
PHYSICAL REVIEW A 98, 053839 (2018)
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We investigate a network of degenerate optical parametric oscillators (DOPOs) as a model of the coherent
Ising machine, an architecture for solving Ising problems. The network represents the interaction in the Ising
model, which is a generalization of a previously proposed one for the two-DOPO case. Dynamics of the DOPOs
is described by the Fokker-Planck equation in the positive P representation. We obtain approximate distribution
of steady states for arbitrary Ising problems under some ansatz. Using the method of statistical mechanics, we
analytically demonstrate that the most probable states in a particular range of the parameters correspond to the
true optimal states for two rather simple problems, i.e., fully connected ferromagnetic coupling without or with
binary random fields. In particular, for the random-field problem, the distribution correctly detects the phase
transition that occurs in the target Ising model with varying the magnitude of the fields.
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I. INTRODUCTION

Combinatorial optimization problems that have many ap-
plications can be translated into problems to find ground
states of the Ising model [1]. This formulation motivates us
to develop machines specializing in the search for the ground
states. A well-known example of such machines is the hard-
ware devices provided by D-Wave Systems Inc. [2]. The de-
vices implement quantum annealing [3–6] (or adiabatic quan-
tum computation [7,8]), a heuristic which harnesses quantum
effects, instead of thermal effects in simulated annealing [9],
to search for the ground states. It has had an impact to im-
plement quantum annealing directly using physics of artificial
spins. Other machines for such a purpose, solving problems in
terms of the Ising model, have also been proposed and actually
developed, which utilize, or are inspired by, interaction and
dynamics in underlying physical phenomena [10–21].

The coherent Ising machine (CIM) is such a machine based
on a network of degenerate optical parametric oscillators
(DOPOs) [11–13,22]. The degree of freedom we utilize as
an Ising spin is the phase of the signal field of a DOPO.
The signal field is amplified by the pump field via interaction
in a nonlinear optical crystal in a cavity [23,24]. Above the
threshold of the pump field, the phase of the signal field
bifurcates. The phase difference from the pump field takes
either zero or π at random, which encodes an Ising spin for
the CIM. Interaction of DOPOs makes correlation in their
phases [25] as interaction of Ising spins. A network composed
of configurable interactions of DOPOs with the pump field
around the threshold is therefore expected to represent the
lowest-energy states of the corresponding Ising model [22].

Such a network in the CIM was experimentally constructed
with a system of time-multiplexed DOPO pulses in a ring
cavity [11,26,27]. Optical coupling of the pulses is realized
by delay lines connected to the main ring. The length of
each delay line is tuned to be an integer multiple of the
pulse-repetition period so that a fraction of a pulse taking a
detour via a delay line interacts to another one running after

it. This system almost surely found the ground states of some
Ising models [11,26,27], but connection of spins is limited
because of difficulty in making an arbitrary graph structure
under this scheme. For instance, the regular graphs of degree
k need k delay lines. To deal with this issue, the CIM with
the aid of the field-programmable gate array (FPGA) has been
developed, where FPGA manages the coupling of the pulses
running in a ring cavity [12,13]. This type of CIM can treat up
to 2000 Ising spins with all-to-all couplings, exhibiting faster
convergence to states for comparable or lower Ising energy
than finely tuned simulated annealing running on a CPU.
Exploiting FPGA, the CIM does not show extreme decrease
in the performance even for problems with fully connected
graphs. This feature contributes to the CIM’s advantage when
we compare the CIM with the machines of D-Wave systems
Inc. [28,29] adopting the so-called “Chimera graph” [30–33].
On the other hand, under the use of FPGA, the effect of
dynamics of the DOPOs for the performance is murky [34]. It
is also obscure whether properties of DOPO, in particular, as
quantum light are exploited to accelerate finding the solution.

We have needed a theoretical description of the CIM to
estimate its efficiency to solve Ising problems and also to
clarify the dominant property for the efficiency. Dynamics
in the CIM based on quantum mechanics has been investi-
gated [35–38]. The detailed analysis, however, suffered from
huge computational cost, and the system size was limited. The
CIM for large-size problems has been numerically simulated
by the semiclassical counterpart [12,13,39]. The numerical
simulation is a powerful tool to gain insight to the CIM.
We, however, cannot conclude the performance of the CIM
in general on the basis of behavior for particular instances
observed with the numerical simulations.

For estimating the efficiency of the CIM without the dy-
namics simulations, it is a good strategy to find a factor that
determines whether the CIM could find the correct solutions
of a problem and that scales the computation time required to
solve it. For quantum annealing, such a factor is the minimal
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energy gap between the ground state and the first excited one
of a problem Hamiltonian in an annealing passage [8]. The
problem-size dependence of the minimal energy gap is often
used to represent the difficulty of the problem for quantum
annealing. This formulation is generalized into open quantum
systems, where the gap of eigenvalues of Liouvillian, instead
of Hamiltonian, takes the role [40]. Considering the CIM as an
annealing machine, we would obtain the factor along the argu-
ment similar to that for other annealing algorithms [8,40–42].
To this end, we first need the instantaneous steady state or its
distributions of the CIM for the parameters. We additionally
have to check that there exist values of the parameters for
which the steady state gives ground states of the target Ising
model, since the cost function in the CIM, presented below,
does not agree with the Hamiltonian of the Ising model. Then
we will move to a stage at which we discuss the factor and also
the schedule to surely reach the optimal state for the problem
by adiabatical evolution.

In this paper, we explore the distribution of steady states
of a model of the CIM. Our aim is to clarify properties of a
large number of DOPOs in solving combinatorial optimiza-
tion problems, in particular, in the long-time limit, where the
distribution of steady states are possibly realized. The model
does not include any component corresponding to the FPGA
and the delay lines but is just a simple network of DOPOs
optically interacting with each other. We deduce the Fokker-
Planck equation [43] describing the dynamics of DOPOs
in the network. Under some ansatz, we show the approx-
imate distribution of steady states. A statistical-mechanical
approach enables us to investigate the distributions for large-
size problems. We then examine the distributions and the most
probable states for rather simple problems.

II. MODEL

We investigate a network of DOPOs interacting with each
other via mutual-injection paths as a theoretical model of
the CIMs. Our model is a generalization of the model for
two DOPOs previously proposed [35], which is also a gen-
eralization of the single DOPO model [44] by adding the
interaction of the DOPOs via a mutual injection path. In the
two-DOPO model the signal fields of a frequency ω, which
are used to represent Ising variables later, are assumed to be
highly confined in each cavity and the path. The spatial-phase
factor eikd of the bosonic operator in the injection path is
considered, where k is the wave number for the signal mode
and d is the length of the path. The mutual injection leads to
in-phase couplings, i.e., the ferromagnetic coupling in terms
of spin systems, if eikd = 1 and out of phase, i.e., the anti-
ferromagnetic one, if eikd = −1. The signal field is amplified
in a nonlinear crystal via the interaction with the pump mode
of a frequency ωp = 2ω. The pump mode is excited by the
classical, driving field entering each DOPO. The driving field
is also used as the phase reference. Above the threshold of
the pump strength, the bifurcation of quadrature amplitude
of each signal field is observed. The sign of the quadrature
amplitude encodes an Ising spin. The DOPOs output the
configuration of Ising spins according to their coupling in
which the target Ising Hamiltonian is embedded.

We generalize the two-DOPO model into a system of N

DOPOs. We assume that each pair of two DOPOs in the
system interacts as in the above two-DOPO model. While
there exists similar generalization to the one-dimensional ring
network consisting of N DOPOs [36], we here treat an almost
arbitrary network as well as the implementation of the Zeeman
term in the Ising Hamiltonian. The Hamiltonian for our model
is written as

H =
N∑

j=1

H
(j )
DOPO +

∑
j<l

H
(j l)
int +

N∑
j=1

H
(j )
Z + Hres. (1)

The first sum includes [44]

H
(j )
DOPO = h̄ωâ

†
sj âsj + 2h̄ωâ

†
pj âpj + ih̄

κ

2

(
â
†2
sj âpj − â

†
pj â

2
sj

)
+ ih̄(εpâ

†
pj e

−2iωt − εpâpj e
2iωt ), (2)

where âsj and â
†
sj are the bosonic annihilation and creation

operators, respectively, for the signal modes j = 1, 2, . . . , N ,
and âpj and â

†
pj are for the pump modes j . The coupling

constant of quadratic nonlinear interaction of the signal and
pump modes is denoted by κ . The pump mode is excited by
the real driving field εp of a frequency ωd = ωp = 2ω. The
Ising variable for discrete optimization problems is encoded in
the sign of the in-phase amplitude of the signal mode (âsj +
â
†
sj )/2 [11–13,22,35], which can be observed via homodyne

detection. We consider the beam-splitter interaction Hamilto-
nian between the signal modes in the cavity and the injection
path to tune the interactions between different DOPOs,

H
(j l)
int = h̄ωâ

†
cj l âcj l + ih̄ζjl (âcj l â

†
sj − â

†
cj l âsj

+ âsl â
†
cj le

−iθjl − â
†
sl âcj le

iθjl ), (3)

where the signal modes in the injection paths for j and l

are denoted by âcj l and â
†
cj l , and ζjl denotes the interaction

coefficient of the signal modes and the injection-path mode
for the path between cavities j and l. Phase θjl is equal to kdjl ,
where djl is the path length between the cavities. Hamiltonian
H

(j )
Z is for excitation of the signal mode by the real field εs

of a frequency ω to tune the effect for the Zeeman term in the
Ising Hamiltonian,

H
(j )
Z = ih̄(εsj â

†
sj e

−iωt − εsj âsj e
iωt ). (4)

We do not explicitly show Hres, which is a standard one for
interaction with surroundings (reservoirs) [24,35,44].

The master equation for the density operator ρ̂ for the sys-
tem, where the degrees of freedom of the reservoirs are traced
out, is obtained under standard approximations introduced to
treat the reservoirs [24,45]: the Born-Markov approximation
and neglecting implicit interactions of the reservoirs through
the internal couplings in the system. We set the reservoir
at zero temperature to eliminate thermal effects. Accord-
ingly, noises in dynamics will be derived only from quantum
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fluctuations. The resulting master equation is

dρ̂

dt
= 1

ih̄

⎡
⎣ N∑

j=1

H
(j )
DOPO +

∑
j<l

H
(j l)
int +

N∑
j=1

H
(j )
Z , ρ̂

⎤
⎦ +

N∑
j=1

2γs

(
âsj ρ̂â

†
sj − 1

2
{â†

sj âsj , ρ̂}
)

+
N∑

j=1

2γp

(
âpj ρ̂â

†
pj − 1

2
{â†

pj âpj , ρ̂}
)

+
N∑

j<l

2γc

(
âcj l ρ̂â

†
cj l − 1

2
{â†

cj l âcj l, ρ̂}
)

, (5)

where γs , γp, and γc are coefficients for the decay of the signal, pump, and injection-path modes through dissipation, respectively.
We here utilize the positive P representation [46] to analyze the master equation. The density operator in the positive P

representation is expanded in terms of the coherent product states and a distribution function P (α,β ) as

ρ̂ =
∫

d4Nα d4NβP (α,β )
|α〉〈β∗|
〈β∗|α〉 . (6)

The c-number vector α composed of αsj , αpj , and αcjl for j, l = 1, . . . , N and j < l represents the coherent product state
|α〉 = ∏N

j=1 |αsj 〉|αpj 〉
∏

j<l |αcjl〉 and β describes another one 〈β∗| = ∏N
j=1〈β∗

sj |〈β∗
pj |

∏
j<l〈β∗

cj l|. The distribution function
P (α,β ) itself in the positive P representation is not uniquely determined, but the normal-ordered average is calculated with
any distribution P (α,β ) that satisfies Eq. (6). The nonuniqueness allows the distribution to be real and positive [24,46], even
when the density operator is composed of the superposition of different coherent states. In this expression the average of in-phase
amplitude (âsj + â

†
sj )/2 is computed as the average of (αj + βj )/2 over the distribution P (α,β ). The reason why we adopt the

positive P representation is that it enables us to describe dynamics of the DOPO system with the Fokker-Planck equation [24],
while other representations require extra approximations, e.g., truncation of higher-order terms for the Wigner representation, to
express the dynamics in a tractable form [24,36].

Substituting Eq. (6) into Eq. (5), we obtain the Fokker-Planck equation [43] for the distribution P (α,β ) through typical
calculations for this representation [24,35],

dP (α,β )

dt
=
⎧⎨
⎩

N∑
j=1

⎡
⎣ ∂

∂αsj

⎛
⎝γsαsj − κβsjαpj −

∑
l(>j )

ζjlαcjl +
∑
l(<j )

ζljαclj e
iθlj − εsj

⎞
⎠

+ ∂

∂βsj

⎛
⎝γsβsj − καsjβpj −

∑
l(>j )

ζjlβcjl +
∑
l(<j )

ζljβclj e
−iθlj − εsj

⎞
⎠

+ 1

2

∂2

∂α2
sj

καpj + 1

2

∂2

∂β2
sj

κβpj + ∂

∂αpj

(
γpαpj − εp + κ

2
α2

sj

)
+ ∂

∂βpj

(
γpβpj − εp + κ

2
β2

sj

)⎤⎦

+
∑
j<l

{
∂

∂αcjl

[γcαcjl + ζjl (αsj − αsle
−iθjl )] + ∂

∂βcjl

[γcβcjl + ζjl (βsj − βsle
iθjl )]

}⎫⎬
⎭P (α,β ), (7)

where we have taken the rotating frame with ω for the signal modes and 2ω for the pump modes.
The Ito rule leads to the corresponding stochastic differential equations:

dαsj =
⎛
⎝−γsαsj + κβsjαpj +

∑
l(>j )

ζjlαcjl −
∑
l(<j )

ζljαclj e
iθlj + εsj

⎞
⎠dt + √

καpjdWαsj
(t ), (8)

dβsj =
⎛
⎝−γsβsj + καsjβpj +

∑
l(>j )

ζjlβcjl −
∑
l(<j )

ζljβclj e
−iθlj + εsj

⎞
⎠dt + √

κβpjdWβsj
(t ), (9)

where dWx (t ) is the standard Wiener increment for variable
x. Similarly, we obtain those for the pump modes,

dαpj =
(
−γpαpj + εp − κ

2
α2

sj

)
dt, (10)

dβpj =
(
−γpβpj + εp − κ

2
β2

sj

)
dt, (11)

and for the injection-path modes,

dαcjl =[−γcαcjl − ζjl (αsj − αsle
−iθjl )]dt, (12)

dβcjl =[−γcβcjl − ζjl (βsj − βsle
iθjl )]dt, (13)
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for j < l. We assume that the pump and injection-path modes
decay much faster than the signal modes, i.e., γp, γc � γs .
The pump and injection-path modes are thus adiabatically
eliminated. Note that we have simplified the model more than
the two-DOPO model previously investigated [35] in which
the injection-path mode was not eliminated. Substituting the
values for instantaneous steady states of the modes into
Eqs. (8) and (9), we obtain

dμj =
⎡
⎣−μj + pνj

(
1 − μ2

j

) − ξ

⎛
⎝−

∑
l( �=j )

Jjlμl − hj

⎞
⎠
⎤
⎦dτ

+ g

√
1 − μ2

j dWμj
(τ ), (14)

dνj =
⎡
⎣−νj + pμj

(
1 − ν2

j

) − ξ

⎛
⎝−

∑
l( �=j )

Jjlνl − hj

⎞
⎠
⎤
⎦dτ

+ g

√
1 − ν2

j dWνj
(τ ). (15)

Here we introduced the normalized variables μj = gαsj /
√

p

and νj = gβsj /
√

p, where g = κ/
√

2γ ′
s γp controls the

strength of the noise and p = κεp/(γ ′
s γp ) is the pump rate.

We set p > 0 and do not vary p in time. The strength of
the injection is controlled by ξ = ξ0/(γ ′

s γc ). The parame-
ters Jjl = ζ 2

j le
−iθjl /ξ0 and hj = gγcεsj /(

√
pξ0) represent the

coupling constant and the longitudinal field, respectively, in
the Ising Hamiltonian for problems which the CIM tries to
solve. We have set ζlj = ζjl and eiθlj = e−iθjl . To guarantee
Jjl is real, e−iθjl is usually set to 1 or −1. The parameter
γ ′

s = γs + ∑
l( �=j ) ζ

2
j l/γc characterizes the effective signal loss

and specifies the time scale τ = γ ′
s t . To uniquely determine

γ ′
s , we restrict the setting to satisfy that

∑
l( �=j ) ζ

2
j l does not

depend on j . By this restriction, Jjl lies mainly in two classes.
One contains the couplings for the regular graph with uniform
magnitude. This class includes the ferromagnetic Ising model
on a lattice. The system with the coupling Jjl = J or −J on
a lattice is also included. The sum

∑
j ( �=l) |Jjl| in this class

is equal to zJ , where z denotes the coordination number.
The other class is that a site j connects a large number
O(N ) of sites, and Jjl is determined by an independent,
identical distribution. An example is the fully connected
Ising spin-glass model, the so-called Sherrington-Kirkpatrick
model [47], where Jjl is extracted from the Gaussian dis-
tribution, independently, identically. The sum

∑
j ( �=l) |Jjl| in

this class in the large-N limit is almost surely equal to some
constant that does not depend on j .

We obtain the Fokker-Planck equation of the reduced dis-
tribution P̃ (μ, ν ) for the signal modes from the stochastic
differential equations under the adiabatical elimination of the
other modes,

dP̃ (μ, ν )

dt
= LP̃ (μ, ν )

=
N∑

j=1

{
∂

∂μj

[
μj − pνj

(
1 − μ2

j

) + ξVμ,j

]

+ ∂

∂νj

[
νj − pμj

(
1 − ν2

j

) + ξVν,j

]

+ 1

2

∂2

∂μ2
j

g2(1 − μ2
j

)

+ 1

2

∂2

∂ν2
j

g2
(
1 − ν2

j

)}
P̃ (μ, ν ), (16)

where Vμ,j = −∑
l( �=j ) Jjlμl − hj and Vν,j = −∑

l( �=j )
Jjlνl − hj . This equation is rewritten as

dP̃ (μ, ν )

dt
= −

N∑
j=1

(
∂Sμj

∂μj

+ ∂Sνj

∂νj

)
. (17)

Here Sμj
and Sνj

are given as

Sμj
=
[

− μj + pνj

(
1 − μ2

j

) − ξVμ,j

− 1

2

∂

∂μj

g2
(
1 − μ2

j

)]
P̃ (μ, ν ), (18)

Sνj
=
[

− νj + pμj

(
1 − ν2

j

) − ξVν,j

− 1

2

∂

∂νj

g2
(
1 − ν2

j

)]
P̃ (μ, ν ), (19)

which compose the probability current.

III. DISTRIBUTION OF STEADY STATES

We derive the stationary solution P̃SS(μ, ν ) of Eq. (16)
that satisfies LP̃SS(μ, ν ) = 0. The fact that the distribution for
the positive P representation can be real and positive [24,46]
allows us to introduce a potential function �(μ, ν ) as

P̃SS(μ, ν ) = Z−1
N e−�(μ,ν ), (20)

where Z−1
N is a constant for normalization, referred to as the

partition function later. The probability current for P̃SS(μ, ν )
is expressed as

Sμj
=
[

− (1 − g2)μj + pνj

(
1 − μ2

j

) − ξVμ,j

+ 1

2
g2
(
1 − μ2

j

) ∂�

∂μj

]
P̃SS(μ, ν ),

(21)

Sνj
=
[

− (1 − g2)νj + pμj

(
1 − ν2

j

) − ξVν,j

+ 1

2
g2
(
1 − ν2

j

) ∂�

∂νj

]
P̃SS(μ, ν ).

(22)

A simple strategy to find a solution is to assume a detailed
balance that guarantees the existence of the equilibrium distri-
bution as a stationary distribution [43]. The detailed balance
condition in the Fokker-Planck equation is equivalent to the
absence of the probability current [43], Sμj

= Sνj
= 0 ∀j . The

potential function under the detailed balance condition, say
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�DB(μ, ν ), satisfies

∂�DB

∂μj

= 2

g2
(
1 − μ2

j

) [(1 − g2)μj − pνj

(
1 − μ2

j

) + ξVμ,j

]
,

(23)

∂�DB

∂νj

= 2

g2
(
1 − ν2

j

) [(1 − g2
)
νj − pμj

(
1 − ν2

j

) + ξVν,j

]
.

(24)

For ξ �= 0, however, no function satisfies the above eqautions,
since the above equations lead to

∂

∂μl

∂�DB

∂μj

= − 2ξJjl

g2
(
1 − μ2

j

) , (25)

∂

∂μj

∂�DB

∂μl

= − 2ξJjl

g2
(
1 − μ2

l

) , (26)

where we have used Jlj = Jjl . The differentiation of the
function with respect to μj and μl thus cannot be interchanged
for ξ �= 0. This fact demonstrates that the state distribution
governed by Eq. (16) for ξ �= 0 does not exhibit detailed
balance. Hence there exists a finite probability current and
the system has no equilibrium state distributions. When ξ =
0, where the DOPOs do not interact with each other, the
detailed balance can be held. On the other hand, if the noises
in the stochastic differential equations [Eqs. (14) and (15)]
were governed by the Gaussian distribution, i.e., gdWμj

(τ )
and gdWμj

(τ ), the denominators in the right-hand side of
Eqs. (25) and (26) would turn to g2, and the detailed balance
could be recovered. The breakdown of detailed balance thus
stems from a combination of the interactions and multiplica-
tive noises.

The violation of the detailed balance condition has been
discussed in several studies, in particular, in the context of
efficient sampling methods, where it has been confirmed that
faster convergence to steady states is realized by violating
the detailed balance condition [48–51]. In other words, the
stochastic dynamics without detailed balance can reach the
steady states in a shorter time than the corresponding dynam-
ics that obeys the detailed balance condition [52–54]. The
violation of the detailed balance condition of the dynamics
in the CIM is hence expected to accelerate the convergence to
the steady states. Note that the origin of the noises is quantum
fluctuations.

While the breakdown of the detailed balance condition
suggests a nontrivial character of the CIM in the relaxation to
steady states, it is an obstacle that makes it difficult to derive
distribution of steady states. This difficulty is not avoided even
if we use another representation instead of the positive P

representation. For instance, the dynamics described with the
truncated Wigner representation also includes multiplicative
noises [24,36]. We here focus on a part of the steady-state
distribution in which the difference in the magnitude μ2

i (ν2
j )

of different DOPOs is small. We represent

μ2
j = qμ + δ

μ

j , ν2
j = qν + δν

j , (27)

where

qμ = 1

N

N∑
j=1

μ2
j , qν = 1

N

N∑
j=1

ν2
j . (28)

In a region where δ
μ

j and δν
j are small, there can be a potential

function that approximately satisfies Eqs. (23) and (24). Note
again that the potential function of the CIM in general never
exhibits detailed balance, but there could be a part in which
Eqs. (23) and (24) hold. If the other part of the potential
function is nearly equal to zero, we do not have to consider
that part. The expansion of the potential function in terms of
δ, obtained from Eqs. (23) and (24), is

g2� = g2�0 − 2ξ

1 − qμ

∑
j<l

Jjlμjμl − 2ξ

1 − qν

∑
j<l

Jjlνj νl

− 2ξ

1 − qμ

N∑
j=1

hjμj − 2ξ

1 − qν

N∑
j=1

hjνj + O(δ2),

(29)

where

g2�0 = −N (1 − g2)[ln(1 − qμ)

+ ln(1 − qν )] − 2p

N∑
j=1

μjνj . (30)

The function �0 provides the terms for the independent
DOPOs, reproducing the known result for a single
DOPO [55], which with large p form a double well in the
potential function. The double well corresponds to the bifur-
cation of the in-phase amplitude above the threshold of the
pump rate to make pseudo-Ising variables. The other terms
undertake the coupling of DOPOs embedded for a target
optimization problem. When we neglect terms O(δ2), the
terms for the coupling compose of the Hamiltonian or the cost
function for the continuous relaxation of a target discrete
optimization problem. In the subspace that satisfies δ = 0 the
Ising Hamiltonian is effectively reproduced [56]. In the view
of distribution of steady states, the CIM finds solutions with
the combination of the Ising-like double wells and the con-
tinuous relaxation of the problem. It is not obvious, however,
that the global minimum of the potential function given by
Eq. (29) agrees with the ground state of the Ising Hamiltonian
for the discrete optimization problem. Note that the presence
of the double well does not directly indicate the superposition
of the two coherent states for the wells, namely our up spin
and down spin. It rather leads to the classical mixture of
them in the single- and two-DOPO cases at least [35,57].
We therefore do not expect the superposition of states for up
spin and down spin in the steady-state regime. In time for
transient evolution, a signature of the superposition was found
in numerical simulations of a single DOPO case [58] and in
the two-DOPO model [35]. This feature might be a charac-
teristic property of DOPOs even for solving combinatorial
optimization problems, but the transient time scale is out of
our scope in the present study. We focus on investigating the
distribution of steady states to examine whether the CIM can

053839-5



RYOJI MIYAZAKI AND MASAYUKI OHZEKI PHYSICAL REVIEW A 98, 053839 (2018)

reach the optimal states for the target optimization problems
without exploring how it reaches them.

IV. TYPICAL SOLUTIONS WITH THE POTENTIAL
FUNCTION IN THE LARGE-SIZE LIMIT

If the higher-order terms O(δ2) in Eq. (29) are negligible,
the potential function under the detailed balance condition can
be a good approximation of the true one. It is available to
analytically evaluate the property of the approximate potential
function without those terms. We here examine the potential
function without the higher-order terms, applying it to two
simple examples. We consider only the real part of μj and νj .
This simplification is based on the standard initial condition of
the dynamics in which all signal fields are set to the vacuum
state and on real Jjl with e−iθjl = 1,−1. Equations (14) and
(15) show that if all μj and νj have no imaginary part at an
instantaneous time, they remain real for all time [55].

What we like to know is the configuration of Ising spins
yielded from the CIM according to the potential function. The
Ising spins are encoded in the sign of the in-phase amplitude
of the signal fields [11–13,22,35]. We define an operator σ̂j by
σ̂j |xj 〉 = sgn(xj )|xj 〉, where |xj 〉 is the eigenstate of operator
x̂j = (âsj + â

†
sj )/2 and sgn(xj ) is 1 if xj > 0 and −1 if xj <

0. Its expectation value is

tr(ρ̂σ̂j )

=
∫

dN x dNμ dNν sgn(xj )
〈x|α〉〈β∗|x〉

〈β∗|α〉 P̃ (μ, ν )

=
∫

dNμ dNν

{
1 − 2H

[√
p

g
(μj + νj )

]}
P̃ (μ, ν )



∫

dNμ dNν sgn(μj + νj )P̃ (μ, ν ), (31)

where H (x) = ∫∞
x

dt e−t2/2/
√

2π . The last line is obtained
from the second line by ignoring the fluctuation in the coher-
ent state. This is a rather good approximation for small g.

For estimating the efficiency of the CIM to solve com-
binatorial optimization problems, it is important to inves-

tigate its behavior for large-size problems. The method of
statistical mechanics is suitable for this situation [59]. We
define the partition function and free energy for the potential
function by

ZN (η) =
∫

dNμ dNν e−�(μ,ν )−g−2ηM (σ ), (32)

f (η) = − lim
N→∞

g2

N
ln ZN (η), (33)

respectively. Here the term g2ηM (σ ) is introduced to evaluate
the expectation value of order parameter M (σ ), e.g., M (σ ) =∑N

j=1 σj , where σj = sgn(μj + νj ). If we had the true solu-
tion σ 0 of the problem, M (σ ) could be overlapped between
the Ising spins in the CIM and the solution, i.e., M (σ ) =∑N

j=1 σjσ
0
j , which estimates how correct the answer of the

CIM is. The free energy chracterizes the macroscopic property
of the system, giving the expectation values of macroscopic
quantities, e.g., M (σ ).

A. Fully connected ferromagnetic coupling

We first investigate, as the simplest example, an opti-
mization problem that is mapped onto the fully connected
ferromagnetic Ising model without the Zeeman terms. All the
coupling constants Jjl are equal to J/(2N ), J > 0, and the
longitudinal field hj vanishes. The correct ground states of
the corresponding Ising model are all up and all down. The
potential function without the higher-order terms O(δ2) for
this problem is

g2� = g2�0 − NξJ

2(1 − qμ)
(mμ)2 − NξJ

2(1 − qν )
(mν )2, (34)

where �0 is given by Eq. (30), and

mμ = 1

N

N∑
j=1

μj , mν = 1

N

N∑
j=1

νj . (35)

The order parameter is M (σ ) = ∑N
j=1 σj .

The partition function is written as

Z(η) =
∫

dNμ dNν d2m d2q δ

⎛
⎝Nmμ −

N∑
j=1

μj

⎞
⎠δ

⎛
⎝Nmν −

N∑
j=1

νj

⎞
⎠δ

⎛
⎝Nqμ −

N∑
j=1

μ2
j

⎞
⎠δ

⎛
⎝Nqν −

N∑
j=1

ν2
j

⎞
⎠e−�−g−2ηM (σ )

=
∫

d2m d2q d2m̃ d2q̃ exp

(
g−2N

{
(1 − g2)[ln(1 − qμ) + ln(1 − qν )] + m̃ · m + q̃ · q

+ ξJ

2(1 − qμ)
(mμ)2 + ξJ

2(1 − qν )
(mν )2 + g2 ln

∫
dμ dν e−g−2φ

})
. (36)

Here m = (mμ,mν ), q = (qμ, qν ), m̃ = (m̃μ, m̃ν ), and q̃ =
(q̃μ, q̃ν ). The variables m̃ and q̃ are introduced for the integral
expression of the delta function. In addition, we have

φ = z · Q̃z + m̃ · z + ησ, (37)

where z = (μ, ν), and elements of matrix Q̃ are Q̃11 = q̃μ,
Q̃12 = Q̃21 = −p, and Q̃22 = q̃ν , and σ = sgn(μ + ν). The

integral is calculated as

∫
dμ dν e−g−2φ

= πg2√
detQ̃

exp

(
g−2

4
m̃ · Q̃−1m̃

)
G(m̃, q̃, η). (38)
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We do not explicitly show G(m̃, q̃, η), but the function for
the symmetric case discussed later is given in Appendix A.
It should be noted that G(m̃, q̃, 0) = 1. Since the exponent of
the integrand of Z(η) is proportional to N , in the large N limit
the method of steepest descent gives

f (η) = extr
m,q,m̃,q̃

{
− (1 − g2)[ln(1 − qμ) + ln(1 − qν )]

− m̃ · m − q̃ · q

− ξJ

2(1 − qμ)
(mμ)2 − ξJ

2(1 − qν )
(mν )2

− g2 ln(πg2) + g2

2
ln detQ̃ − 1

4
m̃ · Q̃−1m̃

− g2 ln G(m̃, q̃, η)

}
, (39)

where extrm,q,m̃,q̃ represents taking an extremum with respect
to m, q, m̃, q̃. The terms in the fourth line contribute to the
entropic part of the free energy. Since the term in the last
line is only used to compute the average of σ , η is set to
zero when searching for saddle points of the free energy. The
saddle points are determined as

m̃μ = − ξJ

1 − qμ
mμ, (40)

q̃μ = 1 − g2

1 − qμ
− ξJ

2(1 − qμ)2 (mμ)2, (41)

mμ = − m̃μq̃ν + m̃νp

2(q̃μq̃ν − p2)
, (42)

qμ = g2q̃ν

2(q̃μq̃ν − p2)
+
[

m̃μq̃ν + m̃νp

2(q̃μq̃ν − p2)

]2

. (43)

We also have the equations obtained by interchanging μ and ν

in superscripts in the above equations. In particular, m and q
for the saddle points are the expectation values of them under
the distribution governed by the potential function in Eq. (34).

We have not found any solutions that satisfy mμ �= mν

by numerical calculations. We therefore restrict ourselves to
consider symmetric solutions for which the parameters do
not depend on μ and ν, i.e., mμ = mν = m, qμ = qν = q,
m̃μ = m̃ν = m̃, and q̃μ = q̃ν = q̃. Accordingly, the saddle-
point equations reduce to

m̃ = − ξJ

1 − q
m, (44)

q̃ = 1 − g2

1 − q
− ξJ

2(1 − q )2 m2, (45)

m = − m̃

2(q̃ − p)
, (46)

q = g2q̃

2(q̃2 − p2)
+
[

m̃

2(q̃ − p)

]2

. (47)

Intuitively, the term −2g−2p
∑

j μjνj in the potential func-
tion �0 [Eq. (30)] enhances the overlap between μ and ν,
and then the symmetric solution is realized. It should be noted
that the restriction that the macroscopic parameters above do
not depend on μ and ν does not mean that we assume μj =
νj . The condition μj = νj would restrict our analysis into a

smaller subspace, where the density operator is represented
as a classical mixture of the coherent states. The condition,
consequently, leads to a different entropic part from the above
one we actually obtained. This difference indicates that our
analysis including approximations still reflects some quantum
effects.

What we like to calculate is the expectation value of
the Ising spins mσ = 〈N−1 ∑N

j=1 σj 〉, where 〈X〉 denotes the
average of X over the distribution e−�Z(η = 0)−1. Using the
function G in the symmetric case shown in Appendix A, we
obtain

mσ = df (η)

dη

∣∣∣∣
η=0

= −1 + 2H

(
m̃

g
√

q̃ − p

)
, (48)

where the values of parameters m̃ and q̃ are for the saddle
point.

We first examine the solution for ξ = 0, where the system
has no interactions between different DOPOs. In this case,
the saddle-point equations give m = mσ = 0 that is consistent
with the fact that the system has no bias. The solution q has
a positive value for g > 0. In the limit g → 0, q shows not
the fluctuation but just the square of the amplitude of μ and ν

frozen at a basin of the potential function. Thus we can find the
character of the shape of the potential function in the behavior
of q. There is a threshold p = 1. Below the threshold, p < 1,
the solution of q is equal to zero, which means that the
potential function has the unique minimum at μ = ν = 0.
Above the threshold, p > 1, another solution appears with a
finite value, q = 1 − 1/p, in addition to q = 0. The potential
function then has the minima at μ = ν = ±√

1 − 1/p and the
unstable extremum at μ = ν = 0. This behavior agrees with
the known bifurcation for a single DOPO [55].

We move to investigation of the system for finite ξ , where
the DOPOs interact with each other. To gain insight into this
case, we consider the limit g → 0, where Eq. (47) reduces
to q = m2. Accordingly, the saddle-point equation for m

results in

m = 1

2

[
1

1 − m2
− ξJ

2(1 − m2)2
m2 − p

]−1

× ξJ

1 − m2
m (g = 0).

(49)

This equation has three (five) possible solutions of m2 (m):
m0 = 0 and m2

± = 1 − (1 ± √
1 − 2pξJ )/2p. To choose

physically reasonable solutions, we examine the stability of
the possible ones. The first candidate m0 is stable only when
p + ξJ/2 < 1 and the others are unstable or complex in this
condition. The second one m2

+ is stable only when p > 1/2
and p + ξJ/2 > 1, but the region 2pξJ > 1 is excluded,
where m+ becomes complex. The third one m2

− is always
unstable or complex. Summarizing, we have a finite real
solution, m+, only for p > 1/2 and p + ξJ/2 > 1 except for
2pξJ > 1. When p + ξJ/2 < 1, the solution is m0(= 0). In
the other region our approach does not yield any real solution.
These solutions determine mσ via Eq. (48); negative (positive)
m̃, i.e., positive (negative) m, leads to mσ = 1 (mσ = −1),
which is the correct ground state of the corresponding Ising
model. The boundary, therefore, is p + ξJ/2 = 1, and larger
p and ξ under p > 1/2 give mσ = 1 or −1 [59]. When
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FIG. 1. Heat map for the solutions of the saddle-point equations
[Eqs. (44)–(47)] for different g in the p-ξJ plane. (a) m, (b) q, and
(c) mσ for g = 0.01 and (d) m, (e) q, and (f) mσ for g = 0.4. The
dashed straight line is the boundary above which m for g → 0 has a
finite real value, while the dashed curve is the boundary above which
there is no real, stable solution of m for g → 0. Initial conditions in
solving the equations are set for simplicity so that m tends not to be
negative. The white region is where the real, stable solutions are not
found.

g = 0, p + ξJijN is an effective pump rate, if all the DOPOs
display the same μ and ν. In this example, where Jij = J/2N ,
p + ξJ/2 is the effective pump rate. The boundary obtained
here is given by the effective pump rate equal to unity.

The emergence of the finite solution is identified with
a phase transition in the p-ξJ phase space. If we carry
out the annealing approach by controlling p or ξ with keeping
the above instantaneous steady states, the system undergoes
the phase transition. It is interesting that mσ exhibits the
discontinuous change at the boundary, namely, the first-order
phase transition, while m continuously changes as the second-
order one. This definite difference is only for the case g → 0,
but this finding suggests a feature of the scheme in which the
problem is solved by the continuous variables, i.e., μ and ν,
encoding the discrete ones.

We numerically find the stable solutions of the saddle-
point equations for g > 0. For small finite g (= 0.01)
[Figs. 1(a)–1(c)], the solution is similar to that for g = 0.

Note that g for the actual CIM is smaller than 0.01. We find a
rather sharp transition of mσ from zero to a finite value very
close to unity, at the almost same location as that for g = 0.
The solution mσ = −1 is also obtained, but we set an initial
condition in solving the equations so that m tends not to be
negative for simplicity. The result for a rather large g (= 0.4)
[Figs. 1(d)–1(f)] displays different behavior due to noises. The
boundary for m to take a finite value becomes a curve instead
of the straight line as for g = 0. Moreover, a stronger pump
is needed to have finite m. This is because g partially plays
a role of temperature in the dynamics of our system. Hence
the system with large g has large fluctuations. The value of m

thus tends to vanish, whereas q takes a finite value. However,
it is only when p and ξ are small that the system is completely
disturbed by the fluctuations. Stronger pump and interactions
make basins in the potential function deeper. The state of the
system is captured by the deep basin. A finite m is observed,
consequently. Whereas mσ for g = 0.01 suddenly changes at
the boundary, its change for g = 0.4 is smoother due to the
noises. We nevertheless are able to obtain almost all-up (or
all-down) state with larger p and ξ .

B. Fully connected ferromagnetic coupling with random fields

We next examine the fully connected ferromagnetic cou-
pling with random fields. The couplings are the same as
those in the previous example, Jij = J/2N , J > 0, while a
longitudinal field for each site is randomly taken from some
distribution identically, independently. The potential function
without the higher-order terms O(δ2) for this problem is

g2� = g2�0 − NξJ

2(1 − qμ)
(mμ)2 − NξJ

2(1 − qν )
(mν )2

− 2ξ

1 − qμ

N∑
j=1

hjμj − 2ξ

1 − qν

N∑
j=1

hjνj , (50)

where �0 and both mμ and mν are given in Eqs. (30) and (35),
respectively. We also set M (σ ) = ∑N

j=1 σj in this problem.
We examine the case in which the fields take binary values h0

or −h0 at random. The corresponding Ising model governed
by the Gibbs distribution has been investigated well [60]. It is
known that the system at zero temperature undergoes a first-
order phase transition with increasing the amplitude h0 of the
fields. The field for the transition is h0/J = 1/2, below which
the spins are all up or all down, whereas each spin is parallel
to the field above the critical point. Our aim here is to clarify
whether our approach captures this transition.

It is not difficult, as shown in Appendix B, to extend the
partition function and free energy for the no-field model to
the case with fields, but the randomness in the fields has
to be carefully treated. We here exploit the self-averaging
property, where the free energy for an instance of random
fields is almost surely equal to the averaged one in the large
N limit [60]. We can derive the corresponding saddle-point
equations for the symmetric solutions from the averaged free
energy over the configuration of random fields,

m̃ = − ξJ

1 − q
m, (51)
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q̃ = 1 − g2

1 − q
− ξJ

2(1 − q )2 m2 − 2(ξh0)2

(q̃ − p)(1 − q )3 , (52)

m = − m̃

2(q̃ − p)
, (53)

q = g2q̃

2(q̃2 − p2)
+ m̃2 + [2ξh0/(1 − q )]2

4(q̃ − p)2
. (54)

The expectation value of Ising spins is

mσ = −1 + H

[
m̃ − 2ξh0/(1 − q )

g
√

q̃ − p

]

+H

[
m̃ + 2ξh0/(1 − q )

g
√

q̃ − p

]
. (55)

In the limit g → 0, the saddle-point equations for finite
m lead to q = m2 + qh, where qh = (2h0/J )2 indicates the
variance of μ and ν purely driven by the random fields.
Accordingly, Eq. (53) with Eq. (52) turns to

m = 1

2

[
1

1−m2−qh

− ξJ

2(1−m2−qh)2
(m2 + 2qh) − p

]−1

× ξJ

1 − m2 − qh

m (g = 0). (56)

This equation has three (five) possible solutions of m2 (m):
m0 = 0 and m2

± = (1 − qh)[1 − (1 ± √
1 − 2p′ξ ′J )/(2p′)],

where p′ = (1 − qh)p and ξ ′ = (1 + qh)ξ/(1 − qh). We can
find the physical solutions, which are real and stable ones,
through the same argument as in the no-field case, but p and ξ

in that case are replaced with p′ and ξ ′ here. We hence have a
finite solution (m+) only when p′ > 1/2 and p′ + ξ ′J/2 > 1,
but the region 2p′ξ ′J > 1, where m+ becomes complex, is
excluded. For p′ + ξ ′J/2 < 1, the solution is m0(= 0). In
the other region, p′ < 1/2 and p′ + ξ ′J/2 > 1, there is no
real solution. These solutions determine mσ via Eq. (55)
with Eq. (51); if m2 > qh, |mσ | = 1, otherwise mσ = 0. The
discontinuous change of |mσ | from zero to 1 thus occurs
at h0/(m+J ) = 1/2 in the region for p′ > 1/2 and p′ +
ξ ′J/2 > 1. The quantity h0/m+ represents the magnitude of
the effective field in the Ising model which the CIM actually
solves, since being divided by m+ relaxes the discrepancy, in
the balance between the two-body and one-body interactions,
of the model represented with μ and ν from the Ising model.
This finding demonstrates that the CIM detects the first-order
phase transition at which the ratio of the effective field to the
coupling constant is equal to 1/2. This boundary agrees with
that for the corresponding Ising system at zero temperature
governed by the conventional Gibbs distribution [60].

When we compare the condition h0/(m+J ) = 1/2 to the
transition point in the corresponding Ising model, it is consid-
ered as the boundary for h0 with fixed p and ξ in the region for
finite m. The condition is also interpreted as the boundary for
p or ξ with fixed h0. For the latter we discuss the transition
which the system undergoes in the annealing approach by
controlling p or ξ . As in the no-field case, m continuously
changes with increasing p or ξ , while mσ jumps at the
boundary. There is a difference, however, in the mechanism
for the jump. The discontinuous change in the random-field
case is caused by the first-order phase transition of the genuine

FIG. 2. Obtained mσ from Eq. (55) with the solution of the
saddle-point equations [Eqs. (51)–(54)] as a function of h0/(mJ )
for (a) g = 0.01 and (b) g = 0.1 at (p, ξ ) = (1.0, 0.1), (1.1, 0.1),
(1.2, 0.1), (1.0, 0.2), (1.1, 0.2), (1.2, 0.2), (1.0, 0.3), (1.1, 0.3), and
(1.2, 0.3) from bottom to top. The plots are shifted vertically by 0.5
for clarity. Real, stable solutions at large h0/mJ are not obtained
for some sets of (p, ξ ). Initial conditions in solving the saddle-point
equations are set for simplicity so that m tends not to be negative.

Ising model, whereas that observed in the no-field case is just
due to the bifurcation of the DOPOs. The first-order phase
transition is in general owed to the presence of an energy
barrier between multiple minima [60], which makes it difficult
to search for the ground states in the energy landscape. Hence
that transition should be avoided in the scheme. For instance,
such a transition in quantum annealing often concerns an
exponentially small energy gap [61–64] and thus inefficiency
of the method. The continuous change of m in our approach
demonstrates the absence of local minima, despite the target
Ising model having the first-order phase transition.

We find the solutions of the saddle-point equations for g >

0 by numerically solving them. For g = 0.01 the resulting mσ

steeply decreases from 1 to zero with increasing h0/(mJ ) with
fixed p and ξ as shown in Fig. 2(a). The sudden change takes
place around h0/(mJ ) = 0.5, which agrees with the transition
point of the corresponding Ising model at zero temperature.
The transition yielded by our model, however, is not the
first-order one, while the corresponding Ising model exhibits
the first-order one even for finite low temperatures [60]. This
difference probably originates from the fact that our model
is governed by the continuous degrees of freedom, μ and
ν, rather than the discrete ones in the genuine Ising model.
Larger p and ξ enhance Ising-like behavior. As a result,
steeper change at the transition point is found. Except around
the transition point, we obtain the correct ground state of the
target Ising model. For larger g [Fig. 2(b)], we do not find
any sudden change of mσ , but it monotonically decreases with
increasing the effective field.

V. SUMMARY AND DISCUSSION

We investigated a network of degenerate optical parametric
oscillators (DOPOs) as a model of the coherent Ising ma-
chine (CIM) [11–13,22], an architecture for solving problems
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expressed with the Ising models. The network is composed
of the optical coupling of DOPOs, representing the Ising
model with the parameters Jjl and hj . Motivated by the
annealing approach [8,40–42], we tried to derive the steady-
state distributions for the dynamics described with the positive
P representation [46]. The distribution is expected to yield
answers of the CIM on the problems in the long-time limit.
We obtained approximate distribution of steady states for
arbitrary Ising problems under the ansatz that the difference
in μ2

i and ν2
i from other DOPOs is small. Using the method

of statistical mechanics in the large problem-size limit, we
showed a prescription to obtain the most probable states in the
distributions in which higher-order terms for the inhomogene-
ity of μ2

i and ν2
i are neglected. For two rather simple problems,

i.e., fully connected ferromagnetic coupling without or with
binary random fields, we derived phase diagrams in the p-ξJ

plane. The phase diagrams demonstrate that the most probable
states in a particular range of the parameters correspond to the
true optimal states. In particular, in the random-field problem,
the distribution correctly detects the phase transition that
occurs in the genuine Ising model with varying the magnitude
of the fields. We found through this analysis an interesting
feature of our system that, despite the fact that the nature of
the first-order phase transition in terms of the Ising spins is
effectively detected, the order parameter m for the quadrature
amplitude does not show discontinuous change.

Our analysis is based on the approximate distributions, but
it is probably valid for the no-field problem, since the problem
has no effect that disturbs the uniformity in the magnitudes.
On the other hand, the random fields contribute to the growth
of the difference in the magnitude. Hence our result of the
random-field problem, in particular, for the fields with large
amplitude might be modified when including the higher-order
terms for the inhomogeneity of the magnitude. Numerical
simulations for this problem should be done to examine this
issue. In addition, it is interesting to estimate effects of the
higher-order terms to the most probable states.

The obtained distribution of steady states for the network
are composed of the Ising-like double wells and the continu-
ous relaxation of the problem. It is not reasonable to expect the
superposition of the two coherent states for the wells, namely
our up spin and down spin, since the double well is for a clas-
sical mixture of them in the single- and two-DOPO cases at
least [35,57]. Although such a superposition is not necessary
to find a solution, it is often referred to as a key of the effi-
ciency of quantum annealing [3–6] in the context of compar-
ison with classical algorithms, e.g., simulated annealing. We,
however, do not conclude that the network effectively works
in the manner determined by a trivial classical algorithm. In
time for transient evolution, a sign of the superposition was
found in numerical simulations of a single DOPO case [58]
and in the two-DOPO model [35]. In addition, the violation
of the detailed balance condition exhibits faster convergence
to the steady states than the conventional dynamics fluctuated
by the simple Gaussian noise [48–54]. The violation stems
from the multiple facts: the multiplicative noise and the
coupling of the DOPOs. The former, generated by quantum
fluctuations with the coupling of the signal and pump fields,
also appears in a single DOPO, but it is not enough for
the breakdown of the detailed balance. The coupling of the

DOPOs is essential to the peculiar dynamics. These features
in the dynamics toward the steady states might be important
matters for evaluating the CIM’s performance in solving
large-size problems. Investigation on this subject is left as a
future work.
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APPENDIX A: FUNCTION G(m̃, q̃, η)

We restrict ourselves to considering the symmetric case,
where m̃μ = m̃ν = m̃ and q̃μ = q̃ν = q̃. The function φ in
Eq. (37), after diagonalizing Q̃, is rewritten as

φ = q̃+w2
1 + q̃−w2

2 − 1

4
m̃ · Q̃−1m̃ + η sgn

(√
2w2 − m̃

q̃−

)
.

(A1)

Here we have used eigenvalues q̃± of Q̃, which for the
symmetric case are q̃± = q̃ ± p, and(

w1

w2

)
= w = V

(
z + 1

2
Q̃−1m̃

)
, V = 1√

2

(
1 −1
1 1

)
.

(A2)

The function sgn(x) gives 1 if x > 0 and −1 if x < 0. We then
calculate the integral in Eq. (38) for the symmetric case as∫

dμ dν e−g−2φ

= e
g−2

4 m̃·Q̃−1m̃
∫ ∞

−∞
dw1e

−g−2 q̃+w2
1

×
[ ∫ m̃/(

√
2q̃− )

−∞
dw2e

−g−2(q̃−w2
2−η)

+
∫ ∞

m̃/(
√

2q̃− )
dw2e

−g−2(q̃−w2
2+η)

]

= πg2√
q̃+q̃− exp

(
g−2

4
m̃ · Q̃−1m̃

)

×
[
eg−2η − 2 sinh(g−2η)H

(
m̃

g
√

q̃−

)]
, (A3)

where H (x) = ∫∞
x

dt e−t2/2/
√

2π . Comparing this with
Eq. (38), we obtain

G(m̃, q̃, η) = eg−2η − 2 sinh(g−2η)H

(
m̃

g
√

q̃−

)
. (A4)

The function G(m̃, q̃, η) without the symmetry is also ob-
tained through similar calculations.
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APPENDIX B: FREE ENERGY FOR
THE RANDOM-FIELD CASE

The partition function for the random-field case is
same as that for the no-field case [Eq. (36)], ex-
cept that ln

∫
dμ dν e−g−2φ in the latter is replaced with

N−1 ∑N
j=1 ln

∫
dμ dν e−g−2φRF

j in the former. Here we have

φRF
j = z · Q̃z + m̃hj

· z + ησ (B1)

and

m̃
μ

hj
= m̃μ − 2ξhj

1 − qμ
, m̃ν

hj
= m̃ν − 2ξhj

1 − qν
, (B2)

for m̃j = (m̃μ

hj
, m̃ν

hj
). The function φRF

j has a similar form to

φ [Eq. (37)], and the integral
∫

dμ dν e−g−2φRF
j is calculated as

in the no-field case. The sum of the logarithm of the obtained
function concerns only fields. The sum in the large N limit
hence corresponds to the average with respect to the random
field, showing the self-averaging property [60]. We thus have

1

N

N∑
j=1

ln
∫

dμ dν e−g−2φRF
j = ln

πg2√
detQ̃

+g−2

4
〈m̃h · Q̃−1m̃h〉h

+〈ln G(m̃h, q̃, η)〉h, (B3)

where 〈X〉h denotes the average of X over the random field
h. We then obtain, by the method of steepest descent, the free
energy for the random-field case,

f RF(η) = extr
m,q,m̃,q̃

{
− (1 − g2)[ln(1 − qμ) + ln(1 − qν )]

− m̃ · m − q̃ · q

− ξJ

2(1 − qμ)
(mμ)2 − ξJ

2(1 − qν )
(mν )2

− g2 ln(πg2) + g2

2
ln detQ̃ − 1

4
〈m̃h · Q̃−1m̃h〉h

− g2〈ln G(m̃h, q̃, η)〉h
}
. (B4)

Let us consider random fields each of which takes either h0 or
−h0 at random. For the symmetric case, where m̃μ = m̃ν = m̃

and q̃μ = q̃ν = q̃, the average in the free energy results in

〈m̃h · Q̃−1m̃h〉h = 2

q̃ − p

[
m̃2 +

(
2ξh0

1 − q

)2
]
, (B5)

〈ln G(m̃h, q̃, η)〉h = 1

2
ln G

(
m̃ − 2ξh0

1 − q
, q̃, η

)

+ 1

2
ln G

(
m̃ + 2ξh0

1 − q
, q̃, η

)
, (B6)

where G(m̃, q̃, η) is given in Eq. (A4).
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