule that is either pseudorelativistic (when
s = +1 and the geometry is thus Euclidean) or relativistic
(when s = −1 and the geometry is instead Riemannian) in
nature [6]:

Wb,d = V0b,0d + Vb,d

1 − 2sκV0b,0dVb,d
. (25a)

After some algebra, combining Eqs. (10b), (24), and (25a)
one can show that the net velocity of bright solitons has the
compact form

Wb = ± α + �√
1 + 4κβb − 4κ�

(
α + 1

2�
) , (25b)

where the ± sign denoted forward- (+) and backward-
traveling waves (−). An analogous expression for Wd is
somewhat cumbersome and does not exhibit such algebraic
simplification.

Having introduced a transverse velocity, the lumped space-
time variable ξ describing the intensity and phase quadratures
[cf. Eqs. (9a), (19a), and (22b)] must be replaced with its
transformed counterpart,

�b,d(τ, ζ ) ≡ τ ∓ Wb,dζ√
1 + 2sκW 2

b,d

, (26)

where �b is associated with s = +1 and a bright solution,
while �d is selected when considering s = −1 and dark
solutions. For notational convenience, the ± sign inherent to
Wb,d [e.g., see Eq. (25b)] has been absorbed into the �b,d

variable so that the net velocity parameter is now always
a positive quantity. The frequency-shifted bright soliton of
Eq. (1) is subsequently given by

ub(τ, ζ ) = ρ
1/2
b (τ, ζ ) exp

[
i�τ ± i

√
1 + 4κβb − 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (27a)

where ρb(τ, ζ ) is obtained from

tan−1 [ηb(τ, ζ )] + 1

2

(
ρsat

ρ0

)1/2

ln

[
(ρ0/ρsat )1/2 + ηb(τ, ζ )

(ρ0/ρsat )1/2 − ηb(τ, ζ )

]
= ρ

1/2
sat

(1 + ρ0/ρsat )1/2 �b(τ, ζ ), (27b)

and ηb retains its formal definition from Eq. (9b). Similarly, the frequency-shifted dark soliton is

ud(τ, ζ ) = ρ
1/2
d (τ, ζ ) exp

[
i

{
tan−1

[(
1

F

)(
ρsat

ρ0

)1/2

ηd(τ, ζ )

]
+ F

(
ρ0

ρsat

)1/2

tanh−1 [ηd(τ, ζ )]

}]

× exp

[
−i�τ ± i

√
1 + 4κβcw + 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (28a)

where (
ρsat

ρ0

)1/2 (1 + ρ0/ρsat )1/2

A
tanh−1

[(
ρsat

ρ0

)1/2 (1 + ρ0/ρsat )1/2

A
ηd(τ, ζ )

]

− tanh−1 [ηd(τ, ζ )] = ρ
1/2
sat

(1 + ρ0/ρsat )
[
1 + (1 − A2)ρ0/ρsat

]1/2 �d(τ, ζ ), (28b)
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FIG. 3. Nondegenerate bistability curves for saturable bright
solitons as predicted by Eq. (29a). Lower branches with 1/ρsat → 0
correspond to regimes where saturation is weak, in which case the
peak intensity converges toward ρ0 	 1/ν2.

and ηd still has the formal definition from Eq. (19b). Both
solutions have now been parametrized by the ratio ρ0/ρsat,
which facilitates a more straightforward asymptotic analysis
of wave forms in the weak saturation limit [defined to be
ρ0/ρsat � O(1)].

B. Nondegenerate bistability

As with cubic-quintic systems [12,34,35], it is possible to
sweep across the solution continua for the saturable system
and identify pairs of nondegenerate bistable pulses. For the
case of bright solitons, there emerges a range of values for
ρsat within which two solitary pulses may have different peak
intensities while sharing the same full-width-half-maximum
(FWHM) [29,30]. Such a bistable characteristic is different
from that proposed by Kaplan [36] describing degenerate soli-
tons, where the integrated intensity may become a multivalued
function of the propagation constant. It is also distinct from
the familiar S-shaped response curve from external feedback
in driven nonlinear cavities [14] (e.g., as described by the roots
of a cubic equation describing the steady states of a plane
wave experiencing interferomic mistuning, periodic pumping,
and coupling-mirror losses).

Nondegenerate bistable bright solitons with a FWHM
of 2ν� (in the rest frame of the pulse), where � =
sech−1(2−1/2) 	 0.8814 is a scale factor, are described by
ρb(�b = ν�) = ρ0/2 [34]. Applying that condition to solu-
tion (27b) shows that ρ0 and ρsat can be connected by the
implicit equation [29]

tan−1

[(
ρ0/ρsat

2 + ρ0/ρsat

)1/2
]

+ 1

2

(
ρsat

ρ0

)1/2

ln

[
(2 + ρ0/ρsat )1/2 + 1

(2 + ρ0/ρsat )1/2 − 1

]

=
(

ρsat

1 + ρ0/ρsat

)1/2

ν�. (29a)

For weak saturation effects, the lower branch tends to-
wards ρ0 	 1/ν2, while for strong saturation [characterized
by ρ0/ρsat 
 O(1)], the upper branch diverges according to
ρ0 	 ρsat[ρsat (4ν�/π )2 − 1] (see Fig. 3).

FIG. 4. Nondegenerate bistability curves for saturable dark soli-
tons [(a) black (A = 1) and (b) gray (with ν = 1) solutions] as
predicted by Eq. (29b). Lower branches with 1/ρsat → 0 correspond
to weak saturation, in which case the cw intensity tends to ρ0 	
1/ν2A2.

For dark solitons, the bistability condition changes slightly
to read ρd(�d = ν�) = (ρ0 + ρ1)/2 [35], in which case ap-
plication to solution (28b) leads to a second implicit equation
[30]:(

ρsat

ρ0

)1/2 (1 + ρ0/ρsat )1/2

A

× tanh−1

[(
ρsat

ρ0

)1/2( 1 + ρ0/ρsat

2 − A2 + 2ρsat/ρ0

)1/2
]

− tanh−1

[
A(

2 − A2 + 2ρsat/ρ0
)1/2

]

= ρ
1/2
sat

(1 + ρ0/ρsat )
[
1 + (1 − A2)ρ0/ρsat

]1/2 ν�. (29b)

Equation (29b) prescribes pairs of gray solitons that have the
same FWHM but where the cw backgrounds have different
intensities. The lower branch tends towards ρ0 	 1/ν2A2 in
the weak saturation regime (see Fig. 4), as expected [30].

VI. ASYMPTOTIC ANALYSES

A. Soliton hierarchies

For waves of low intensity, defined by |u|2/ρsat � O(1),
saturation is relatively weak and the system response is
traditionally represented through a truncated power series
[18]. To leading order, the dominant nonlinear contribution
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to Eq. (1) is well approximated by

1

2

2 + |u|2/ρsat

(1 + |u|2/ρsat )2
|u|2u 	

(
1 − 3

2ρsat
|u|2

)
|u|2u, (30)

which corresponds to a cubic-quintic model with a dominant
(positive) cubic term and a small (negative) quintic correction.
In the notation of Ref. [12], one can identify coefficients γ2 ≡
+1 and γ4 ≡ −3/2ρsat with the standard cubic nonlinearity
clearly recovered when the quintic contribution is neglected.
Hence, we expect spatiotemporal saturable solitons to transi-
tion through their cubic-quintic counterparts when intensities
are much less than ρsat and the cubic limit is approached. It
is self-evident that the underlying quadrature equations must
also reduce accordingly at each stage.

1. Bright solitons

To facilitate the asymptotic analysis of bright solitons, it
is helpful to recast the exact solution (27b) in the slightly
different but more instructive form [37]

2

(
ρ0

ρsat

)1/2

tan−1

[(
ρ0

ρsat

)1/2( 1 − ρb/ρ0

1 + ρb/ρsat

)1/2
]

+ cosh−1

[
2ρ0(1 − ρ0/ρsat )−1 − ρb

ρb(1 + ρ0/ρsat )(1 − ρ0/ρsat )−1

]

= 2
√

2βb�b(τ, ζ ), (31a)

which more closely resembles the target cubic-quintic bright
soliton [12]. For ρ0/ρsat � O(1), result (31a) is well approx-

imated by

2

(
ρ0

ρsat

)(
1 − ρb

ρ0

)1/2

+ cosh−1

[
2ρ0(1 + ρ0/ρsat ) − ρb

ρb(1 + 2ρ0/ρsat )

]

	 2
√

2βb�b(τ, ζ ). (31b)

In going from Eq. (31a) to (31b), one is obliged to recognize
the leading-order change to the βb parameter [cf. Eq. (7c)],
namely, βb 	 (1 − ρ0/ρsat )(ρ0/2). Hence, the net velocity Wb

[defined in Eq. (25b)] has the correct behavior so that the
right-hand side of Eq. (31b) naturally converges. Note that
ρ0/ρsat does not need to be all that small before the left-hand
side of Eq. (31b) can be replaced to yield

cosh−1

[
2ρ0(1 − ρ0/ρsat ) − ρb

ρb(1 − 2ρ0/ρsat )

]
	 2

√
2βb�b(τ, ζ ). (31c)

[For instance, the approximate solutions (31b) and (31c)
are nearly indistinguishable for ρ0/ρsat = 1/10.] Crucially, it
follows that the approximate saturable soliton described by
Eq. (31c) corresponds to an exact cubic-quintic soliton with
γ2 = +1 and γ4 ≡ −3/2ρsat [12]. As ρ0/ρsat → 0, the cubic
result also emerges from Eq. (31c) [11],

cosh−1

(
2ρ0 − ρb

ρb

)
	 2ρ

1/2
0 �b(τ, ζ ), (31d)

as it must. Hence we have proved that bright solitons form
a hierarchy wherein saturable solutions must necessarily pass
through the corresponding cubic-quintic shape before finally
converging on the cubic limit as ρ0/ρsat → 0.

2. Dark solitons

A similar analysis of dark solitons is more involved, but
the same procedure is generally followed for its intensity and
phase quadratures. The exact solution (28b) describing the
intensity distribution can be reexpressed [37] as

cosh−1

{
2ρ0A

2(1 + ρ0/ρsat ) − [1 + (1 + A2)ρ0/ρsat](ρ0 − ρd )

[1 + (1 − A2)ρ0/ρsat](ρ0 − ρd )

}

− 2A

(1 + ρ0/ρsat )1/2

(
ρ0

ρsat

)1/2

tanh−1

{
1

ρ
1/2
sat

[
ρd − (1 − A2)ρ0

1 + ρd/ρsat

]1/2
}

= 2
√

2βd�d(τ, ζ ), (32a)

and where we have introduced the parameter

βd ≡ ρ0A
2

2

(
1 + ρ0

ρsat

)−3[
1 + (1 − A2)

ρ0

ρsat

]−1

(32b)

for a more transparent recovery of known results for the cubic-quintic system [12].
In the limit ρ0/ρsat � O(1), the expression for βd reduces to its cubic-quintic counterpart with γ2 = +1 and γ4 = −3/2ρsat,

namely, βd = (ρ0A
2/2)[1 − (4 − A2)ρ0/ρsat] [12]. Since the intrinsic velocity V0d derived in Ref. [12] is also recovered from

Eq. (21a) in the same way, it follows that the right-hand side of Eq. (32a) necessarily converges as desired. As in the case of
bright solitons, the ratio ρ0/ρsat does not need to be especially small before the exact left-hand side of Eq. (32a) can be replaced
with an excellent approximation, thus

cosh−1

{
2ρ0A

2[1 − (ρ0/ρsat )(4 − A2)] − (1 − 4ρ0/ρsat )(ρ0 − ρd )

[1 − 2(ρ0/ρsat )(2 − A2)](ρ0 − ρd )

}
	 2

√
2βd�d(τ, ζ ). (33a)
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One subsequently recovers the cubic-quintic intensity profile
detailed in Ref. [12]. As ρ0/ρsat → 0, the well-known result
for the cubic system [7] appears as the limit of Eq. (33a):

cosh−1

[
2ρ0A

2 − (ρ0 − ρd )

ρ0 − ρd

]
	 2ρ

1/2
0 A�d(τ, ζ ). (33b)

The phase distribution of the cubic-quintic dark soliton can be
recovered from the saturable solution in a similar way (we
do not present the details here). Hence, dark solitons must
also form a self-consistent saturable–cubic-quintic–cubic
hierarchy.

B. Slowly varying envelopes

1. Envelope equation

By neglecting the first term in Eq. (1), we can recover
the governing equation of conventional pulse theory in the
laboratory frame:

i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ 1

2

2 + |u|2/ρsat

(1 + |u|2/ρsat )2
|u|2u 	 0.

(34a)

By Galilean boosting to the local-time frame, defined by coor-
dinates τloc ≡ τ − αζ and ζloc = ζ , Eq. (34a) is transformed
into the more familiar form considered by Krolikowski and
Luther-Davies [29,30],

i
∂u

∂ζloc
+ s

2

∂2u

∂τ 2
loc

+ 1

2

2 + |u|2/ρsat

(1 + |u|2/ρsat )2
|u|2u 	 0. (34b)

Crucially, one must be able to recover the soliton solutions
of these two related models in the limit that all contributions
from κ∂2u/∂ζ 2 are sufficiently small simultaneously. In prac-
tice, one is obliged to asymptote the spatiotemporal predic-
tions for velocities and propagation constants in conjunction
with a Galilean transformation to the (τloc, ζloc) frame.

2. Intrinsic, transverse, and net velocities

We first consider algebraic results for the various velocity
contributions Eqs. (10b), (21a), (24), and (25a) under the
assumption of slowly varying envelopes. The label “SVEA”
is used to denote these components in the laboratory frame,
while “loc” refers to their local-time frame representations.

In the limit κβb � O(1), bright solitons have an intrinsic
velocity V0b 	 α ≡ V0b SVEA. For dark solitons with κβcw �
O(1) and κα2 � O(1), it follows that V0d 	 V0d loc + α ≡
V0d SVEA. When considering the parameters Vb,d, the addi-
tional inequality κ|�(α + �/2)| � O(1) leads to the simple
result Vb,d 	 � ≡ VSVEA. This key finding demonstrates that
transverse velocities and frequency shifts are interchange-
able in conventional pulse theory. Finally, the net velocities
Wb,d are well approximated by Wb,d 	 V0b,0d SVEA + VSVEA ≡
Wb,d SVEA.

In the local-time frame, parameters V0b,0d SVEA and VSVEA

combine in a way that maps directly onto the velocity com-
bination rule of Galilean relativity. For bright solitons, the
intrinsic velocity V0b SVEA is transformed away so that in
(τloc, ζloc) coordinates one has V0b loc = 0. It then follows
that Wb loc = VSVEA = �, and hence solutions with � = 0
describe pulses that are strictly stationary (that is, they travel

with their peak always centered on τloc = 0). The situation is
slightly more complicated for dark solitons. The factor α in
V0d SVEA disappears so that the intrinsic velocity of the dark
soliton is simply V0d loc and hence Wd loc = V0d loc + �. Black
solutions (having F = 0 = V0d loc) with � = 0 thus have zero
local net velocity and are also strictly stationary.

3. Asymptotic solutions

Since all the coordinate transformations we have con-
sidered here are geometrical operations, the profile of any
solution must be independent of the frame of reference in
which it is observed. For example, a sech-shaped pulse in
the laboratory frame must also be sech-shaped in the local-
time frame (though in spatiotemporal regimes one necessarily
encounters a contraction or dilation factor) [6,7].

From the results of the previous section, it follows that
under the SVEA, one must have �b,d(τ, ζ ) 	 τ ∓ Wb,dζ ≡
�b,d SVEA(τ, ζ ). The intensity and phase quadratures of lo-
calized components of the solutions [cf. Eqs. (27b), (28a),
and (28b)] remain formally unchanged when assuming slowly
varying envelopes (one simply replaces �b,d with �b,d SVEA).
However, the linear part of the phase distribution alters its
structure due to the coordinate change. When considering
forward-propagating spatiotemporal solitons, transforming to
the local-time frame shows that

ub(τloc, ζloc) ∝ exp

[
i�τloc + i

(
βb − �2

2

)
ζloc

]
(35a)

and

ud(τloc, ζloc) ∝ exp

[
−i�τloc + i

(
βcw + �2

2

)
ζloc

]
. (35b)

These solutions satisfy Eq. (34b) exactly for s = +1 and s =
−1, respectively. Hence, one can now fully appreciate that
the known (conventional) solitons derived by Krolikowski and
Luther-Davies [29,30] are important subsets of the more gen-
eral spatiotemporal solutions. Applying the same multiple-
limit procedure to the backward spatiotemporal solitons yields
largely similar results, except that a rapidly varying phase
term, exp[−i2(ζ/2κ )], survives in the linear phase distribu-
tions. The nonvanishing nature of this contribution demon-
strates that conventional pulse theory (based on a nonlinear
Schrödinger formalism) has no analog of backward waves.

VII. SOLITON STABILITY

In going from cubic [7] to cubic-quintic [12] to saturable
systems, the linear part of the wave operator always has the
same form. In that sense, one does not expect to encounter
substantial changes in soliton stability characteristics since
the fundamental elliptic or hyperbolic structure of the gov-
erning equation remains unchanged. Here, the same physical
arguments with regards frame-of-reference symmetries are
deployed, and standard tools [viz., the Vakhitov-Kolokolov
(VK) and renormalized-momentum integral criteria] that have
previously proved so invaluable [7,11,12] are applied to make
predictions about the robustness of localized solutions to
Eq. (1).
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FIG. 5. Integrated intensity curves P (βb) obtained from
Eq. (36c) for increasing saturation parameters. The gradient dP/dβb

is always positive so that the VK criterion [cf. Eqs. (36a) and (36b)]
is satisfied.

A. Vakhitov-Kolokolov criterion

A bright-type solution of Eq. (34b) is predicted to be stable
against small disturbances if the integrated pulse intensity P ,
defined by

P ≡
∫ +∞

−∞
dτloc |ub|2, (36a)

has a positive gradient such that

d

dβb
P (βb) > 0, (36b)

where βb is the propagation constant [cf. Eq. (7c)]. Since the
wave intensity profile is known only implicitly, the explicit
computation of P (βb) can be potentially awkward. However,
the calculation can be facilitated indirectly by transforming
the integral [36] so that

P (βb) = 1√
2

∫ ρ0(βb )

0
dR0

[
βb − 1

1 + R0/ρsat

(
R0

2

)]−1/2

,

(36c)
where ρ0(βb) = 2βb/(1 − 2βb/ρsat ). Since the peak intensity
lies in the range 0 � ρ0 < ∞, it must be that 0 � βb < ρsat/2.
(Note that the corresponding cubic-quintic soliton also has
a maximum allowed value for βb [12].) Plotting the P (βb)
curves reveals that inequality (36b) tends to be satisfied and
hence saturable solitons are anticipated to be stable entities
(see Fig. 5).

B. Perturbed bright solitons

To test analytical predictions of bright soliton stability, a
similar prescription is followed to that in Ref. [12]. Initial
data is selected for Eq. (1) using solution (27a) but where the
dilation factor (1 + 2κW 2

b )1/2 characterizing the broadening
of ρb(τ, 0) in the anomalous GVD regime is omitted from
�b(τ, 0). The strength of the local shape perturbation thus
increases with � = 4, 8, 12, and 16.

Typical examples of pulse self-reshaping due to internal
dynamics are shown in Fig. 6. A saturation intensity of
ρsat = 4.0 has, according to Eq. (29a), bistable lower- and
upper-branch solitons with peak intensities ρ0 	 2.298 and

FIG. 6. Evolution of the bistable bright soliton peak amplitude
when the initial wave form resides on the (a) lower branch (ρ0 =
2.298) and (b) upper branch (ρ0 = 8.763)—cf. Fig. 3 with ν = 1.0.
System parameters: ρsat = 4.0, s = +1, α = 1.0, κ = 1.0 × 10−3.
Blue circle: � = 4. Green square: � = 8. Red triangle: � = 12.
Black diamond: � = 16.

ρ0 	 8.763, respectively. The lower-branch solution exhibits
monotonically decaying oscillations as the wave form evolves
towards a stationary state of Eq. (1), with a small amount of
energy shed as low-amplitude dispersive waves (radiation).
The upper-branch solution behaves somewhat differently,
with persistent oscillations surviving in the long-term evolu-
tion. These oscillations are bounded within an envelope that is
weakly modulated in ζ—behavior that is consistent with the
excitation of an internal mode [38]—with simulations giving
no indication of convergence towards a stationary state (even
over propagation distances much longer than those shown).

The self-reshaping characteristics of the lower-branch soli-
ton are reminiscent of those recently uncovered in cubic-
quintic systems [12]. By interpreting perturbation-induced
radiative losses as a mechanism for local energy dissipation
(while noting that the system is still globally conservative),
one might regard the asymptotic stationary states emerging in
Fig. 6(a) as fixed-point attractors surrounded by wide basins
of attraction. Similarly, the surviving oscillatory solutions in
Fig. 6(b) are qualitatively similar to the limit-cycle attractors
reported elsewhere in spatial soliton contexts [7].

C. Renormalized-momentum criterion

The stability of dark solitons of generalized NLS-type
models such as Eq. (34b) is typically discussed in terms of
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FIG. 7. Renormalized dark soliton momentum when ρ0 = 2.0,
computed with Eq. (37b) for the contrast range 0 < F � 1. The
gradient dMren/dV0d loc is always positive for V0d loc > 0, so that
stability criterion (37c) is always satisfied. Here, Mren approaches
a numerical value of −2π as V0d loc tends toward zero.

a renormalized momentum Mren,

Mren ≡ i

2

∫ +∞

−∞
dτloc

(
ud

∂u∗
d

∂τloc
− u∗

d
∂ud

∂τloc

)(
1 − ρ0

|ud|2
)

.

(37a)

The integral expression for Mren can be recast in a more
convenient form by way of Eq. (14a) and by noting that ξ

and τloc are interchangeable in conventional analyses:

Mren = −V0d loc

∫ +∞

−∞
dτloc

(ρd − ρ0)2

ρd
. (37b)

Solitons are predicted to be stable when the inequality

d

dV0d loc
Mren(V0d loc) > 0 (37c)

is satisfied. Note that Eq. (37c), proved by Barashenkov [39]
to be an acceptable stability criterion and further developed
by Pelinovsky et al. [40], captures nonlinear dynamical phe-
nomena that the MI (linear) calculation of Sec. IV A (and
Appendix C) clearly cannot.

By considering the behavior of the integral in Eq. (37b),
Kivshar and Afanasjev have shown that black solitons of
Eq. (34b) possess a drift instability that appears when ρsat/ρ0

is less than a critical value of ∼0.45 (see Fig. 3 in Ref. [41]).
The instability manifests itself as the gradual transformation
of an initially black (F = 0) solution into a gray (|F | > 0)
wave form, accompanied by the strong emission of radiation.
In the following simulations with Eq. (1), we restrict our
attention to parameter regimes above criticality. A set of
typical curves for the renormalized momentum, as defined
in Eq. (37b), is shown in Fig. 7. The gradients are generally
positive, and Mren is undefined at V0d loc = 0 [41].

D. Perturbed dark solitons

The perturbed dark soliton initial-value problem is defined
by using solution (28a) but where the contraction factor
(1 − 2κW 2

d )1/2 in the normal GVD regime is omitted from
�d(τ, 0). Attention is first paid to black solitons with fre-
quency shifts of � = 4, 8, 12, and 16. The temporal width

FIG. 8. Evolution of the bistable black soliton full width when
the initial wave form resides on the (a) lower branch (ρ0 = 2.383)
and (b) upper branch (ρ0 = 6.167)—cf. Fig. 4 with ν = 1.0 (horizon-
tal bars indicate theoretical predictions). System parameters: ρsat =
5.0, s = −1, α = 1.0, κ = 1.0 × 10−3. Blue circle: � = 4. Green
square: � = 8. Red triangle: � = 12. Black diamond: � = 16.

of the input pulse, defined as w0 ≡ (2βd )−1/2 [cf. Eq. (32b)],
is broader than that required by the exact solution. We thus
expect the localized pulse to become narrower as it travels
through space, evolving smoothly towards its limiting value
of w∞ = w0(1 − 2κW 2

d )1/2. Typical self-reshaping character-
istics are shown in Fig. 8 for ρsat = 5.0 and ν = 1.0 [in which
case Eq. (29b) determines the lower- and upper-branch cw

FIG. 9. Evolution of the gray soliton contrast parameter when
the initial wave form has ρ0 = 2.0 and F 2(0) = 0.5. System pa-
rameters: ρsat = 5.0, s = −1, α = 1.0, κ = 1.0 × 10−3. Blue circle:
� = 4. Green square: � = 8. Red triangle: � = 12. Black diamond:
� = 16.
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FIG. 10. Evolution of the gray soliton contrast parameter when
the initial wave form has ρ0 = 2.0 and F 2(0) = 0.5 and the initial
perturbation has � = 8.0. System parameters: s = −1, α = 1.0, κ =
1.0 × 10−3. Blue circle: ρsat = 1.0. Green square: ρsat = 2.0. Red
triangle: ρsat = 4.0. Black diamond: ρsat = 8.0.

intensities to be ρ0 	 2.383 and ρ0 = 6.167, respectively].
The evolution into a stationary state occurs relatively rapidly,
within a distance of ζ 	 10.

Finally, illustrative results are presented for perturbed gray
solitons (curves for the reshaping pulse widths are similar to
those in Fig. 8 but they occur on much longer scale lengths
in ζ ). Such solutions tend not to preserve their grayness and
are described by F → F (ζ ), where F (ζ ) must be obtained
numerically. Gray solitons thus often exhibit a small drift-type
instability that is reminiscent of that in cubic-quintic systems
[12], where the minimum intensity of the pulse dip (which is
itself varying slowly in ζ ) tends to travel along the (approxi-
mately linear) characteristic τ − Wd(ζ )ζ = const. and where
V0d(ζ ) is computed from Eq. (21a) after adiabatic fitting of
the numerical dataset to solution (28b). Typical variations in
relaxing grayness for perturbed solitons with a fixed saturation
intensity ρsat = 5.0 are shown in Fig. 9. Simulations have
also uncovered that for a fixed perturbation strength (e.g., for
a moderate value � = 8.0), the relaxation of F (ζ ) tends to
occur over distances that decrease with increasing ρsat (see
Fig. 10).

VIII. CONCLUSIONS

Our analyses of spatiotemporal systems have now consid-
ered exact bright and dark envelope solitons in some detail
for the three classic nonlinearities where one might expect to
find analytical solutions—cubic [11], cubic-quintic [12], and
saturable models. These wave packets tend to exhibit a raft of
corrections to their known conventional counterparts that arise
solely from the space-time-symmetric nature of the governing
equation; they include relativistic- or pseudorelativistic-type
contraction or dilation factors in the pulse width, along with
generic (intensity- and frequency-dependent) modifications
to propagation constants and group velocities. In each case,
standard mathematical tools have been used to investigate
spatiotemporal wave stability, with supporting simulations
testing and verifying theoretical predictions by way of per-
turbed initial-value problems. The new solitons have demon-
strated remarkable robustness throughout, and they may be
interpreted as attractors in the system’s dynamics.

Having derived soliton solutions (fundamental stationary
states to facilitate subsequent investigations), there is now
a wide spectrum of higher-order effects to explore within
the spatiotemporal context. Generic wave-based phenomena
to accommodate include third- [42] and fourth-order [43]
linear dispersion while, in the photonics domain specifically,
self-steepening and stimulated Raman scattering [44,45] are
often practical concerns in optical-fiber systems. The arena
of spatiotemporal soliton collisions is also one that merits at-
tention, given the fundamental importance of nonlinear wave
interactions in general [46,47] and for optical applications in
particular [48].

Finally, it is desirable to extend our (1 + 1)D spatiotempo-
ral modeling into higher-dimensional (2 + 1)D and (2 + 2)D
regimes, where excitations may be fully localized in four-
dimensional space-time. Such an exercise opens the door
to formulating symmetrized (i.e., more complete relativistic-
and pseudorelativistic-type) descriptions of exotic phenomena
such as optical bullets [8] and X waves [49] that include
the interplay between nonlinearity, GVD, and Helmholtz (as
opposed to paraxial) diffraction.

APPENDIX A: EXAMPLE IN WAVEGUIDE OPTICS

We consider a scalar electric field of the form E(t, z) =
A(t, z) exp[i(k0z − ω0t )] + c.c., where A(t, z) is the enve-
lope and “c.c.” denotes the complex conjugate of the preced-
ing quantity. The traveling wave has a center frequency ω0

and propagation constant k0 = n0ω0/c, where n0 is the linear
refractive index of the host medium at ω0 and c is the speed
of light in vacuo. Taking the wave intensity to be |A(t, z)|2,
the generic model chosen for a saturable nonlinear refractive
index nNL is [28]

nNL(|A|2) = n2Isat

2

[
1 − 1

(1 + |A|2/Isat )2

]
, (A1)

where Isat is the saturation intensity parametrizing the re-
sponse. At low intensities, where |A|2/Isat � O(1), sat-
uration is small and Eq. (A1) is well approximated
by nNL(|A|2) 	 n2|A|2 + n4|A|2, where n4 ≡ −(3/2)n2/Isat

(the system essentially has a cubic-quintic response) [18].
Hence, the standard Kerr effect, nNL(|A|2) = n2|A|2, deter-
mines the dominant behavior when |n4||A|2 is negligible
compared with n2.

Deployment of Fourier decomposition techniques to cap-
ture the linear-dispersive properties of the system [16] then
leads to the following equation for A:

1

2k0

∂2A

∂z2
+ i

(
∂A

∂z
+ k1

∂A

∂t

)
− k2

2

∂2A

∂t2

+ ω0

c

(n2

2

) 2 + |A|2/Isat

(1 + |A|2/Isat )2
|A|2A = 0. (A2)

The two parameters k1 ≡ (∂k/∂ω)ω0 = 1/vg and k2 ≡
(∂2k/∂ω2)ω0 are related to the group-velocity and tempo-
ral dispersion (GVD), respectively, where k is formally ob-
tained from an associated eigenvalue problem (i.e., solving
Maxwell’s equations for the transverse distribution of the
guided field [50]).
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One can now introduce a scaling for the laboratory space
z and time t coordinates according to ζ = z/L and τ = t/tp,
and also for the envelope A(t, z) = A0u(t, z). By connecting
the spatial and temporal units through L ≡ t2

p/|k2| (essentially
scaling to a linearly dispersing reference Gaussian pulse [50])
and measuring amplitudes in units defined by (ω0/c)n2A

2
0L ≡

1, we can arrive at Eq. (1) where the parameters are κ =
1/2k0L, α = k1L/tp, s = −sgn(k2), and ρsat = Isat/A

2
0.

APPENDIX B: TWO-LEVEL-ATOM SATURABLE
REFRACTIVE-INDEX MODEL

1. Bright solitons

Perhaps the simplest saturation model stems from the two-
level-atom approximation [14]. Here, it is captured within the
envelope equation

κ
∂2u

∂ζ 2
+ i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ 1

1 + |u|2/ρsat
|u|2u = 0,

(B1)

which is a direct spatiotemporal generalization of the classic
model considered by Gatz and Herrmann [25]. For weak
saturation, where |u|2/ρsat � O(1), the nonlinearity func-
tional tends to the constant ρsat [cf. a limiting value of ρsat/2
for Eq. (1)]. Moreover, a competing cubic-quintic response
emerges in which γ2 = +1 captures the dominant contri-
bution and γ4 ≡ −1/ρsat (cf. γ4 ≡ −3/2ρsat in Sec. VI A)
parametrizes the leading-order correction to the Kerr effect
[12,18].

Following the method detailed in Sec. II, the intensity
quadrature is described by

d

dρb

[
1

ρb

(
dρb

dξ

)2
]

= 8

(
βb − ρb

1 + ρb/ρsat

)
(B2a)

so that, after a first integration, we find(
dρb

dξ

)2

= 8βbρ
2
b − 8ρsatρ

2
b

[
1 − ρsat

ρb
ln

(
1 + ρb

ρsat

)]

+ c2bρb. (B2b)

Applying the bright soliton boundary conditions at ξ → ±∞
shows that c2b = 0. (Recall that the corresponding constant
was nonvanishing, assuming a value of 4ρ2

sat, in Sec. III A.)
Considering the boundary conditions at ξ = 0 also leads to

βb = ρsat

[
1 − ρsat

ρ0
ln

(
1 + ρ0

ρsat

)]
. (B3)

Eliminating βb from Eq. (B3) using Eq. (B2b) leads to(
dρb

dξ

)2

= 8ρ2
satρ

2
b

[
1

ρb
ln

(
1 + ρb

ρsat

)

− 1

ρ0
ln

(
1 + ρ0

ρsat

)]
, (B4)

which cannot now be integrated exactly. To compute the
intensity profile for a given peak intensity ρ0, one might resort
to direct numerical techniques [e.g., treating Eq. (B2a) as a
boundary-value problem and applying the shooting method
(see Fig. 11)]. Alternatively, Eq. (B4) can be transformed into

FIG. 11. Bright soliton intensity distributions obtained by solv-
ing Eq. (B2a) numerically for ρ0 = 1.0 (they are universal since they
are insensitive to variations in κ , α, and V0b). Differences between
the stationary solutions of Eqs. (1) and (B1) occur predominantly at
low values of ρsat (cf. Fig. 1).

an integral equation. In the domain ξ > 0, where dρb/dξ < 0,
it can be shown that ρb may be obtained from

ρb(ξ )

ρ0
= exp

[
− 2

√
2ρsat

∫ ξ

0
dX

{
1

ρb(X)
ln

[
1 + ρb(X)

ρsat

]

− 1

ρ0
ln

(
1 + ρ0

ρsat

)}1/2]
, (B5)

which may be solved iteratively (e.g., in tandem with the
nondegenerate bistability condition) [25].

After implementing the coordinate transformation dis-
cussed in Sec. V, one can write down the more general
frequency-shifted bright soliton solution of Eq. (B1), namely,

ub(τ, ζ ) = ρ
1/2
0 exp

[
− sgn(�b)

√
2ρsat

×
∫ �b(τ,ζ )

0
dX

{
1

ρ(X)
ln

[
1 + ρ(X)

ρsat

]

− 1

ρ0
ln

(
1 + ρ0

ρsat

)}1/2]

× exp

[
i�τ ± i

√
1 + 4κβb − 4κ�

(
α + �

2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (B6)

where �b(τ, ζ ) and Wb are given by Eqs. (26) and (25b),
respectively. We note in passing, but do not rigorously prove
here, that the double-doping saturable nonlinearity proposed
by Gatz and Herrmann [27] can be treated in exactly the
same way and their solution (expressed in terms of an integral
equation) generalized to spatiotemporal regimes accordingly.
Since bright soliton (B6) is now known, it is now instructive
to consider its stability properties in relation to those of
solution (27a).

2. Soliton stability

For consistency, we consider briefly the same class of
perturbed bright soliton initial-value problem for Eq. (B1) as
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FIG. 12. Evolution of the bright soliton peak amplitude when the
initial wave form for Eq. (B1) has a peak amplitude of (a) ρ0 =
2.298 and (b) ρ0 = 8.763. System parameters: ρsat = 4.0, s = +1,
α = 1.0, κ = 1.0 × 10−3. Blue circle: � = 4. Green square: � = 8.
Red triangle: � = 12. Black diamond: � = 16.

in Sec. VII. The input pulse ub(τ, 0) is defined by solution
(B6), but where the dilation factor (1 + 2κW 2

b )1/2 is omitted
from the upper limit [i.e., from �b(τ, 0)]. For straightfor-
ward comparison with earlier simulations, the same frequency
shifts are retained to control the strength of the perturbation
(� = 4, 8, 12, and 16) and peak intensities ρ0 = 2.298 and
ρ0 = 8.763 are used (though these values do not necessar-
ily lie on the bistability curve [25]). We also note that for
fixed peak intensity and saturation parameters, the two-level
model tends to have a stronger nonlinear response than the
phenomenological model of Wood et al. [28].

Comparing Figs. 12(a) and 6(a) shows that quantitatively
similar reshaping curves can be expected for the low-intensity
waves. More pronounced differences can appear for higher-
intensity waves, where the long-term limit-cycle-type oscilla-
tions associated with reshaping solitons of Eq. (1) may be ab-
sent from the predictions of model (B1) [compare Figs. 12(b)
and 6(b)]. One finds, instead, oscillatory features (with varia-
tions on a shorter longitudinal scale length) that vanish as ζ →
∞ to leave a stationary solution. The simulations presented
here and in Sec. VII B thus demonstrate that two different
spatiotemporal saturable-nonlinearity models possess soliton
solutions with similar stability characteristics.

APPENDIX C: MODULATIONAL INSTABILITY

1. Perturbation dispersion relation

Here, we analyze the MI characteristics for a fully-
second-order envelope equation with a generic nonlinearity

function f (|u|2),

κ
∂2u

∂ζ 2
+i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ f (|u|2)u = 0, (C1a)

where f (0) = 0. Typical examples of f include cubic-quintic
systems such as f (|u|2) = γ2|u|2 + γ4|u|4 [12], and saturable
systems that may have either a simple form, f (|u|2) =
|u|2(1 + |u|2/ρsat )−1 [cf. Eq. (B1)], or one that is more com-
plicated,

f (|u|2) = 1

2

2 + |u|2/ρsat

(1 + |u|2/ρsat )2
|u|2 (C1b)

[cf. Eq. (1)]. The two cw families are described by

ucw(τ, ζ ) = ρ
1/2
0 exp

(
±i

√
1 + 4κβcw

ζ

2κ

)
exp

(
−i

ζ

2κ

)
,

(C2)
where ρ0 ≡ |ucw|2 is the uniform intensity, βcw ≡ f (ρ0), and
the ± sign determines the longitudinal sense of propagation
(+ for forwards in ζ , − for backwards).

Perturbed solutions are now sought that have the form

u(τ, ζ ) = ρ
1/2
0 [1 + εa(τ, ζ )] exp

(
±i

√
1 + 4κβcw

ζ

2κ

)

× exp

(
−i

ζ

2κ

)
, (C3a)

where ε � O(1) is a small parameter and a(τ, ζ ) is a complex
function with O(1) magnitude describing perturbations
to both the amplitude and phase of the underlying cw
solution. It thus follows that, within a linear approximation,
|u(τ, ζ )|2 ≡ ρ 	 ρ0 + ερ0(a + a∗) ≡ ρ0 + �ρ(τ, ζ ). The
nonlinearity function f can then be Taylor expanded
around the cw intensity ρ0 so that

f (|u|2) 	 f (ρ0 + �ρ) 	 βcw + ερ0f
′(ρ0)(a + a∗), (C3b)

where f ′(ρ0) ≡ df (ρ)/dρ|ρ=ρ0 parametrizes the leading-
order correction [e.g., f ′(ρ0) = γ2 + 2γ4ρ0 for a
cubic-quintic nonlinearity, or f ′(ρ0) = (1 + ρ0/ρsat )−2

and f ′(ρ0) = (1 + ρ0/ρsat )−3 for the two saturation models,
respectively]. Higher-order terms in the expansion, such as
(�ρ)2 and (�ρ)3 etc., are neglected in linear analysis.

Substitution of Eqs. (C3a) and (C3b) into Eq. (C1a) shows
that a must satisfy the linearized equation at O(ε),

κ
∂2a

∂ζ 2
± i

√
1 + 4κβcw

∂a

∂ζ
+ iα

∂a

∂τ
+ s

2

∂2a

∂τ 2

+ ρ0f
′(ρ0)(a + a∗) 	 0. (C4)

Following the method detailed in Ref. [11], the Fourier modes
of Eq. (C4) have a complex propagation constant Kp (allowing
for potential growth of the perturbation wave) and frequency
�p that are connected by the quartic dispersion relation

κ2K4
p − [

1 + 4κβcw + 2κρ0f
′(ρ0) − sκ�2

p

]
K2

p

∓ 2α�p

√
1 + 4κβcwKp

+ (
1
2�2

p

)[(
1
2�2

p

) − 2α2 − 2sρ0f
′(ρ0)

] = 0. (C5)

While the four roots of Eq. (C5) can be written down exactly
[51], they are algebraically cumbersome and do not provide
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much further physical insight; however, one regime of key
importance corresponds to long-wavelength excitations.

2. Long-wavelength instabilities

Neglecting all κ-dependent contributions to the MI spec-
trum can be expected to recover the long-wavelength result
from conventional pulse theory. By considering a forward-
traveling host wave, perturbation dispersion relation (C5) is
well described by the quadratic approximation

K2
p + 2α�pK − (

1
2�2

p

)[(
1
2�2

p

) − 2α2 − 2sρ0f
′(ρ0)

] 	 0,

(C6a)

which has the two solution branches,

Kp = −α�p ±
√(

1
2�2

p

)[(
1
2�2

p

) − 2sρ0f ′(ρ0)
]
. (C6b)

The term at −α�p is transformed away after a Galilean
boost to the local-time frame, leaving the familiar result for
MI in NLS-based models. One can thus deduce that the
long-wavelength MI properties of the system are essentially
independent of κ and that they occur whenever 2sρ0f

′(ρ0) >

�2
p/2.
Our main focus lies with model (C1b), where f ′(ρ0) �

0 for ρ0 � 0. In the anomalous GVD regime (where s =
+1), it follows that MI appears in the long wave band
0 < �2

p < 4ρ0f
′(ρ0). The most unstable frequency �p0

is then easily calculated from �2
p0 = 2ρ0f

′(ρ0). In con-
trast, Eqs. (C6a) and (C6b) predict that there is no long-
wavelength MI in the normal GVD regime (where s =
−1). Hence, the background wave of the dark soliton (28a)
is expected to be always stable against small background
disturbances.
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