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Relativistic and pseudorelativistic formulation of nonlinear envelope equations
with spatiotemporal dispersion. I. Cubic-quintic systems
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A generic envelope equation is proposed for describing the evolution of scalar pulses in systems with
spatiotemporal dispersion and cubic-quintic nonlinearity. Our analysis has application, for instance, in waveguide
optics where the physical origin of the dielectric response lies in the χ (3) and χ (5) susceptibilities. Exact analytical
bright and gray solitons are derived by coordinate transformations and methods of direct integration. Known
solitons of conventional pulse theory (based on nonlinear-Schrödinger prescriptions) are shown to emerge
asymptotically as subsets of the more general spatiotemporal solutions, and simulations test the stability of
the latter through a class of perturbed initial-value problem.
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I. INTRODUCTION

Understanding the formation, propagation, and interactions
between solitons is a fundamental objective in many branches
of nonlinear science [1,2]. These self-localizing and self-
stabilizing wave packets are elementary excitations that may
emerge in essentially any system possessing both linear and
nonlinear dispersive elements [3]. Since solitons and solitary-
wave phenomena are frequently described by amplitude equa-
tions that anticipate slowly varying wave envelopes, a key
question to address is their properties beyond this prevailing
(if often justifiable) level of approximation.

In a set of earlier papers, we proposed [4] and analyzed
[5,6] a model for describing the longitudinal evolution of
scalar wave packets in systems with linear dispersion [both
temporal (group velocity) and spatial forms] and cubic non-
linearity. The governing equation was not bound by the ubiq-
uitous slowly varying envelope approximation (SVEA), and
its structure was thus rendered fully second order in laboratory
time t (the coordinate in which pulses are typically localized)
and space z (the evolution coordinate). A consequence of
deploying such a symmetrized model is that a Galilean boost
to local-time coordinates zloc ≡ z and tloc ≡ t − z/vg (which
define a reference frame moving relative to the laboratory at
group velocity vg in the +z direction) obscures the equal sta-
tus of space and time: when expressed in terms of derivatives
with respect to zloc and tloc, the transformed wave equation is
not interpreted quite so intuitively due to the appearance of a
mixed partial differential operator ∂2/∂zloc∂tloc [7].

The Galilean-boost procedure may be safely discarded
because its introduction is, in any case, arbitrary and usually
made for convenience [4]. Without it, and in the absence
of the SVEA, a compact framework emerges for modeling
pulse phenomena in wave-based systems with spatial and
temporal dispersion. The spirit of our more geometric formal-
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ism (viz., frame-of-reference considerations, transformations
in the space-time plane, covariance of the wave equation,
invariant quantities, and Lorentz-like combination rules for
velocities) has strong connections to Einstein’s special theory
of relativity [8]. Moreover, all the results of conventional pulse
theory are recoverable asymptotically (when simultaneous
multiparameter expansions are applied to the spatiotemporal
solutions) in much the same way as Newtonian dynamics
appears in the low speed limit of relativistic mechanics.

The spatiotemporal description of wave propagation is
rather general. Previously, we have applied it in the arena
of waveguide optics when the nonlinear polarization of the
host medium is dominated by the χ (3) susceptibility [9].
Such a simple configuration has been studied extensively for
over four decades [10] through the prism of slowly varying
envelopes and Galilean boosts, with many classic analyses
based on nonlinear Schrödinger (NLS) equations [11–13].
With space-time symmetry firmly in mind, it may be seen that
the seminal work of Biancalana and Creatore [14] can play an
important role in certain physical regimes. They identified that
in some semiconductors (e.g., ZnCdSe/ZnSe superlattices),
spatial material dispersion (an effect connected to photon-
exciton coupling [15]) may be described by a contribution
to the envelope equation that is proportional to the second
longitudinal derivative, ∂2/∂z2. Related phenomena cannot
be adequately described within the SVEA, and ∂2/∂z2 con-
siderations hence underpin modern contexts for research into
new classes of generic relativistic- and pseudorelativistic-type
propagation problems [4].

Here, we generalize our earlier analyses from cubic [4–6]
to cubic-quintic systems. In wave optics, the quintic term
might arise from excitation of the higher-order χ (5) sus-
ceptibility. The combined χ (3) − χ (5) response, proposed
by Pushkarov et al. [16], has come to play an important
role in photonics and is crucial for modeling a wide range
of materials: liquid carbon disulfide [17], ultraviolet-grade
fused silica [18], AlGaAs semiconductors operating just
below the half band gap [19], some semiconductor-doped

2469-9926/2018/98(5)/053842(17) 053842-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053842&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevA.98.053842


J. M. CHRISTIAN, G. S. MCDONALD, AND A. KOTSAMPASERIS PHYSICAL REVIEW A 98, 053842 (2018)

glasses [20,21], the polydiacetylene para-toluene sulfonate
π -conjugated polymer [22], chalcogenide glasses [23], and
some transparent organic materials [24].

Decades after its proposal, the cubic-quintic nonlinearity
continues to pique the interest of researchers. For instance,
Stegeman et al. [25] have provided an in-depth analysis of
the tensor character of χ (5) in order to accurately quantify
constitutive relations in optical materials beyond the well-
understood Kerr regime. More recently, Besse et al. [26]
generalized the standard Lorentz model (routinely used for
introducing phenomenological descriptions of nonlinear dy-
namical effects [9]) to account for a sextic term in the potential
energy well of a one-dimensional oscillator.

The conventional cubic-quintic envelope equation [in its
equivalent spatial (beam) and temporal (pulse) guises] has
well-known exact analytical solutions, principally the bright
soliton of Gatz and Herrmann [27] and its dark counterpart
derived by Herrmann [28] (both of which are exponentially
localized states). Gagnon [29] and others [30] have con-
sidered a broader spectrum of solutions (including antidark
solitons, partially delocalized amplitude kinks, and cnoidal
waves) that may exist depending upon the interplay between
group-velocity dispersion (GVD) and nonlinearity. The sta-
bility of, and interactions between, these excitations have
been addressed through detailed simulations [31]. Cubic-
quintic models also admit the possibility of algebraic solitons
(weakly localized states with slower power-law asymptotics
that correspond to a boundary separating localized hyperbolic
excitations and periodic wave trains) [32].

The layout of this paper is as follows. In Sec. II, the di-
mensionless cubic-quintic spatiotemporal model is introduced
and a generic separation-of-variables technique is deployed
to derive a pair of coupled equations describing the intensity
and phase quadratures of an arbitrary solution. The properties
of key operator combinations used throughout the analysis
are also discussed. In Secs. III and IV, we derive exact
bright and dark (gray) solitons by direct integration of the
quadrature equations subject to appropriate boundary con-
ditions (families of algebraic and amplitude-kink waves are
presented in Appendixes A and B, respectively). More general
solutions accommodating a finite frequency shift are detailed
in Sec. V, which are arrived at on the basis of coordinate
transformations. Asymptotic analysis in Sec. VI demonstrates
the recovery of known solitons in the limit of slowly varying
envelopes (a feature that is required both physically and math-
ematically), and numerical simulations test the robustness
of spatiotemporal solitons via a class of perturbed initial-
value problem in Sec. VII. We conclude, in Sec. VIII, with
comments about the potential applications of our work.

II. SPATIOTEMPORAL MODEL

A. Envelope equation

As an example, we consider a continuous-wave (cw) elec-
tric field defined by E(t, z) = A(t, z) exp [i(k0z − ω0t )] +
c.c., where “c.c.” denotes complex conjugation of the preced-
ing quantity, ω0 and k0 = n0ω0/c are the angular frequency
and propagation constant, respectively, for a wave traveling in
a host medium with linear refractive index n0 ≡ n0(ω0), and c

is the vacuum speed of light. By adopting the standard Fourier
decomposition to accommodate leading-order temporal dis-
persion [9,33], the complex amplitude A(t, z) can be shown
to satisfy the following envelope equation that is symmetric
in space and time:

1

2k0

∂2A

∂z2
+ i

(
∂A

∂z
+ k1

∂A

∂t

)
− k2

2

∂2A

∂t2

+ ω0

c
(n2|A|2 + n4|A|4)A = 0. (1)

Here, k1 ≡ (∂k/∂ω)ω0 = 1/vg is the inverse of the group
velocity vg and k2 ≡ (∂2k/∂ω2)ω0 the GVD coefficient, where
k is related to the mode eigenvalue (obtained by solving
Maxwell’s equations for the transverse distribution of the
guided field [33]). Coefficients n2 and n4 are directly related to
the third- and fifth-order susceptibilities [17,25,26]. The self-
induced refractive-index change nNL(|A|2), well described
by nNL ≡ n2|A|2 + n4|A|4 in scalar cubic-quintic regimes, is
then assumed to be a small perturbation compared to the
dominant linear part n0 (and, typically, n4|A|4 is much weaker
than n2|A|2 in these contexts) [16].

With reference to a conventional Gaussian pulse of full
width 2tp and dispersion length L = t2

p/|k2| [9,33], one can
introduce dimensionless coordinates ζ ≡ z/L and τ ≡ t/tp.
By substituting A(τ, ζ ) = A0u(τ, ζ ) into Eq. (1), a governing
equation for the dimensionless envelope u may be obtained:

κ
∂2u

∂ζ 2
+ i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ γ2|u|2u + γ4|u|4u = 0,

(2)

where α = k1tp/|k2| is a ratio of group speeds and s =
−sgn(k2) = ±1 flags the sign of the GVD coefficient (+1 for
anomalous, −1 for normal). When the electric field is mea-
sured in units of A0 = (n0/|n2|k0L)1/2, it follows that γ2 =
sgn(n2), while γ4 = n4A

2
0/|n2| parametrizes the strength of

quintic-to-cubic nonlinear phase shifts. Note that by setting
α = 0 and interpreting τ as a (normalized) transverse spa-
tial coordinate, Eq. (2) is formally identical to the scalar
Helmholtz equation describing bright [34] and dark [35]
cw beams in two-dimensional cubic-quintic systems. The
propagation contribution to spatial dispersion, arising from
the confined electromagnetic mode, is parametrized by κ ≡
1/2k0L = c|k2|/2n0ω0t

2
p � O(1) [4]; the material contribu-

tion [14] can be included within the definition of κ to give a
lumped parameter, which we take to be positive here without
loss of generality.

Since κ∂2u/∂ζ 2 is potentially small, it is tempting to either
neglect it completely (the essence of the SVEA) or, slightly
more satisfactorily, consider it as an O(κ ) perturbation us-
ing a generalization of the methods applied to cw beams
in cubically nonlinear systems [36]. Such an approach is
unnecessary and actually increases model complexity. As we
will show, Eq. (2) can be treated exactly (i.e., without further
approximation).
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B. General quadrature equations

We begin by seeking solutions to Eq. (2) that can be
represented by the Madelung-type ansatz

u(τ, ζ ) = ρ1/2(τ, ζ ) exp[iψ (τ, ζ )], (3a)

where ρ(τ, ζ ) and ψ (τ, ζ ) are the intensity and (total) phase
quadratures, respectively (and hence are taken to be real func-
tions). By substituting the decomposition for u into Eq. (2)
and collecting the real and imaginary parts, one obtains

2

ρ

(
∂2ρ

∂τ 2
+ 2sκ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

+ 2sκ

(
∂ρ

∂ζ

)2
]

− 4

[(
∂ψ

∂τ

)2

+ 2sκ

(
∂ψ

∂ζ

)2
]

− 8s

[(
∂ψ

∂ζ
+ α

∂ψ

∂τ

)
− (γ2 + γ4ρ)ρ

]
= 0 (3b)

and

ρ

(
∂2ψ

∂τ 2
+ 2sκ

∂2ψ

∂ζ 2

)
+
(

∂ψ

∂τ

∂ρ

∂τ
+ 2sκ

∂ψ

∂ζ

∂ρ

∂ζ

)

+ s

(
∂ρ

∂ζ
+ α

∂ρ

∂τ

)
= 0, (3c)

respectively. These equations are somewhat symmetrical in
ρ and ψ derivatives, being a direct spatiotemporal general-
ization of those typically considered in conventional pulse
theory. They can be expressed in a more convenient form by
eliminating the longitudinal rapid-phase contribution associ-
ated with the background carrier wave according to ψ (τ, ζ ) ≡
�(τ, ζ ) − ζ/2κ . It follows that ρ and � are then coupled
through

2

ρ

(
∂2ρ

∂τ 2
+ 2sκ

∂2ρ

∂ζ 2

)
− 1

ρ2

[(
∂ρ

∂τ

)2

+ 2sκ

(
∂ρ

∂ζ

)2
]

− 4

[(
∂�

∂τ

)2

+ 2sκ

(
∂�

∂ζ

)2
]

− 8s

[
α

∂�

∂τ
− 1

4κ
− (γ2 + γ4ρ)ρ

]
= 0 (4a)

and

ρ

(
∂2�

∂τ 2
+ 2sκ

∂2�

∂ζ 2

)
+
(

∂�

∂τ

∂ρ

∂τ
+ 2sκ

∂�

∂ζ

∂ρ

∂ζ

)

+ sα
∂ρ

∂τ
= 0. (4b)

To find particular (i.e., soliton) solutions, Eqs. (4a) and (4b)
must be supplemented by appropriate boundary conditions on
ρ and �.

C. Space-time coordinate transformation

Analysis is most easily facilitated by introducing a lumped
space-time coordinate ξ ≡ ξ (τ, ζ ), defined as

ξ (τ, ζ ) ≡ τ − V0ζ√
1 + 2sκV 2

0

. (5a)

One might interpret ξ as a time coordinate in the rest frame of
the pulse under consideration (that is, in the frame where the
pulse is stationary) [4]. Although the status of V0 corresponds
to a velocitylike parameter in the theory of beams [34,35], in
the context of pulses it is strictly related to the inverse velocity
in unscaled units.

The advantage of introducing ξ is that it allows one to
simplify combinations of partial derivatives. On the one hand,
operators ∂/∂τ and ∂/∂ζ may be recast as

∂

∂τ
= 1√

1 + 2sκV 2
0

d

dξ
and

∂

∂ζ
= − V0√

1 + 2sκV 2
0

d

dξ
.

(5b)
On the other hand, combinations of operators appearing in
Eqs. (4a) and (4b) transform according to

∂•

∂τ

∂•

∂τ
+ 2sκ

∂•

∂ζ

∂•

∂ζ
= d•

dξ

d•

dξ
(5c)

and (
∂2

∂τ 2
+ 2sκ

∂2

∂ζ 2

)
• = d2•

dξ 2
, (5d)

where “•” symbolizes a place reserver. With careful deploy-
ment of transformations (5a)−(5d), the quadrature equations
in both spatiotemporal and conventional [27,28] formalisms
can be shown to map onto each other in an essential way. For
example, the functional form of pulse shapes is determined by
the interplay between dispersion and nonlinearity, and should
not be dependent upon the choice of reference frame.

III. BRIGHT SOLITON PULSES

We begin our analysis of solitary states by considering
bright solitons (bell-shaped profiles that exist on top of a mod-
ulationally stable zero-amplitude background wave). These
solutions may be expected to possess an intrinsic velocity
proportional to α since they are moving with respect to the
(stationary) waveguide. Throughout the rest of the paper, we
denote the intensity distribution by ρb(τ, ζ ). The phase has a
more subtle decomposition.

A. Symmetry reduction

In the anomalous dispersion regime (where s = +1),
Eqs. (4a) and (4b) can be integrated exactly. By setting
�(τ, ζ ) = �b(τ, ζ ) + Kbζ , where Kb is the soliton propaga-
tion constant and �b = 0 (so there is no phase change across
the temporal extent of the wave packet), one can show that ρb

must satisfy the pair of simultaneous equations:

2

ρb

(
∂2ρb

∂τ 2
+ 2κ

∂2ρb

∂ζ 2

)
− 1

ρ2
b

[(
∂ρb

∂τ

)2

+ 2κ

(
∂ρb

∂ζ

)2
]

−8

(
κK2

b − 1

4κ

)
+ 8(γ2 + γ4ρb)ρb = 0, (6a)

α
∂ρb

∂τ
+ 2κKb

∂ρb

∂ζ
= 0. (6b)

According to the transformation detailed in Sec. II, where
s = +1 and the velocity parameter is labeled as V0b, Eqs. (6a)
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and (6b) simplify to

d

dρb

[
1

ρb

(
dρb

dξ

)2
]

= 8[βb − (γ2 + γ4ρ)ρb], (7a)

(α − 2κKbV0b)
dρb

dξ
= 0. (7b)

Equation (7a) is parametrized by βb ≡ κK2
b − 1/4κ , which is

quadratic in Kb and thus yields two branches: Kb = ±(1 +
4κβb)1/2/2κ , where the + (−) sign describes wave packets
traveling in the forward (backward) longitudinal sense.

B. Intensity quadrature

Direct integration of Eq. (7a) with respect to ρb yields(
dρb

dξ

)2

= −4

(
γ2 + 2

3
γ4ρb

)
ρ3

b + 8βbρ
2
b + c2bρb, (8a)

where c2b is a constant to be determined from the solution
boundary conditions. As ξ → ±∞, one has that ρb → 0 and
(dρb/dξ )2 → 0. Applying these conditions to Eq. (8a) shows
that c2b = 0. Similarly, when ξ → 0, one has that ρb → ρ0

and (dρb/dξ )2 → 0, giving rise to

βb ≡
(

γ2 + 2

3
γ4ρ0

)
ρ0

2
. (8b)

The physical interpretation of βb will become apparent later
on. To facilitate a second integration, it is convenient to
factorize the right-hand side of Eq. (8a) so that(

dρb

dξ

)2

= 4ρ2
b (ρ0 − ρb)(g1bρb + g0b), (8c)

where g1b ≡ (2/3)γ4 and g0b ≡ γ2 + (2/3)γ4ρ0. Separation
of Eq. (8c) and deployment of a standard integral results in
the intensity quadrature

ρb(ξ ) = 4βb

B cosh(2
√

2βbξ ) + γ2
, (9)

where B ≡ [γ 2
2 + (16/3)γ4βb]1/2. The solution is self-

consistent, since ρ(0) = 4βb/(B + γ2) ≡ ρ0 also gives rise
to the result for βb in Eq. (8b). We also note that B can be
expressed as a function of ρ0, such that B = γ2 + (4/3)γ4ρ0.
The existence of a localized bell-shaped solution requires both
βb > 0 and B > 0.

We note that the spatiotemporal intensity profile in its rest
frame [see Eq. (9)] maps directly onto the solution derived by
Gatz and Herrmann [27] in the local-time frame, as it must.
Such a result is not altogether surprising mathematically since
we have deliberately constructed a coordinate transformation
[cf. Eq. (5a)] to draw out such a symmetry. In terms of a
fundamental physical principle, the form of the pulse shape
must be insensitive to the coordinate system one chooses
(since, as mentioned previously, any such choice is arbitrary).
Linear boosts to take observers between different frames of
reference result in a contraction or dilation of the projected
pulse width, but these geometrical operations cannot change
its structure [4–6].

C. Intrinsic velocity

In order for Eq. (7b) to hold for arbitrary gradients dρb/dξ ,
it must be that α − 2κKbV0b = 0 or, equivalently, V0b =
α/2κKb. Substituting for Kb then gives rise to

V0b = ± α√
1 + 4κβb

. (10)

Later it will be convenient to release the ± sign (which is
determined by the longitudinal propagation sense) directly
into the argument of the cosh function [5,6].

Equation (10) reveals that pulse-type solutions to Eq. (2)
are associated with an intrinsic velocity parameter that has a
weak dependence on the peak intensity. Since βb increases
with ρ0, one may conclude that pulse speeds in the laboratory
frame (which are proportional to 1/V0b) increase with ρ0.
In contrast, solitons (and, more generally, arbitrarily shaped
pulses) of conventional NLS-type theory [i.e., Eq. (2) in
the absence of the first term] do not tend to exhibit such a
nonlinear phenomenon, although amplitude-dependent speeds
are common in other universal wave equations (such as the
canonical model of Korteweg and de Vries [1]).

Finally, we address existence criteria. For purely positive
nonlinearity coefficients, the solution continuum has βb > 0
for all ρ0 > 0, while no bell-shaped solution exists in the
purely negative case. For the competing nonlinearity γ2 > 0
and γ4 < 0, it follows from B > 0 (the dominant inequality)
that 0 < βb < βb max, where βb max = (3/16)γ 2

2 /γ4. Hence,
from Eq. (8b), there exists a maximum peak intensity ρ0max

such that 0 < ρ0 < ρ0max ≡ (3/4)γ2/|γ4|. In the complemen-
tary regime γ2 < 0 and γ4 > 0, solutions with βb > 0 possess
a minimum intensity ρ0min determined from the inequality
ρ0 > ρ0min ≡ (3/2)|γ2|/γ4.

IV. DARK SOLITON PULSES

We now turn our attention to dark solitons (whose in-
tensity and phase quadratures are denoted by ρd and �d,
respectively) which comprise a phase-topological gray “dip”
traveling across a cw background whose stability against any
such disturbance is crucial for ensuring the existence of the
localized state. Attention is thus first paid to cw modulational
instability (MI).

A. Continuous-wave solutions

The cw solutions of Eq. (2) are those states ucw that are
uniform in space and time:

ucw(τ, ζ )=ρ
1/2
0 exp[i(−�τ +Kcwζ )] exp

(
−i

ζ

2κ

)
, (11a)

where |ucw|2 = ρ0 is the wave intensity, � represents a fre-
quency shift (treated here as a free parameter), Kcw = ±[1 +
4κβcw + 4κ�(α − s�/2)]1/2/2κ is the propagation constant,
and βcw ≡ (γ2 + γ4ρ0)ρ0.

Applying a generalization of the perturbative method de-
veloped in Ref. [6] to Eq. (2), we disturb u by a small amount
and derive a linearized equation describing the short-term evo-
lution of the perturbation field. One then seeks Fourier mode
solutions of that linear problem at frequency �p, whereupon

053842-4



RELATIVISTIC AND … . I. CUBIC-QUINTIC SYSTEMS PHYSICAL REVIEW A 98, 053842 (2018)

it can be shown that the cw solution (11a) becomes unstable
against long-wavelength modulations whenever

�2
p

2
− 2s(γ2 + 2γ4ρ0)ρ0 < 0. (11b)

Here, we are predominantly interested in the normal-GVD
regime (where s = −1).

When both the cubic and quintic nonlinearity coefficients
are positive (γ2 > 0 and γ4 > 0), the cw solution is abso-
lutely stable since condition (11b) can never be satisfied.
For γ2 > 0 and γ4 < 0, MI appears when ρ0 > γ2/2|γ4|.
Analysis of the long-wavelength instability spectrum (the
familiar bow-tie structure that is symmetric in �p) shows that
the most unstable frequencies �p0 are obtained from �2

p0 =
2(2|γ4|ρ0 − γ2)ρ0. For the opposite choice of signs (γ2 < 0
and γ4 > 0), MI occurs for ρ0 < |γ2|/2γ4 and we have that
�2

p0 = 2(|γ2| − 2γ4ρ0)ρ0.

B. Symmetry reduction

To facilitate the integration of the quadrature equations,
one expresses the desired solution phase as �(τ, ζ ) ≡
�d(τ, ζ ) + Kcwζ , where �d(τ, ζ ) describes the phase distri-
bution across the soliton component while the cw phase (with
� = 0) has been included explicitly at the outset. Substitution
of the decomposition for �d into Eqs. (4a) and (4b) then yields

2

ρd

(
∂2ρd

∂τ 2
− 2κ

∂2ρd

∂ζ 2

)
− 1

ρ2
d

[(
∂ρd

∂τ

)2

− 2κ

(
∂ρd

∂ζ

)2
]

−4

[(
∂�d

∂τ

)2

− 2κ

(
∂�d

∂ζ

)2
]

+8

(
α

∂�d

∂τ
+ 2κKcw

∂�d

∂ζ

)

+8

[(
κK2

cw − 1

4κ

)
− (γ2 + γ4ρd )ρd

]
= 0, (12a)

ρd

(
∂2�d

∂τ 2
− 2κ

∂2�d

∂ζ 2

)
+
(

∂�d

∂τ

∂ρd

∂τ
− 2κ

∂�d

∂ζ

∂ρd

∂ζ

)

−
(

α
∂ρd

∂τ
+ 2κKcw

∂ρd

∂ζ

)
= 0. (12b)

One now introduces the lumped space-time variable ξ from
Eq. (5a), where the intrinsic velocity parameter is labeled as
V0d (the “d” subscript refers to dark solitons). Equations (12a)
and (12b) then reduce to

d

dρd

[
1

ρd

(
dρd

dξ

)2
]

= 4

(
d�d

dξ

)2

−8

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠d�d

dξ

− 8[βcw − (γ2 + γ4ρd )ρd], (13a)

d

dξ

⎡
⎣
⎛
⎝d�d

dξ
− α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠ρd

⎤
⎦ = 0, (13b)

where the cw dispersion relation for solutions with � =
0, namely, κK2

cw − 1/4κ ≡ βcw, has been introduced into
Eq. (13a).

Direct integration of Eq. (13b) yields an ordinary differen-
tial equation for the soliton phase,

d�d

dξ
=
⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠+ c1d

ρd
, (14a)

where c1d is a constant of integration to be determined later
(through an application of the solution boundary conditions).
Substitution of Eq. (14a) into Eq. (13a) eliminates the phase
gradient d�/dξ , yielding an ordinary differential equation
for ρd:

d

dρd

[
1

ρd

(
dρd

dξ

)2
]

= 4
c2

1d

ρ2
d

− 4

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2

− 8[βcw − (γ2 + γ4ρd )ρd]. (14b)

System (13), comprising two coupled partial differential equa-
tions (in both space and time) has thus been reduced to system
(14).

C. Intensity quadrature

The boundary conditions on the intensity quadrature are
that ρd → ρ0 and (dρd/dξ )2 → 0 as ξ → ±∞, while ρd →
ρ1 and (dρd/dξ )2 → 0 as ξ → 0 with 0 < ρ1 � ρ0 for an
intensity “dip.” Direct integration of Eq. (14b) with respect
to ρd leads to(

dρd

dξ

)2

= 8

3
γ4ρ

4
d + 4γ2ρ

3
d

− 4

⎡
⎣2βcw +

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2⎤
⎦ρ2

d

+ c2dρd − 4c2
1d, (15a)

where c2d is a second constant to be determined. The deriva-
tion can be further facilitated by introducing a factorization to
simplify the right-hand side of Eq. (15a). By respecting the
solution asymptotics and recalling that (dρd/dξ )2 cannot be
negative, we write(

dρd

dξ

)2

= 4(ρ0 − ρd )2(ρd − ρ1)(g1dρd + g0d ), (15b)

where ρ0 is a double root, ρ1 is a single root, and g1d and
g0d are constants. Comparing Eqs. (15a) and (15b) leads to a
system of five algebraic equations obtained by equating the
powers of ρd:

g1d ≡ 2
3γ4, (15c)

g0d − ρ1g1d − 2g1dρ0 ≡ γ2, (15d)

ρ2
0g1d − ρ1g0d − 2ρ0(g0d − ρ1g1d ) ≡ c3d, (15e)

4
[
2ρ0ρ1g0d + (g0d − ρ1g1d )ρ2

0

] ≡ c2d, (15f)

ρ2
0ρ1g0d ≡ c2

1d, (15g)
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where we have introduced the lumped parameter

c3d ≡ −
⎡
⎣2βcw +

⎛
⎝α − 2κKcwV0d√

1 − 2κV 2
0d

⎞
⎠

2⎤
⎦ (15h)

for compactness. Solving Eqs. (15d)−(15f) leads to

g0d = γ2 + 2γ4ρ0

(
1 − A2

3

)
, (16a)

c2
1d = ρ3

0 (1 − A2)

[
γ2 + 2γ4ρ0

(
1 − A2

3

)]
, (16b)

c2d = 4ρ2
0

[
γ2(3 − 2A2) + 4

3
γ4ρ0(2 − A2)2

]
, (16c)

where we have introduced the notation A2 + F 2 = 1 and
with F 2 ≡ ρ1/ρ0 being the contrast parameter. Separating and
integrating Eq. (15b), with dρd/dξ � 0 in the domain ξ � 0,
it can be shown that

ρd(ξ ) = ρ0 − 4βd

D cosh(2
√

2βdξ ) + (
γ2 + 8

3γ4ρ0
) , (17a)

where

βd ≡ ρ0A
2

2

[
γ2 + 2

3
γ4ρ0(4 − A2)

]
(17b)

and

D ≡ γ2 + 4
3γ4ρ0(2 − A2). (17c)

Note that the shape of the dark soliton pulse in
Eqs. (17a)−(17c) is identical to that of its conventional
counterpart [28], as must be the case (see Sec. III B).

D. Intrinsic velocity

To obtain an algebraic expression for the dark soliton
intrinsic velocity V0d, we consider the asymptotic behavior
of the phase distribution in Eq. (14a). As ξ → ±∞, one has
that ρd → ρ0 (the intensity of the solution approaches the cw
background limit) and d�d/dξ → 0. Hence, it follows that

α − 2κKcwV0d√
1 − 2κV 2

0d

= −c1d

ρ0
, (18a)

where c2
1d is related to solution parameters through Eq. (16b).

One can then show that V0d must satisfy the following general
quadratic equation:[

(2κKcw)2 + 2κ

(
c1d

ρ0

)2
]
V 2

0d − 2α(2κKcw)V0d

+ α2 −
(

c1d

ρ0

)2

= 0. (18b)

An identical equation for determining V0d can be obtained
from Eq. (15e). One must, of course, choose the root for V0d

that respects the signs in Eq. (18a). Combining with forward-
and backward-propagating solutions, after some algebra it can
be shown that

V0d = ±
ρ

1/2
0 F

√
γ2 + 2

3γ4ρ0(2 + F 2)
{
1 + 2κρ0

[
(2 + F 2)γ2 + 2

3γ4ρ0(F 4 + 2F 2 + 3)
]− 2κα2

}1/2 + α
√

1 + 4κβcw

1 + 2κρ0
[
(2 + F 2)γ2 + 2

3γ4ρ0(F 4 + 2F 2 + 3)
] . (19)

(As with the bright solution, it will later prove convenient
to release the ± sign into the definition of ξ to provide a
more compact representation.) Equation (19) combines into
a single geometrical parameter the contribution from two
distinct sources of motion: (i) the velocity relative to the
laboratory frame due to the group speed (terms in α), and (ii)
the additional velocity change (relative to the black solution)
due to finite grayness (terms in F ).

Inspection of Eqs. (17a)−(17c) and (19) shows that a
localized solution always exists for the purely focusing non-
linearity with ρ0 > 0 across the entire contrast range 0 �
F 2 < 1. For the competing nonlinearity γ2 > 0 and γ4 < 0,
the solution requires 0 < ρ0 < ρ0max(F 2) ≡ 3ρ0th/(3 + F 2)
(where ρ0th = γ2/2|γ4| is the cut-off intensity above which
the cw background becomes modulationally unstable—see
Sec. IV A). Similarly, the regime with γ2 < 0 and γ4 > 0 has
ρ0 > ρ0min(F 2) ≡ 3ρ0th/(2 + F 2) (where ρ0th = |γ2|/2γ4 is
the cutoff below which the cw background is unstable).

E. Phase quadrature

It now only remains to find an expression for the phase
distribution. Combining Eqs. (14a) and (18a) leads to the quite

general result

d�d

dξ
=
(

c1d

ρ0

)(
ρ0 − ρd

ρd

)
, (20a)

which, after substituting for ρd(ξ ) can be integrated exactly in
closed form to yield

�d(ξ ) = tan−1

{(
A

F

)√
γ2 + 2

3γ4ρ0(2 + F 2)

γ2 + 2
3γ4ρ0(3 + F 2)

× tanh(
√

2βdξ )

}
. (20b)

As with the intensity quadrature, the phase distribution also
possesses the same functional form as Herrmann’s conven-
tional dark soliton [28]. It is straightforward to show that the
phase change across the pulse, defined as ��d ≡ �d(+∞) −
�d(−∞), is

��d = π − 2 tan−1

{(
F

A

)√
γ2 + 2

3γ4ρ0(3 + F 2)

γ2 + 2
3γ4ρ0(2 + F 2)

}
, (21)

so that for F = 0 (black solutions) we recover ��d = π .
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FIG. 1. Bright soliton intensity profiles [see solution (23a)] for
increasing frequency shift � when the peak intensity is ρ0 = 1.0.
The pulse broadening effect (in essence, a Lorentz-like dilation in the
presence of anomalous GVD [4]) is clearly visible. System param-
eters: γ2 = +1, γ4 = −0.15, s = +1, α = 1.0, and κ = 1.0×10−3.
Note that when plotting |ub|2 as a function of ξ [see solution (9)], the
profiles are universal (that is, independent of κ, α, and V0b) and there
is no dilation effect.

V. MORE GENERAL SOLUTIONS

A. Frequency-velocity relations

So far, we have considered only those solitary solutions
that are centered on the carrier frequency (in the Fourier do-
main). However, by deploying the invariance laws detailed in
Refs. [4–6], it is possible to find more general soliton families
that are characterized by a finite frequency shift �. Such

FIG. 2. Gray soliton intensity profiles [see solution (23b)] for
increasing frequency shift � when F = 0.4 and the cw intensity
is ρ0 = 1.0. Note the pulse narrowing (contraction) effect in the
presence of normal GVD (in contrast to the contraction for anoma-
lous GVD [4]—cf. Fig. 1). System parameters: γ2 = +1, γ4 =
−0.15, s = −1, α = 1.0, and κ = 1.0×10−3. Like its bright coun-
terpart, ρd(ξ ) [see (17a)] is universal so there is no dilation.

a geometrical procedure naturally brings out a connection
between � and the velocity V parametrizing the coordinate
transformation:

�(V ) ≡ V

√
1 + 4κβb,cw

1 + 2sκV 2
+ α

(
1√

1 + 2sκV 2
− 1

)
, (22a)

where we select s = +1 for the bright solution and s = −1
for the dark.

After some algebra, it can be shown that V must correspond to whichever branch of

[1 + 4κβb,cw − 2sκ (α + �)2]V 2 + 2α
√

1 + 4κβb,cwV − 2�
(
α + 1

2�
) = 0 (22b)

vanishes when � = 0 (thereby ensuring that a nonzero V can appear only in the presence of a nonzero �). The frequency-shifted
bright (see Fig. 1) and dark (see Fig. 2) solitons may then be stated as

ub(τ, ζ ) =
{

4βb

B cosh[2
√

2βb�b(τ, ζ )] + γ2

}1/2

exp

[
i�τ ± i

√
1 + 4κβb − 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
(23a)

and

ud(τ, ζ ) =
{

ρ0 − 4βd

D cosh[2
√

2βd�d(τ, ζ )] + (
γ2 + 8

3γ4ρ0
)
}1/2

× exp

[
i tan−1

{(
A

F

)√
γ2 + 2

3γ4ρ0(2 + F 2)

γ2 + 2
3γ4ρ0(3 + F 2)

tanh[
√

2βd�d(τ, ζ )]

}]

× exp

[
−i�τ ± i

√
1 + 4κβcw + 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (23b)

respectively (see also Appendix C), where

�b,d(τ, ζ ) ≡ τ ∓ Wb,dζ√
1 + 2sκW 2

b,d

, (23c)

Wb,d = V0b,0d + Vb,d

1 − 2sκV0b,0dVb,d
, (23d)
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and

Vb,d(�) = (� + α)
√

1 + 4κβb,cw − 4sκ�(α + �/2) − α
√

1 + 4κβb,cw

1 + 4κβb,cw − 2sκ (� + α)2 . (23e)

The parameter Vb,d(�), obtained from Eq. (22a), is analogous
to the transverse velocity parameter from the theory of non-
linear beams [34,35]. For bright solitons, one can derive a
compact expression for Wb such that

Wb = α + �√
1 + 4κβb − 4κ�

(
α + 1

2�
) . (23f)

We note that bright solitons are assigned a frequency shift
such that ub ∝ exp(i�τ ), whereas dark solitons have ud ∝
exp(−i�τ ). Introducing such antisymmetry is somewhat ar-
bitrary, but it allows the structure of Eqs. (22a) and (22b) to
be preserved for both solution classes and that sign changes
are most conveniently captured in the frequency-velocity re-
lations solely by s (rather than s and �).

Formally, one may recover the bright [5] and dark [6]
spatiotemporal solitons of the cubically nonlinear system by
setting γ2 = +1 and |γ4|ρ0 � O(1).

B. Nondegenerate bistability

By inspecting the solution continuum, one can search for
parameter regimes where each wave class exhibits a non-
degenerate bistability characteristic [27,28]. This property
is distinct from other types of bistable response, such as
the familiar S-shaped input-output curve of nonlinear cavi-
ties (present due to feedback modeled by ring-resonator or
Fabry-Pérot boundary conditions) [9] and from the case of
degenerate solitons (where the integrated wave intensity can
become a multivalued function of the propagation constant if
the derivative of the system nonlinearity functional satisfies
certain constraints) [37].

Recalling that |ub|2 ≡ ρb, for bright solitons (23a) the non-
degenerate bistability condition ρb(�b = ν�) = ρ0/2 [27]
gives rise to the implicit equation

ρ
1/2
0 =

(
1

2ν�

)
1√

γ2 + 2
3γ4ρ0

cosh−1

(
3γ2 + 8

3γ4ρ0

γ2 + 4
3γ4ρ0

)
,

(24a)

where 2ν parametrizes the duration of the pulse (in its
rest frame) in units of � ≡ sech−1(2−1/2) ≈ 0.8814. For
the competing nonlinearity with γ2 > 0 and γ4 < 0, there
exist pairs of solitons that have the same full-width-half-
maximum (FWHM) but different peak intensities (see Fig. 3).
When |γ4|ρ0 → 0, the lower-branch solution in the (|γ4|, ρ0)
plane tends to ρ0 = 1/ν2γ2 while the upper branch diverges.
Equation (24a) shows that other regimes for γ2 and γ4 tend to
be monostable (i.e., there is no hysteresis in ρ0).

Similarly, one can consider particular dark solitons in the
continuum of solution (23b) that are prescribed by ρd(�d =

ν�) = (ρ0 + ρ1)/2 [28], which corresponds to the condition

ρ
1/2
0 =

(
1

2ν�

)(
1

A

)
1√

γ2 + 2
3γ4ρ0(4 − A2)

× cosh−1

[
3γ2 + 8

3γ4ρ0(3 − A2)

γ2 + 4
3γ4ρ0(2 − A2)

]
. (24b)

Pairs of nondegenerate bistable gray solutions sharing a
common FWHM but with different cw intensities exist for
the competing nonlinearity γ2 > 0 and γ4 < 0. Analysis of
Eq. (24b) shows that in the (|γ4|, ρ0) plane, the lower-branch
solution tends to ρ0 = 1/ν2A2γ2 while the upper branch
possesses a cutoff at point (|γ4|crit, ρ0crit ), where ρ0crit =
(4 − A2)/γ2(ν�)2A4 and |γ4|crit = 3(γ2ν�)2A4/2(4 − A2)2.
Typical bistable curves are given in Fig. 4 for black and gray
solitons.

VI. SLOWLY VARYING ENVELOPES

A. Envelope equation

The physical predictions of conventional pulse theory,
viz., the parabolic governing equation

i

(
∂u

∂ζ
+ α

∂u

∂τ

)
+ s

2

∂2u

∂τ 2
+ γ2|u|2u + γ4|u|4u 
 0, (25a)

must emerge asymptotically from the spatiotemporal model
in the limit of slowly varying envelopes. The multifaceted
nature of that limit makes clear that stipulating κ 
 0 by itself
is not a sufficient condition for the validity of Eq. (25a).
Rather, one requires that all contributions from κ∂2u/∂ζ 2

must be negligible simultaneously when compared to those
arising from the other terms in Eq. (2). One performs Taylor
expansions on the exact solutions, all up to second-order

FIG. 3. Nondegenerate bistability curves for bright solitons as
predicted by Eq. (24a) for anomalous GVD (s = +1) in the
competing-nonlinearity regime γ2 = +1 and γ4 < 0 (other regimes
tend to be monostable so that ρ0 is a single-valued function).
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FIG. 4. Nondegenerate bistability curves for dark solitons [(a)
black (A = 1) and (b) gray (with ν = 1.0) solutions] as predicted by
Eq. (24b) for normal GVD (s = −1) in the competing-nonlinearity
regime with γ2 = +1 and γ4 < 0.

smallness, so that the linear phase profile (which involves a
ratio of small quantities) is handled correctly.

Under a Galilean boost to the local-time frame with co-
ordinates τloc ≡ τ − αζ and ζloc = ζ , it is straightforward to
show that Eq. (25a) transforms into the standard cubic-quintic
NLS-type model [27,28],

i
∂u

∂ζloc
+ s

2

∂2u

∂τ 2
loc

+ γ2|u|2u + γ4|u|4u 
 0. (25b)

Equation (25b) thus describes pulses in a unique frame of
reference (the one moving relative to the laboratory at the
group velocity of pulses with slowly varying envelopes in the
z direction).

B. Intrinsic, transverse, and net velocities

We begin by considering the behavior of the various veloc-
ity parameters under the SVEA. For bright solitons, the limit
κβb � O(1) (corresponding to a near-negligible nonlinear
phase shift) leads to V0b 
 α ≡ V0b SVEA. Applying the same
limit yields a more involved result for dark solitons:

V0d 
 ρ
1/2
0 F

√
γ2 + 2

3γ4ρ0(2 + F 2) + α ≡ V0d SVEA. (26)

Both classes of solution thus have a contribution to the
intrinsic velocity that is independent of frequency shift and
(for dark solitons) grayness due to the fact that the pulses
are always propagating with respect to the laboratory frame.
The additional limit |κ�(α + �/2)| � O(1) (near-negligible

frequency shift) gives transverse velocities Vb,d 
 � ≡ VSVEA

and, from Eq. (19), the net velocities become Wb,d SVEA 

V0b,0d SVEA + VSVEA.

For slowly varying envelopes, one may now draw two
conclusions about the properties of velocity parameters:
(i) velocities combine additively (with Galilean-type rules)
rather than geometrically (relativistic- or pseudorelativistic-
type rules [4]), and (ii) transverse velocities and frequency
shifts are interchangeable in the sense that they have the same
mathematical status and are numerically equal to one another
[a situation that is clearly distinct from the predictions of
Eqs. (22a) and (23e)].

In the local-time frame, the term at α in V0b,0d SVEA is trans-
formed away and local velocities take on more familiar forms.
On the one hand, bright solitons are characterized by Wb loc =
VSVEA = � so that pulses with � = 0 are strictly stationary
in that frame. On the other hand, dark solitons have Wd loc =
V0d loc + VSVEA, where V0d loc is defined to be the first term
in Eq. (26). Black solutions (having F = 0 = V0d loc) with
� = 0 thus have zero local net velocity and are also stationary.

It is now worth reexamining the linear boost described
in the previous section. While introducing that coordinate
change into the spatiotemporal model is always possible, it
is problematic here for two principal reasons. First, a mixed-
derivative term must appear in the governing equation in order
to retain an exact framework. That is, Eq. (2) becomes

κ
∂2u

∂ζ 2
loc

+ i
∂u

∂ζloc
+ 1

2
(s + 2κα2)

∂2u

∂τ 2
loc

− 2κα
∂2u

∂ζloc∂τloc
+ γ2|u|2u + γ4|u|4u = 0, (27)

and since “preservation of exactness” is the central objective
motivating our approach, simply ignoring or approximating
the awkward fourth term is rather self-defeating. Second,
and perhaps more importantly, the coordinates τloc and ζloc

can no longer have quite the same significance now as they
did previously because group velocities in the spatiotemporal
formulation tend to have an inherent intensity dependence
(a notable exception is the algebraic soliton discussed in
Appendix A, which corresponds to the threshold for linear
wave propagation [32]). That is, 1/α is strictly the (normal-
ized) group velocity of a bright soliton with zero amplitude
[cf. Eq. (10) with � = 0 and κβb = 0] and of a black soliton
on a zero-amplitude cw background [cf. Eq. (19) with � = 0
and κβcw = 0]. Hence, there can be no advantage (either
physical or mathematical) in forcing the standard Galilean
boost onto Eq. (2) and its solutions [though one can im-
mediately write down the solitons of Eq. (27) directly from
Eqs. (23a)−(23f)].

C. Asymptotic solutions

Solitons with slowly varying envelopes in the laboratory
and local-time frames [governed by Eqs. (25a) and (25b), re-
spectively] can be obtained by applying the same limiting pro-
cedure to solutions (23a) and (23b). The asymptotic properties
of velocity parameters are already known (see Sec. VI B), and
in those same limits it follows that κW 2

b,d � O(1). Hence, one
has that �b,d(τ, ζ ) 
 τ ∓ Wb,dζ .
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By expanding the propagation constants in a similar way,
one can immediately write down the bright and dark solitons
of Eq. (25a). Wave packets propagating in the forward di-
rection are well-behaved since all κ-dependent contributions
vanish: the approximated solutions to the exact equation
are exact solutions to the approximated equation. However,
wavepackets traveling in the backward direction retain a
rapid-phase factor exp(−i2ζ/2κ ) leading to the conclusion

that Eq. (25a) has no analog of backward spatiotemporal
waves (being only parabolic rather than elliptic or hyper-
bolic, it supports propagation in a single longitudinal sense
only [4]).

When considering the approximated forward solitons of
Eq. (25a), one can boost to the local-time frame whereupon
one recovers (generalizations of) known bright [27] and dark
[28] solutions,

ub(τloc, ζloc) 

{

4βb

B cosh[2
√

2βb(τloc − �ζloc)] + γ2

}1/2

exp

[
i�τloc + i

(
βb − �2

2

)
ζloc

]
(28a)

and

ud(τloc, ζloc) 

{

ρ0 − 4βd

D cosh[2
√

2βd(τloc − Wd locζloc)] + (
γ2 + 8

3γ4ρ0
)
}1/2

× exp

[
i tan−1

{(
A

F

)√
γ2 + 2

3γ4ρ0(2 + F 2)

γ2 + 2
3γ4ρ0(3 + F 2)

tanh[
√

2βd(τloc − Wd locζloc)]

}]

× exp

[
−i�τloc + i

(
βcw + �2

2

)
ζloc

]
, (28b)

where Wd loc = V0d loc + � and

V0d loc ≡ ρ
1/2
0 F

√
γ2 + 2

3γ4ρ0(2 + F 2) (28c)

are the local net and local intrinsic velocities, respectively.
Wave packets (28a) and (28b) satisfy Eq. (25b) exactly, re-
ducing to their well-known cubic counterparts [10,11] when
γ2 = +1 and |γ4|ρ0 � O(1).

VII. SOLITON STABILITY

Finally, the behavior of the new spatiotemporal solitons
against perturbations to their local temporal shape is inves-
tigated through conventional stability criteria alongside sup-
porting simulations. Numerical integration of Eq. (2) is facili-
tated through a generalization of the difference-differential al-
gorithm [38] that accommodates the iα∂/∂τ operator through
fast Fourier transforms.

A. Vakhitov-Kolokolov criterion

The stability of localized excitation (28a) of Eq. (25b) has
been discussed in detail by Gatz and Herrmann [27] within
the context of the Vakhitov-Kolokolov (VK) integral criterion
[39]. If P is the pulse power defined by

P ≡
∫ +∞

−∞
dτloc |ub|2, (29a)

then an arbitrary solution ub ≡ ub(τloc, ζloc) is predicted to be
stable against small perturbations provided that the derivative
of P satisfies the inequality

d

dβb
P (βb) > 0, (29b)

where βb is the propagation constant given by Eq. (8b). Phys-
ically meaningful predictions from Eqs. (29a) and (29b) must

be insensitive to frame-of-reference considerations since one
evidently cannot have a wave that is both stable in the local-
time frame and simultaneously unstable in any other frame
[such as the laboratory—cf. Eq. (25a)]. The κ∂2/∂ζ 2 operator
in Eq. (2) tends to be predominantly geometrical in nature, and
it typically introduces only a small correction to the solutions
of Eq. (25a). We thus expect to find spatiotemporal solitons
sharing very similar stability properties to their conventional
counterparts, as demonstrated previously for the case of cubic
systems [5].

Symmetry principles have also been deployed in the spatial
domain to describe the stability characteristics of nonparaxial
bright soliton beams beyond the cubic approximation using
quasiparaxial analyses [34,40]. By recognizing that off-axis
(Helmholtz-type) and on-axis (NLS-type) solutions are con-
nected by a simple geometrical operation (a rotation of the
observer’s coordinate axes), it follows that oblique propaga-
tion effects can be eliminated for a single scalar beam with
a careful choice of reference frame. One is then free to use
established NLS-based methods [41,42] for identifying frame-
independent regions of stability in parameter space.

For the purely positive nonlinearity, it is straightforward
to show that solution (28a) has an integrated pulse intensity
given by

P (βb) =
√

3

2γ4
tan−1

(
1

γ2

√
16γ4βb

3

)
, (30a)

which always has a positive gradient [43]. Analytic continua-
tion allows one to immediately find the corresponding power
in the competing-nonlinearity regime where γ2 > 0 and γ4 <

0:

P (βb) =
√

3

2|γ4| tanh−1

(
1

γ2

√
16|γ4|βb

3

)
, (30b)
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which also possesses a positive slope in the range 0 � βb <

3γ 2
2 /16|γ4| [43]. Solutions for the complementary regime

γ2 < 0 and γ4 > 0 have

P (βb) =
√

3

2γ4

[
π

2
+ tan−1

(
|γ2|

√
3

16γ4βb

)]
, (30c)

which tends to have a negative gradient in the allowed range of
βb. Such waves are expected to be unstable according to the
VK criterion [42], a prediction that has been confirmed nu-
merically across a wide parameter space (we do not consider
these solitons further).

B. Perturbed bright solitons

The numerical perturbative technique deployed here in-
volves launching a pulse with the form

ub(τ, 0) =
[

4βb

B cosh(2
√

2βbτ ) + γ2

]1/2

exp (i�τ ) (31)

and observing propagation effects under the action of the
system’s internal dynamics. Initial data (31) corresponds to
an exact soliton of Eq. (25a), or equivalently, a spatiotemporal
solution where the width factor (1 + 2κW 2

b )1/2 has been omit-
ted. The frequency shift � = 4, 8, 12, and 16 thus controls the
strength of disturbance to the local temporal pulse shape.

We first consider a competing nonlinearity with γ2 = +1
and γ4 = −0.15, which supports bistable solutions for ν =
1.0 with lower- and upper-branch peak intensities given by
ρ0 ≈ 1.310 and ρ0 ≈ 4.141 (see Sec. V B). Simulations have
demonstrated that evolution is generally adiabatic, with the
pulse shape being maintained in ζ . Parameters such as the
peak amplitude (see Fig. 5), width, and area tend to undergo
monotonically decaying oscillations as the reshaping pulse
evolves gradually towards a stationary state as ζ → ∞. A
small amount of energy is shed in the form of radiation, and
low-amplitude broad “shoulders” can emerge at the base of
the reshaping pulse in the presence of strong perturbations.
The upper-branch solutions typically exhibit the same type
of behavior, except that the oscillations occur over a much
shorter longitudinal scale length and the early stages of prop-
agation can involve an initial increase in the peak amplitude. If
the radiation is regarded as a local loss mechanism (while the
system remains globally conservative [5]), then the stationary
states of Eq. (2) may be interpreted as attracting fixed points
surrounded by wide basins of attraction [34].

For a purely positive nonlinearity, where γ2 = +1 and
γ4 = +0.15, Eq. (24a) shows that there is a monostable
solution with ρ0 ≈ 0.865 when ν = 1.0. Simulations have re-
vealed self-reshaping oscillations that are qualitatively similar
to those encountered in the competing regime (compare the
results in Fig. 6 to those in Fig. 5).

C. Renormalized-momentum criterion

The stability of conventional dark solitons in the local-time
frame has previously been quantified by using an integral
criterion that considers the renormalized momentum Mren

FIG. 5. Evolution of the bistable bright soliton peak amplitude
when the initial wave form [as defined in Eq. (31)] resides on the (a)
lower branch (ρ0 = 1.310) and (b) upper branch (ρ0 = 4.141)—cf.
Fig. 3 with ν = 1.0. System parameters: γ2 = +1, γ4 = −0.15, s =
+1, α = 1.0, κ = 1.0×10−3. Blue circle: � = 4. Green square:
� = 8. Red triangle: � = 12. Black diamond: � = 16.

[44,45], where

Mren ≡ i

2

∫ +∞

−∞
dτloc

(
ud

∂u∗
d

∂τloc
− u∗

d
∂ud

∂τloc

)(
1 − ρ0

|ud|2
)

.

(32a)

Here, the formally infinite contribution to the momentum
integral from the cw background has been subtracted to leave
a finite value, given by Mren, that is associated with the

FIG. 6. Evolution of the peak amplitude when initial wave
form (31) has ρ0 = 0.865 and ν = 1.0. System parameters:
γ2 = +1, γ4 = −0.15, s = +1, α = 1.0, κ = 1.0×10−3. Blue cir-
cle: � = 4. Green square: � = 8. Red triangle: � = 12. Black
diamond: � = 16.
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localized excitation in ud. A dark solution to Eq. (25b) is then
predicted to be stable against small disturbances if

d

dV0d loc
Mren(V0d loc) > 0 (32b)

is satisfied, where the derivative is taken with respect to the
local intrinsic velocity parameter [given by Eq. (28c)]. Peli-
novsky et al. [45] have applied the renormalized-momentum
approach (in parallel with asymptotic methods and numerical
analyses) to study the stability properties of conventional dark
solitons in the presence of competing, saturable, and transiting
nonlinearities. As in the case of bright pulses, such predictions
must be frame independent if they are to be truly meaningful
and hence one expects Eqs. (32a) and (32b) play a key role in
quantifying dark pulses in spatiotemporal contexts [6].

Extensive simulations have shown that the exact dark
solitons of Eq. (2) tend to propagate with an invariant profile,
and they demonstrate robustness as predicted by Eqs. (32a)
and (32b).

D. Perturbed dark solitons

To test the stability of spatiotemporal dark solitons, we
launch pulses of the form given by Eq. (23b) but where the
factor (1 − 2κW 2

d )1/2 is omitted from �d(τ, ζ ):

ud(τ, 0) =
{

ρ0 − 4βd

D cosh(2
√

2βdτ ) + (
γ2 + 8

3γ4ρ0
)
}1/2

× exp

[
i tan−1

{(
A

F

)√
γ2 + 2

3γ4ρ0(2 + F 2)

γ2 + 2
3γ4ρ0(3 + F 2)

× tanh(
√

2βdτ )

}]
exp (−i�τ ). (33)

Such an input wave corresponds to an exact solution of
Eq. (25a). To accommodate the linear phase ramp associated
with finite-� considerations, simulations are performed
in a frame of reference wherein the factor exp(−i�τ ) is
eliminated. Results from simulations are then transformed
back to (τ, ζ ) coordinates. We begin by considering perturbed
black solitons (where A = 1). For consistency, parameters
γ2 = +1 and γ4 = −0.15 are retained in which case
Eq. (24b) shows there are two solutions for ν = 1 with
cw intensities ρ0 
 1.486 and ρ0 
 3.018 (see Fig. 4).
The temporal full-width of the initial wave form, denoted
by w0 ≡ (2βd )−1/2, is broader than that for the exact
solution. Numerical analyses demonstrate that as ζ → ∞, the
reshaping pulse sheds radiation in the form of low-amplitude
ripples across the cw background (an effect that becomes
slightly more pronounced with increasing �). The localized
component otherwise tends to evolve adiabatically towards a
stationary state, preserving its blackness and with a general
shape prescribed by solution (23b). The pulse width can
be seen to decrease smoothly towards the asymptotic value
w∞ = w0(1 − 2κW 2

d )1/2 (see Fig. 7).
Gray solitons perturbed in the same way share similar

stability properties to those of their black counterparts. One
key distinction is that, for F �= 0, the grayness of the solution
is not quite preserved as ζ → ∞. These small changes in

FIG. 7. Evolution of the bistable black soliton full width when
the initial wave form [as defined in Eq. (33)] resides on the (a) lower
branch (ρ0 = 1.4866) and (b) upper branch (ρ0 = 3.0183)—cf.
Fig. 4 (horizontal bars indicate theoretical predictions). System pa-
rameters: γ2 = +1, γ4 = −0.15, s = −1, α = 1.0, κ = 1.0×10−3.
Blue circle: � = 4. Green square: � = 8. Red triangle: � = 12.
Black diamond: � = 16.

F , embodied by F → F (ζ ), are connected to variations in
V0d(F ) so that the evolving wave form is subject to a slight
drift instability (though the trajectory is still predominantly
linear). That is, the center of the gray pulse travels (approxi-
mately) along the characteristic τ − Wd(ζ )ζ = const., where
the functional form of V0d(F ) is preserved [cf. Eq. (19)] but
F (ζ ) must be computed from the numerical solution (illustra-
tive results are shown in Fig. 8). As ζ → ∞, stationary states
tend to emerge with F values that are slightly greater than the
initial value.

VIII. CONCLUSIONS

We have considered in some detail a spatiotemporal scalar
wave equation with cubic-quintic nonlinearity, deploying a
combination of methods (direct integration and coordinate
transformations) to derive exact analytical bright and dark
solitons. These new classes of wave packets are localized
in the time domain and comprise distinct solution branches
describing propagation in the forward and backward longitu-
dinal directions relative to the laboratory frame of reference.
We have rigorously proved that in the limit of slowly varying
envelopes and after transformation to the local-time frame,
bright [27] and dark solitons [28] of the NLS-type model
emerge asymptotically from the forward-traveling spatiotem-
poral solutions. We also recover the corresponding solitons
of the cubic system [5,6] in the limit of a negligible quintic
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FIG. 8. Evolution of the gray soliton contrast parameter when
the initial wave form [as defined in Eq. (33)] has ρ0 = 2.0 and
F 2(0) = 0.5. System parameters: γ2 = +1, γ4 = −0.15, s = −1,

α = 1.0, κ = 1.0×10−3. Blue circle: � = 4. Green square: � = 8.
Red triangle: � = 12. Black diamond: � = 16.

response. Established analytical methods [42,45] have been
used to assess the stability properties of the new solitons,
with results from simulations fully supporting theoretical
predictions. The spatiotemporal solutions reported here have
generally been found to behave as robust attractors that tend
to be highly stable against perturbations to the local temporal
pulse profile.

To date, we have considered exact bright and dark
spatiotemporal solitons for cubic [5,6], cubic-quintic, and
saturable—see companion article [46]—dispersive systems.
Together these simple nonlinearity models have played an im-
portant role in developing our understanding of wave physics
and envelope propagation, largely because in each case the
governing equations can be solved analytically. There re-
mains another fundamental solution class of particular interest
in cubic-quintic systems, namely, that of antidark solitons
[30,47]. We have recently discovered that Eq. (2) supports
such excitations that deserve careful attention.

Our latest research is concerned with more general dis-
persive nonlinearities, identifying connections between spa-
tiotemporal envelope models similar to Eq. (2) and their (real)
Klein-Gordon counterparts. Deducing a mapping between
these two universal types of governing equations is potentially
useful as it provides a platform for the direct interchange of
solitary solutions between, for example, the fields of optics
and particle physics. It would also be fascinating to extend our
spatiotemporal considerations beyond the standard solitary
structures (bright, dark, boundary, and antidark waves), e.g., to
seek generalizations of the Peregrine soliton [48] and develop
relativistic- and pseudorelativistic-type formulations of rogue-
[49,50] and shock-wave [51] phenomena.

APPENDIX A: ALGEBRAIC SOLITONS

1. Exact solutions and asymptotics

A class of weakly localized nonlinear waves can be
obtained from solution (23a) in the competing-nonlinearity
regimes γ2 < 0 and γ4 > 0. Spatiotemporal algebraic solitons
correspond to the case of a vanishing propagation constant
(obtained by setting βb → 0), and for the cubic-quintic system

FIG. 9. Algebraic soliton intensity profile according to solution
(A1a). The tails of the distribution are Lorentzian, falling off like
1/τ 2 as τ → ±∞, while anomalous GVD leads to a broaden-
ing of the pulse width. System parameters: γ2 = −1, γ4 = +0.15,

s = +1, α = 1.0, κ = 1.0×10−3.

possess much slower Lorentzian (rather than exponential)
asymptotics [32,42]. By considering binomial expansions to
leading order in βb, namely, cosh (2

√
2βb�b) 
 1 + (4βb)�2

b
and B 
 |γ2|[1 + (2γ4/3γ 2

2 )(4βb)], it can be shown that there
exists finite-amplitude forward- and backward-propagating
wave packets,

ua(τ, ζ ) =
√

3|γ2|
2γ4

[(
3γ 2

2

2γ4

)
�2

a (τ, ζ ) + 1

]−1/2

× exp

[
i�τ ± i

√
1 − 4κ�

(
α + �

2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (A1a)

where

�a(τ, ζ ) ≡ τ ∓ Waζ√
1 + 2κW 2

a

(A1b)

(the “a” subscript denotes algebraic solitons), and the net
velocity parameter Wa is identical to Wb in Eq. (23f) but with
the factor 4κβb omitted. The intensity of these Lorentzian-
shaped solutions falls off according to an inverse-square law,
∼1/�2

a , so the tails are relatively broad (it is in this sense that
algebraic excitations are weakly localized—see Fig. 9).

By taking the forward-propagating algebraic soliton and
applying the multiple-limit procedure as described in Sec. VI,
one can subsequently transform to the local-time frame and
hence find the corresponding solution of Eq. (25b):

ua(τloc, ζloc) 

√

3|γ2|
2γ4

[(
3γ 2

2

2γ4

)
(τloc − �ζloc)2 + 1

]−1/2

× exp

(
i�τloc − i

�2

2
ζloc

)
. (A2)

From Eq. (30c), it is easy to see that the integrated power in
solution (A2) remains finite and assumes the value of P (0) =
(3/2γ4)1/2π . The absence of any free internal parameter (such
as βb) has implications for the algebraic soliton stability
problem.
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FIG. 10. Instability of spatiotemporal algebraic solitons. Ini-
tial conditions correspond to exact solution (A1a), and where the
peak intensity is ρ0 = 3|γ2|/4γ4. System parameters: γ2 = −1, s =
+1, α = 1.0, κ = 1.0×10−3. Blue circle: γ4 = 0.15. Green square:
γ4 = 0.25. Red triangle: γ4 = 0.35. Black diamond: γ4 = 0.45.

2. Instability of algebraic solitons

Since the integrated pulse power of the hyperbolic soliton
with γ2 < 0 and γ4 > 0 retains a negative gradient dPb/dβb as
βb → 0 [see Eq. (30c)], one can infer that the algebraic solu-
tion (A2) must be always unstable since it does not satisfy the
VK inequality of Eqs. (29a) and (29b). Analysis of these con-
ventional weakly localized states (in terms of both multiple-
scale perturbation theory and supporting simulations) [32,42]
connects that instability to resonant interactions with infinitely
long linear waves.

Numerical integration of Eq. (2) with exact solutions
(A1a)−(A1b) as initial conditions has provided compelling
evidence that such instability persists in the spatiotemporal
regime. Typical evolution of an algebraic soliton is shown in
Fig. 10 for γ2 = −1 and γ4 = +0.15. The weakly localized
state survives largely intact for a short distance in ζ before
starting to transform into a plateau-type structure accom-
panied by the emission of a ripple-type radiation pattern.
Increasing γ4 reduces the peak intensity of the initial algebraic
soliton and delays (but does not suppress) the onset of a qual-
itatively similar dispersive-broadening instability (see Fig. 9).

APPENDIX B: BOUNDARY SOLITONS

1. Exact solutions and asymptotics

Equation (2) supports a class of partially delocalized waves
in the form of a spatiotemporal kink or boundary soliton for
anomalous GVD (s = +1) and the competing-nonlinearity
regime γ2 > 0 and γ4 < 0. Such solutions connect (modula-
tionally stable) plateau regions of zero amplitude to regions of
constant amplitude (3γ2/4|γ4|)1/2. Boundary solitons are thus
amplitude-topological excitations rather than phase topologi-
cal (since there is no phase change across the temporal extent
of the wave) and are given by

uk±(τ, ζ )

=
√

4βk

γ2
{exp[±2

√
2βk�k(τ, ζ )] + 1}−1/2

FIG. 11. Boundary (antikink) soliton intensity profile according
to solution (B1a), which plateaus towards the constant value 4βk/γ2

as τ → −∞ and falls off exponentially toward zero as τ → +∞.
Anomalous GVD also leads to a broadening of the transition region
(taken to be a measure of the pulse duration). System parameters:
γ2 = +1, γ4 = −0.15, s = +1, α = 1.0, κ = 1.0×10−3.

× exp

[
i�τ ± i

√
1 + 4κβk − 4κ�

(
α + �

2

)
ζ

2κ

]

× exp

(
−i

ζ

2κ

)
, (B1a)

where

�k(τ, ζ ) ≡ τ ∓ Wkζ√
1 + 2κW 2

k

(B1b)

and the net velocity parameter Wk is identical in form to Wb

given in Eq. (23f) but with βb replaced by βk ≡ 3γ 2
2 /16|γ4|.

The ± sign in the argument of the real-exponential function
(which can be selected independently of the sign flagging the
propagation direction in the complex-exponential function)
determines the parity of the wave [classified as kink (−) or
antikink (+)], where |uk±| → 0 as �k → ±∞ (see Fig. 11).

By taking the forward-propagating boundary soliton and
applying the multiple-limit procedure as described in Sec. VI,
one can subsequently transform to the local-time frame and
hence find the corresponding solution of Eq. (25b) first pro-
posed by Gagnon [29]:

uk±(τloc, ζloc)



√

4βk

γ2
{exp[±2

√
2βk(τloc − �ζloc)] + 1}−1/2

× exp

[
i�τloc + i

(
βk − �2

2

)
ζloc

]
. (B2)

Computational studies by Kim and Moon [31] have previously
found that these wave packets are typically very robust entities
that tend to be resilient even to strong perturbations (such as
collisions with bright solitons).

2. Perturbed boundary solitons

In the spatial domain, amplitude kinks of a generalized
cubic-quintic Helmholtz equation have been reported and
their stability demonstrated numerically [40]. Using the same
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symmetry principles discussed in Sec. VII, one would ex-
pect the corresponding solutions in the time domain [that is,
Eq. (B1a)] to demonstrate a similar degree of robustness.

For completeness, simulations with Eq. (2) are now used to
test boundary soliton stability against local (temporal) shape
fluctuations. We consider the antikink initial-value problem
defined by

uk+(τ, 0) =
√

4βk

γ2
[exp(2

√
2βkτ ) + 1]−1/2 exp(i�τ ), (B3)

which corresponds to a perturbed solution of Eq. (2) but
satisfies Eq. (25a) exactly. [The geometry of initial data
(B3) is thus equivalent to that used throughout the preceding
computations.] As in the case of dark solitons, numerical
calculations are most conveniently performed in a frame of
reference where the linear phase ramp from the exp(i�τ )
factor is eliminated and datasets are transformed back to the
(τ, ζ ) frame when necessary.

The characteristic width of the initial condition (quan-
tifying the size of the transition region between the zero-
and finite-amplitude domains) is defined as w0 ≡ (2βk )−1/2.
Since w0 is less than that needed for the exact spatiotemporal
solution, we expect the wave form to transform smoothly

FIG. 12. Evolution of the boundary (antikink) soliton full
width when the initial wave form is given by Eq. (B3) (hori-
zontal bars indicate theoretical predictions). System parameters:
γ2 = +1, γ4 = −0.15, s = +1, α = 1.0, κ = 1.0×10−3. Blue cir-
cle: � = 4. Green square: � = 8. Red triangle: � = 12. Black
diamond: � = 16.

into a stationary state of Eq. (2) whose asymptotic width
is predicted to be w∞ = w0(1 + 2κW 2

k )1/2. The evolution is
predominantly adiabatic (see Fig. 12) aside from a small-
amplitude radiation ripple pattern that tends to develop on top
of the high-intensity portion of the solution.

APPENDIX C: ALTERNATIVE REPRESENTATIONS

Solitons of the cubic nonlinearity are perhaps the best known [10], where the fundamental bright and dark solutions are
expressed in terms of hyperbolics sech and tanh, respectively. It is thus instructive to couch the cubic-quintic solutions in terms
of these same functions. To that end, one can show that bright soliton (23a) has an alternative representation that involves a
combination of sech functions:

ub(τ, ζ ) = (2βb)1/2 sech[
√

2βb�b(τ, ζ )]√
γ2 + 4

3γ4ρ0 − 2
3γ4ρ0sech2[

√
2βb�b(τ, ζ )]

× exp

[
i�τ ± i

√
1 + 4κβb − 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (C1)

where the cubic solution [5],

ub(τ, ζ ) ∝ ρ
1/2
0 sech[(γ2ρ0)1/2�b(τ, ζ )], (C2)

is an obvious limit when |γ4|ρ0/|γ2| � O(1) and γ2 > 0. Similarly, dark soliton (23b) can be described by a solution where the
intensity-phase contribution appears as a complex number in Cartesian form,

ρ
1/2
d (τ, ζ ) exp [i�d(τ, ζ )] ≡ R(τ, ζ ) + iI (τ, ζ ), (C3)

where R and I are real functions to be determined. Since ρd = R2 + I2 and tan �d = I/R, it follows that

ud(τ, ζ ) = ρ
1/2
0

[
γ2 + 2

3γ4ρ0(3 − A2)
]1/2

A tanh[
√

2βd�d(τ, ζ )] − i
[
γ2 + 2

3γ4ρ0(4 − A2)
]1/2

F√
γ2 + 2

3γ4ρ0(4 − A2) − 2
3γ4ρ0A2 tanh2[

√
2βd�d(τ, ζ )]

× exp

[
−i�τ ± i

√
1 + 4κβcw + 4κ�

(
α + �

2

)
ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (C4)

where we have written R + iI = i(I − iR) and subsequently dropped the i premultiplier due to the global phase invariance of
Eq. (2). Solitons (C4) and (23a) thus have the same intensity distribution (as they must) but they differ in phase by π/2 radians
[in fact, the phase of solution (C4) is simply �d(τ, ζ ) + π/2]. This form of the cubic-quintic dark soliton has been reported
elsewhere in the context of nonlinear-Schrödinger models [31]. It is now straightforward to show that the well-known “A − iF ”
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representation of the cubic dark soliton emerges in the limit |γ4|ρ0/|γ2| � O(1) [6], where

ud(τ, ζ ) ∝ A tanh[(γ2ρ0)1/2A�d(τ, ζ )] − iF. (C5)
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