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Complex Berry phase dynamics in PT -symmetric coupled waveguides
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We show that the analog of the geometric phase for non-Hermitian coupled waveguides with PT symmetry
and at least one periodically varying parameter can be purely imaginary, is hence no longer a true phase and
instead a real multiplier, and will consequently result in the amplification of Floquet sidebands in the system.
The sideband peaks seen in the spectrum of the system’s eigenstates after evolution along the waveguides can
be directly mapped to the spectrum of the derivative of the geometric function. The sidebands are magnified
(becoming virtually unstable) as the exceptional point of the system is approached, and nonadiabatic effects
begin to appear. Because the system cannot evolve adiabatically in the vicinity of the exceptional point, PT
symmetry will be observed breaking earlier than theoretically predicted.
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I. INTRODUCTION

Since the concept of a geometric phase in quantum me-
chanics was first described by Berry in 1984 [1], it has
been extended such that it can be applied in many areas of
physics, including to systems which are nonadiabatic and non-
Hermitian [2,3]. As such, the effect it has on such systems is
of considerable interest, in particular to the optics community.
The analog of the Berry phase in a non-Hermitian system is
easily derived via the traditional approach [4], through use
of Floquet theorem [5,6], or by using an evolution operator
method [7]. It is known that this geometric “phase” is not nec-
essarily a real function for non-Hermitian systems, and hence
it is possible for eigenstates to gain a real exponential multi-
plier, rather than simply a phase, after cyclic adiabatic evolu-
tion [2,7], leading to an exponential growth of the amplitude.

By replacing the requirement that a Hamiltonian be
Hermitian with the weaker condition of parity-time (PT )
symmetry, a type of spacetime reflection symmetry, it is
possible for it to have real eigenvalues as long as PT sym-
metry remains unbroken [8–10]. In the language of quantum
mechanics, when PT symmetry is unbroken, the parity-time
operator will commute with the Hamiltonian and share its
instantaneous eigenstates; it breaks when the eigenstates of
the Hamiltonian are no longer eigenstates of the PT oper-
ator [8]. Such non-Hermitian systems are easily realized in
the field of optics; for example, as coupled waveguides with
balanced gain and loss [11–14]. The PT -symmetry-breaking
point of such a system corresponds to an exceptional point in
parameter space, where the eigenvalues and eigenstates of the
system coalesce [11,15]. If the parameters cross this point, the
eigenvalues of the system can become purely imaginary, and
exponential gain will be observed in the waveguides.

Exceptional points have gained a lot of interest in re-
cent years due to their various possible applications [15,16],
and as such there have been interesting results concern-
ing the geometric phase and the onset of instability in
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non-Hermitian systems. Theoretically, the adiabatic encir-
cling of an exceptional point can lead to a state flip or the
accumulation of a geometric phase in a two-level system [15].
However, in practice adiabaticity breaks down, as even with
slow evolution the gain inherently present in such a sys-
tem will magnify nonadiabatic effects which are usually ne-
glected [17]. This is indeed what is observed in the work that
follows. Furthermore, optical non-Hermitian systems near the
exceptional point are known to be unstable with respect to
infinitesimally small changes in the system’s parameters [18].

In this work, we show that a non-Hermitian, PT -
symmetric coupled waveguide system with balanced gain and
loss and a periodically varying coupling coefficient will have
a purely imaginary geometric phase below the exceptional
point. On approaching the exceptional point, adiabaticity will
break down even for a slowly varying coupling between the
waveguides, and it is consequently possible for the broken
PT -symmetry phase to occur earlier in parameter space
than expected, due to the nonadiabatic “drift” of the energy
eigenstates. It is, nevertheless, still possible to directly observe
the contribution of the non-Hermitian geometric “phase” after
cyclic evolution in the form of an amplification of the conven-
tional Floquet sidebands appearing in Fourier space, due to the
fact that the non-Hermiticity of the system allows the instan-
taneous eigenvectors to acquire an exponential change which
no longer simply amounts to a phase factor. In principle, the
appearance of such sidebands could be studied by using a
Floquet theory adapted to non-Hermitian Hamiltonians (as
was recently done in Ref. [19] in a similar system), however in
this work we found much more useful to use a “Berry phase”
approach, which gives a somewhat distinctive and interesting
perspective on the phenomenon.

II. THE GEOMETRIC PHASE FOR
NON-HERMITIAN SYSTEMS

Complex Hamiltonians, such as those containing gain and
loss terms, will not in general be Hermitian, and will have a
set of eigenvectors |ψn(z)〉 and adjoint eigenvectors |φn(z)〉,
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such that

i
d

dz
|ψn(z)〉 = Ĥ (z)|ψn(z)〉, (1)

and

i
d

dz
|φn(z)〉 = Ĥ †(z)|φn(z)〉, (2)

which satisfy the following stationary equations:

Ĥ (z)|ψn(z)〉 = λn|ψn(z)〉, (3)

and

Ĥ †(z)|φn(z)〉 = λ∗
n|φn(z)〉. (4)

The eigenvectors and adjoint eigenvectors are bi-
orthogonal and complete, such that 〈φm(z)|ψn(z)〉 = 0 for
m �= n, and the condition [20]∑

n

|ψn(z)〉〈φn(z)|
〈φn(z)|ψn(z)〉 = Î (5)

is satisfied, where Î is the identity operator.
Often in the literature, the normalization convention

〈φn(z)|ψn(z)〉 = 1 is enforced. However, normalizing the
eigenvectors in this way when dealing with a system with
exceptional or diabolical points can be problematic [15,21].
Although the inner products of states in quantum-mechanical
Hermitian systems relate to probabilistic interpretations of
measurement outcomes, the same interpretation cannot be
applied to complex Hamiltonians [20]. As our system is
optical, rather than quantum mechanical, and as one does not
need to normalize the eigenvectors and adjoint eigenvectors
to calculate the geometric phase, normalizing the states is
unnecessary, and hence the convention is not enforced in this
work.

For a general solution to the Schrödinger equation,
|�(z)〉 = ∑

n cn(z)|ψn(z)〉e−i
∫ z

0 λn(z′ )dz′
, we can solve to find

the z evolution of the coefficients:(
Ĥ (z) − i

d

dz

)
|�(z)〉 = i

∑
n

(
ċn|ψn〉 + cn

d

dz
|ψn〉

)

× e−i
∫ z

0 λn(z′ )dz′ = 0. (6)

Because we have a bi-orthogonal system, we take the inner
product of the above with a particular adjoint eigenvector,
|φn〉e−i

∫ z

0 λ∗
n(z′ )dz′

, rather than an eigenvector, and find the
condition

iċn〈φn|ψn〉 = −cn

〈
φn

∣∣∣∣i d

dz

∣∣∣∣ψn

〉

− cm

〈
φn

∣∣∣∣i d

dz

∣∣∣∣ψm

〉
e−i

∫ z

0 [λn(z′)−λm(z′)]dz′
. (7)

From here, if we assume the adiabatic approximation is
upheld, we can neglect the cm term above, since the oscillating
phase will average out to zero in case of slow evolution, to get

ċn = cni
〈φn|i d

dz
|ψn〉

〈φn|ψn〉 , (8)

which implies we can write the expansion coefficient cn as an
exponential phase factor, eiγb (z), and deduce that the geometric

phase for our bi-orthogonal system is given by [4]

γb(z) =
∫ z

0

〈φn|i d
dz′ |ψn〉

〈φn|ψn〉 dz′. (9)

Unlike the Berry phase, it is possible for the above to
become purely imaginary, leading to eigenstates gaining a
real, exponential multiplier during evolution. We shall see that
the value of this real multiplier eiγb (z) is always positive when
evolving along z, starts from zero, reaches a maximum, and
comes back to zero after each cycle. This periodic multiplier
can be associated with a Floquet–Bloch dynamics (see, for
instance, the classical work [22]) and therefore will generate
Floquet sidebands. Using Floquet–Bloch theory is definitely
possible, however our approach based on the complex Berry
phase is mathematically simpler (see, for instance, Ref. [23]
for a recent example of the treatment of Floquet exceptional
points) and we believe it is also physically more transparent—
however, the two approaches must eventually lead to analo-
gous if not identical results.

Of course we must also consider the secondary term in
Eq. (7), proportional to the complex exponential, which can
only be neglected for adiabatic evolution. In analogy with the
standard procedure for Hermitian systems, we can assume the
adiabatic approximation takes the form (h̄ = 1) [2,24]:∣∣∣∣

〈
φn

∣∣∣∣i d

dz

∣∣∣∣ψm

〉∣∣∣∣ � |λm(z) − λn(z)|, (10)

which can be rewritten in the following way:∣∣∣∣∣ 〈φn|i dĤ (z)
dz

|ψm〉
λm(z) − λn(z)

∣∣∣∣∣ � |λm(z) − λn(z)|, (11)

i.e., we require that the phase is evolving rapidly along z,
and consequently the eigenvalue separation to be large, with
respect to the change in z of the Hamiltonian.

The above condition should not be considered to always
hold true in non-Hermitian systems, as they are known to
exhibit quasi-adiabatic dynamical effects near exceptional
points [25]. Consequently, even when the inequality (10) is
upheld, we can expect that the instantaneous eigenstates may
not evolve such that the final state of the system remains an
instantaneous eigenstate, varying only by a complex phase
factor.

III. PT -SYMMETRIC COUPLED WAVEGUIDES
WITH A PERIODIC COUPLING

A. Geometric phase

Consider PT -symmetric linearly coupled waveguides with
balanced gain and loss, as seen in Ref. [11], adapted so that the
coupling between the waveguides varies periodically along
the propagation direction z:

i
dψ1

dz
+ κ (z)ψ2 − iγψ1 = 0, (12a)

i
dψ2

dz
+ κ (z)ψ1 + iγψ2 = 0, (12b)

where ψ1 and ψ2 represent the modal field amplitude in
each channel, respectively, κ (z) is the periodically varying
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coupling coefficient between the waveguides, and γ is a
scaled gain (loss) coefficient. Note that it is customary to use
complex electric-field envelopes ψ1 and ψ2 to model light
propagation in such systems, therefore avoiding the compli-
cations due to unnecessary presence of backward waves in
Maxwell’s equations.

This problem can be recast in the style of a quantum-
mechanical two-level system with Hamiltonian

Ĥ =
(

iγ −κ (z)
−κ (z) −iγ

)
, (13)

with instantaneous eigenvectors of the form

|ψn〉 = 1√
2

(
ψ1

ψ2

)
.

It is easy to analytically solve the above. Making the substi-
tution γ /κ (z) = sin [α(z)], the eigenvectors can be concisely
written as

|ψ1〉 = 1√
2

(
e−i α

2

ei α
2

)
, |ψ2〉 = 1√

2

(
iei α

2

−ie−i α
2

)
, (14)

with corresponding eigenvalues

λ1 = λ2 = ∓
√

κ2(z) − γ 2. (15)

The adjoint eigenvectors can also be found by solving for
the eigensystem of Ĥ †:

|φ1〉 = 1√
2

(
ei α

2

e−i α
2

)
, |φ2〉 = 1√

2

(
ie−i α

2

−iei α
2

)
. (16)

As the eigenvalues are real below the PT breaking point, the
eigenvalues of the adjoint system are identical and real: λ∗

1 =
λ1 and λ∗

2 = λ2.
It is easy to confirm that this system is PT symmetric

because the Hamiltonian (13) commutes with the PT oper-
ator, as in Ref. [11]. In this case, the application of the PT
operator corresponds to the transformation σxĤ

∗σx , where σx

is the first Pauli matrix. This Hamiltonian can have an entirely
real spectrum below the point where the system transitions to
the broken PT -symmetric phase. This point is crossed when
the eigenvalues and eigenvectors coalesce, which in our case
is when κ (z) = ±γ and λ1 = λ2 = 0. This is known as the
exceptional point of the system [15].

For (assumed) adiabatic evolution of the eigenstates, we
can find γb by using Eq. (9). In terms of α,

γb(z) = 1

2
i ln

[
cos [α(z)]

cos [α(0)]

]
. (17)

Substituting cos [α(z)] = [1 − γ 2/κ2(z)]1/2, we find

γb(z) = 1

2
i ln

[√
1 − γ 2/κ2(z)√
1 − γ 2/κ2(0)

]
, (18)

which is clearly a purely imaginary function below the PT -
symmetry-breaking point κ (z) = ±γ , which must be upheld
for all z. As a consequence of this, eigenstates no longer gain a
phase factor on evolution, but are multiplied by a real, periodic
function: eiγb (z). Despite the fact that the Berry phase γb(z)
becomes purely imaginary and is thus no longer a phase but a
geometric multiplier, the formula used to find it is the original

non-Hermitian Berry phase formula, which in general corre-
sponds to complex phases [4]. This should not create a con-
fusion when we refer to it as a Berry phase, keeping in mind
that the argument of the exponential becomes purely real.

One is able to see evidence of this function’s influence
when examining the spectrum of our system’s instantaneous
eigenstates after allowing them to evolve along a waveguide of
length L, in the form of existing Floquet sidebands increasing
in amplitude due to the non-Hermitian nature of the Hamil-
tonian. Ultimately, the position of the spectral sidebands in
Fourier space can be traced to the deformations of the “in-
stantaneous wave number” [≡γ ′

b(z)], similar to what happens
in nonlinear systems, although Eqs. (12) are of course fully
linear; the non-Hermitian Hamiltonian (13) is nonconserva-
tive and gives rise to the amplification of such sidebands.

As we previously mentioned, the same sidebands
could in principle be found by using a Floquet–Bloch
approach [22,23,26,27]: if gain and losses are removed
from the system (γ = 0), and we simply have a periodic
modulation of the coupling coefficient, then indeed Floquet
peaks will be seen in the spectrum of the eigenstates after
evolution (since the eigenstates will acquire a nontrivial
z-dependent phase that will affect the resulting spectrum),
and the geometric function given by Eq. (9) will be zero.
However, when gain and losses are present (γ �= 0), the
complex Berry phase formalism is able to capture not
only the formation and further amplification of the Floquet
sidebands, but also quite easily capture the mixing between
the two eigenstates, especially when the parameters approach
the exceptional point of the system—this mixing is quantified
by the breaking of adiabaticity of Eq. (10). We shall explore
this issue in the next section.

In the results which follow, we choose, as a representative
example, the following periodic evolution for the coupling
coefficient:

κ (z) = 1 − a + a cos (k0z), (19)

where a (the depth of the modulation) and k0 ≡ 2π/� (the
wave number of the modulation, proportional to the inverse of
the modulation period) are real, positive parameters. Waveg-
uides with harmonic behavior in the coupling, such as that
seen in Eq. (19), can be easily made with current technology
by combining two waveguides of the type fabricated in, for
instance, Ref. [28]. It is easy to see that the minimum value
of this function is 1 − 2a, which allows us to find a minimum
threshold at which PT symmetry will break in terms of the
parameter a:

a = 1 − γ

2
. (20)

Of course, this is based on the assumption that the adiabatic
condition is upheld. If, as can be expected for a nonadia-
batically evolving system, the eigenstates do not remain in
their instantaneous forms, then of course we cannot as easily
predict the point in parameter space where they will coalesce.

B. Nonadiabatic evolution

For a periodic coupling κ (z) which changes too rapidly in
z, we can expect that requirement (10) will not be fulfilled.
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In this case, the eigenvalues of the system will drift from those
corresponding to the instantaneous eigenstates, which will
consequently change the expected PT -symmetry-breaking
point. For our system, the condition for adiabatic evolution
takes the form∣∣∣∣1

2

γ κ ′(z)

κ2(z) − γ 2

∣∣∣∣ �
∣∣∣2√

κ2(z) − γ 2
∣∣∣, (21)

where κ ′(z) is the z derivative of the coupling coefficient κ (z).
This can be conveniently rearranged to place a constraint on
κ ′(z), allowing us to determine whether the system is likely to
be evolving adiabatically based on its rate of change:∣∣∣∣ d

dz
κ (z)

∣∣∣∣ �
∣∣∣∣ 4

γ
[κ2(z) − γ 2]3/2

∣∣∣∣. (22)

Even for a slowly varying coupling κ (z), characterized by
a small value of k0, because our system is non-Hermitian we
can expect it to display nonadiabatic behavior as we approach
the exceptional point [17]. Hence, changing k0 will only make
significant difference in whether the system appears to be
evolving adiabatically for small values of a. If a is too close
to the value given by Eq. (20), the value of k0 is irrelevant.

It is worth mentioning at this stage that a nonadiabatic
generalization of the Berry phase was introduced for cyclic
Hamiltonians by Aharonov and Anandan [3] and extended
to dissipative systems by Garrison and Wright [2]. In the
vicinity of degeneracies related to exceptional or diabolical
points, where condition (10) is violated, one can instead use
the definition given in Ref. [24]. However, in this work,
we will continue to use the definition given by Berry for
non-Hermitian systems, seen in Eq. (9), because it does not
require the system to be bi-orthonormal (which is violated
at exceptional points), and should still be observable, even
if there are additional effects due to nonadiabatic behavior
present in the results.

IV. FORMATION AND NON-HERMITIAN
AMPLIFICATION OF SIDEBANDS

We now present results of numerical simulations of
Eqs. (12), solved with a fourth-order Runge–Kutta algo-
rithm, which demonstrate that the growth and amplification of
Floquet-like sidebands in the spectrum of states evolved along
the coupled waveguides is due to the imaginary geometric
function given by Eq. (18). The geometric function iγb(z),
as given by Eq. (18), and its derivative iγ ′

b(z) are shown in
Figs. 1(a) and 1(b), respectively, for γ = 0.5, k0 = 1, and
a = 0.2. The deformed appearance of iγ ′

b(z) increases with
increasing values of the parameter a, as does the amplitude
of both functions, and both functions will become singular at
the exceptional point of the system, a = 0.25, which can be
found using Eq. (20).

In our simulation, if a superposition of both eigenstates
|ψ1〉 + |ψ2〉 is initially excited and then propagated along the
coupled waveguides described by Eqs. (12a) and (12b) for a
waveguide distance L = 1000, then for a = 0 one will see
two peaks in Fourier space, as seen in Fig. 2. Both eigenstates
remain in their instantaneous forms, as should be expected for
a constant coupling constant κ . The positive peak corresponds
to |ψ1〉 and the negative to |ψ2〉, and we shall label them

z
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(b)

FIG. 1. (a) Plot of iγb(z), as given by Eq. (18), and (b) its z

derivative. In both cases k0 = 1, a = 0.22, and γ = 0.5. For increas-
ing values of a, the amplitude of iγb(z) and iγ ′

b(z) will increase, and
iγ ′

b(z) will become increasingly deformed. Both functions become
singular at a = 0.25, which is the exceptional point of the system
when γ = 0.5, as given by Eq. (20).

k1 and k2, respectively. In z space, if only |ψ1〉 or |ψ2〉 is
excited, then there will be no oscillation. If we excite the
superposition, then there will be a visible oscillation in z space
due to the beating frequency created by the presence of k1 and
k2. Consequently, the oscillation period in z will be given by
2π/(k1 − k2).

Figure 3(a) shows the logarithmic spectrum seen after
propagation along the coupled waveguides of L = 1000 when
exciting a superposition of both eigenstates for a = 0.15,
k0 = 1, and γ = 0.5. The two highest peaks correspond to k1

and k2, and as predicted in the previous sections we also see

k
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FIG. 2. Plot of the logarithmic spectrum of the waveguide modes
ψ1 and ψ2, when both eigenstates are excited in a superposition
|ψ1〉 + |ψ2〉, and a = 0. The right-hand peak corresponds to |ψ1〉 and
the left to |ψ2〉, and we can label them k1 and k2, respectively.
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FIG. 3. (a) The spectrum seen when the initial state of the system
is input as |ψ1〉 + |ψ2〉 for a = 0.15, k0 = 1, and γ = 0.5. The
two highest peaks correspond to k1 and k2, although the separation
between the two has decreased in comparison with Fig. 2. (b) The
spectrum of the function iγ ′

b(z), as seen in Fig. 1. The peaks are
found at ±nk0, where n is a nonzero integer. Despite the fact a =
0.15 is not very close to the exceptional point of the system, the new
peaks have a very strong presence. They can be found at k1 ± nk0

and k2 ± nk0, suggesting the geometric multiplier is the source of
the magnification of the sidebands, as predicted.

the appearance of sidebands. In Fig. 3(b) we can clearly see
that the peaks correspond to the points ±nk0 in Fourier space,
where n ∈ N. As a result, the peaks in Fig. 3(a) correspond to
k values of k1 ± nk0 and k2 ± nk0. In comparison with Fig. 2,
the separation between k1 and k2 has decreased. This is in line
with the expectation that the two instantaneous eigenstates of
the system will approach each other as the exceptional point
is approached.

In Fig. 4 we show the comparison between a Hermitian
propagation (γ = 0, red dashed line) and a non-Hermitian one
(γ �= 0, blue solid line). This comparison shows that we are
still dealing with two sets of equally spaced Floquet peaks,
emerging from the periodic modulation of the coupling con-
stant κ , but in the latter case the non-Hermitian Berry “phase”
introduces an amplification of the Floquet sidebands, which
is encoded in the single “complex Berry phase” framework
expressed by Eq. (9).

In Fig. 5, the z-space oscillations and corresponding spec-
trum at L = 1000 is seen when only |ψ1〉 is excited for a =
0.1. Because a is fairly small and reasonably far from the

k
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|

1
(k)|2 + |

2
(k)|2,

 =0.5 
 =0

FIG. 4. Spectra (on a logarithmic scale) of the evolved states
of the coupled waveguide system in the Hermitian case (γ = 0,
red dashed line) and the non-Hermitian one (γ = 0.5, blue solid
line), both calculated for a = 0.15 and a propagation length of L =
1000. This shows that the Floquet peaks coming from the periodic
modulation of the coupling constant are shifted and amplified due to
the introduction of the non-Hermitian factor γ .

exceptional point (a = 0.25), the influence of the peaks is not
as strong as that seen in Fig. 3. Furthermore, because only |ψ1〉
is initially excited, the spectrum is asymmetric. Nevertheless,
the presence of the k2 peak is clear, although it is not as strong
as the peak k1, and could be easily mistaken for a Berry phase
peak. Its appearance suggests that the system is not evolving
adiabatically, which is to be expected when examining the
inequality (22): as a grows the κ (z) derivative will gradually
become comparable in magnitude with the inequality’s right-
hand side. Examining the z evolution of |ψ1|2 and |ψ2|2 in
Fig. 5(a) will again reveal the appearance of oscillations due
to the simultaneous presence of k1 and k2. These appear
similar to the oscillations seen in Ref. [29], known as Rabi
oscillations, where gain and loss, rather than the coupling, are
driven. It should be noted that, unlike those seen in Ref. [29],
the oscillations of |ψ1|2 and |ψ2|2 are not perfectly out of
phase, and also appear to show some deformation, suggesting
they are being influenced by iγ ′

b(z), as seen in Fig. 1(b).
As a is increased, a strong beating in z space will appear,

and despite exciting only one eigenstate initially, both k1 and
k2 will appear in the spectrum with equal strength, displaying
a complete breakdown of adiabatic evolution. This is shown
in Fig. 6 for a = 0.22, k0 = 1, and γ = 0.5, where again only
|ψ1〉 has been initially excited. The envelope of the smaller
oscillations observed is characteristic of the PT -symmetry-
breaking point being approached, and the amplitude of this
envelope will grow for increasing values of the parameter a.
Furthermore, one should note that, due to the decrease in the
separation between k1 and k2, the peaks have moved much
closer to one another and are approaching the point of overlap.
The separation between the maxima of the envelope wave
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(a)

(b)

FIG. 5. (a) Evolution in z when the initial state is the instanta-
neous eigenstate |ψ1(0)〉 for a = 0.1, k0 = 1, and γ = 0.5 of |ψ1|2
(blue solid line), |ψ2|2 (red dashed line), and their sum, equivalent
to the norm squared of the evolved eigenstate |〈ψ1(z)|ψ1(z)〉|2
(yellow dotted line). The oscillations in z space are periodic, but
also deformed, displaying evidence of the influence of multiple
frequencies and the presence of the geometric multiplier eiγb (z). (b)
The logarithmic spectrum is taken at L = 1000 corresponding to
the data shown in panel (a). The spectrum no longer displays the
symmetry seen before, due to the fact only a single eigenstate is
excited. Nevertheless, a smaller peak corresponding to k2 is present,
suggesting a departure from adiabatic evolution, as well as the
majority of the expected sidebands.

observed in z space can be shown to be approximately equal
to 2π divided by the smallest separation of peaks in the spec-
trum, e.g., the separation between two peaks in Fourier space.

In the simulation, the PT symmetry of the system breaks
at approximately a = 0.223 for γ = 0.5 and k0 = 1. This is
characterized by the onset of exponential gain in z space, sug-
gesting the exceptional point of the system has been crossed
and the energies of |ψ1〉 and |ψ2〉 have become imaginary.
The evolution of the system after this point is crossed can
be seen in Fig. 7(a), with the corresponding spectrum shown
in Fig. 7(b), for a = 0.225, γ = 0.5, and k0 = 1. The early
onset of the broken PT -symmetry phase (compared with the
theoretically predicted break point of a = 0.25) should not
be surprising given the clearly nonadiabatic behavior of the
system; the drift of |ψ1〉 and |ψ2〉 from their instantaneous
forms makes the precise point at which they will coalesce

(a)

(b)

FIG. 6. (a) Evolution in z when the initial state is the instanta-
neous eigenstate |ψ1(0)〉 for a = 0.22, k0 = 1, and γ = 0.5 of |ψ1|2
(blue solid line), |ψ2|2 (red dashed line), and their sum, equivalent to
the norm squared of the evolved eigenstate |〈ψ1(z)|ψ1(z)〉|2 (yellow
dotted line). The oscillations in z space are still present, and a clear
beating enveloping the smaller oscillations has appeared. (b) The
spectrum taken at L = 1000 corresponding to the data shown in
panel (a). The logarithmic spectrum is now symmetric, despite no
initial excitation of |ψ2〉, which implies a complete departure from
adiabatic behavior. The separation between all peaks has decreased,
and the smallest separation between peaks can be directly linked to
the beating seen in z space, as explained in the main text.

very difficult to predict with the estimates we give in pre-
vious sections. In Fig. 7(b) we can see that the sidebands
have now overlapped, and the separation between k1 and k2

has reduced, such that it is equal to the parameter k0. This
is not a coincidence—changing k0 will determine the peak
separation at the PT -symmetry-breaking point observed in
the simulation.

In the results so far we have only seen the behavior of our
coupled waveguide system for k0 = 1, which can be freely
chosen. It may seem that, by reducing this value, one can
better ensure that the inequality (22) is upheld, and likewise
by increasing it ensure the opposite, enabling one to find a
case where the system displays PT symmetry breaking at the
expected point of a = 0.25, in a similar vein to what is seen
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(a)

(b)

FIG. 7. (a) Evolution in z when the initial state is the instanta-
neous eigenstate |ψ1(0)〉 for a = 0.225, k0 = 1, and γ = 0.5 of |ψ1|2
(blue solid line), |ψ2|2 (red dashed line), and their sum, equivalent
to the norm squared of the evolved eigenstate |〈ψ1(z)|ψ1(z)〉|2
(yellow dotted line). There is clear exponential gain, suggesting
PT symmetry has been broken and the energies of the system
have become imaginary. (b) The logarithmic spectrum taken at L =
1000 corresponding to the data shown in panel (a). The separation
between the two central peaks is now equal to k0, and the previously
approaching peaks have now overlapped.

in Ref. [30]. However, in practice this does not work: close
to the exceptional point, no matter how slow the variation of
the coupling is in z, the system will not behave adiabatically,
making it very difficult to predict accurately where the
PT symmetry will break in the simulation. This is in line
with what is already known about non-Hermitian systems,
as reported in Ref. [17], where it is shown that the gain
inherently present in non-Hermitian systems will magnify
usually-neglected adiabatic effects.

V. CONCLUSIONS

It is shown that the eigenstates of a non-Hermitian, PT -
symmetric coupled waveguide system with a periodically
varying coupling will gain a purely imaginary geometric
multiplier on evolution, which will in turn induce the non-
Hermitian amplification of Floquet sidebands in the system,
visible in the spectrum of the evolved eigenstates. The mag-
nitude of the growth increases as the system approaches its
PT -symmetry-breaking point, which is observed to break for
a smaller value of the parameter a than theoretically predicted.
This is expected, because the conditions required for adiabatic
evolution in non-Hermitian systems is violated in the vicinity
of the exceptional point. Beyond the PT -symmetry-breaking
point, exponential gain will be observed in the coupled waveg-
uides. This mechanism of sideband growth has interesting im-
plications for the optics community. Learning how to control
the output of a waveguide system by modulating the distance
between the waveguides (and thus modulating the coupling)
could lead to new switching or routing devices based on
the complex Berry phase [31]. Furthermore, it is possible
that such amplification of sidebands will also be visible in
other branches of physics in which non-Hermitian two-level
systems can be found, such as photon fluids, where complex
Berry phases are also known to arise [32].

ACKNOWLEDGMENT

The authors would like to acknowledge funding from the
EPSRC CM-CDT Grant No. EP/L015110/1.

[1] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[2] J. C. Garrison and E. M. Wright, Phys. Lett. A 128, 177

(1988).
[3] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
[4] M. Berry, Ann. N. Y. Acad. Sci. 755, 303 (1995).
[5] H. Choutri, M. Maamache, and S. Menouar, J. Korean Phys.

Soc. 40, 358 (2002).
[6] M. Maamache, Phys. Rev. A 92, 032106 (2015).
[7] G. Dattoli et al., J. Phys. A: Math. Gen. 23, 5795 (1990).
[8] C. M. Bender, Contemp. Phys. 46, 277 (2005).
[9] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[10] C. M. Bender, M. V. Berry, and A. Mandilara, J. Phys. A: Math.

Gen. 35 L467 (2002).
[11] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N.

Christodoulides, Phys. Rev. A 82, 043803 (2010).

[12] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.
Musslimani, Opt. Lett. 32, 2632 (2007).

[13] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[14] C. E. Rüter et al., Nat. Phys. 6, 192 (2010).
[15] J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F.

Libisch, and S. Rotter, Nature (London) 537, 76 (2016).
[16] H. Ramezani, T. Kottos, V. Kovanis, and D. N. Christodoulides,

Phys. Rev. A 85, 013818 (2012).
[17] R. Uzdin, A. Mailybaev, and N. Moiseyev, J. Phys. A: Math.

Theor. 44, 435302 (2011).
[18] A. A. Zyablovsky, E. S. Andrianov, and A. A. Pukhov, Sci. Rep.

6, 29709 (2016).
[19] Y. Wu et al., Front. Phys. 12, 121102 (2017).
[20] D. Brody, J. Phys. A: Math. Theor. 47, 035305 (2014).

053833-7

https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1111/j.1749-6632.1995.tb38974.x
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1088/0305-4470/23/24/020
https://doi.org/10.1088/0305-4470/23/24/020
https://doi.org/10.1088/0305-4470/23/24/020
https://doi.org/10.1088/0305-4470/23/24/020
https://doi.org/10.1080/00107500072632
https://doi.org/10.1080/00107500072632
https://doi.org/10.1080/00107500072632
https://doi.org/10.1080/00107500072632
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1103/PhysRevA.85.013818
https://doi.org/10.1103/PhysRevA.85.013818
https://doi.org/10.1103/PhysRevA.85.013818
https://doi.org/10.1103/PhysRevA.85.013818
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1038/srep29709
https://doi.org/10.1038/srep29709
https://doi.org/10.1038/srep29709
https://doi.org/10.1038/srep29709
https://doi.org/10.1007/s11467-016-0642-x
https://doi.org/10.1007/s11467-016-0642-x
https://doi.org/10.1007/s11467-016-0642-x
https://doi.org/10.1007/s11467-016-0642-x
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305


ROSIE HAYWARD AND FABIO BIANCALANA PHYSICAL REVIEW A 98, 053833 (2018)

[21] F. Keck, H. J. Korsch, and S. Mossmann, J. Phys. A: Math. Gen.
36, 2125 (2003).

[22] S. Trillo and S. Wabnitz, Phys. Rev. E 56, 1048 (1997).
[23] S. Longhi, J. Phys. A: Math. Theor. 50, 505201 (2017).
[24] A. I. Nesterov and F. Aceves de la Cruz, J. Phys. A: Math.

Theor. 41, 485304 (2008).
[25] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter,

and P. Rabl, Phys. Rev. A 92, 052124 (2015).
[26] L. D. Landau and E. M. Lifshitz, Mechanics and Electrodynam-

ics (Pergamon Press Ltd., Oxford, 1972).

[27] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, in
Graduate Texts in Mathematics (Springer, New York, 1989).

[28] T. Eichelkraut et al., Opt. Lett. 39, 6831 (2014).
[29] T. E. Lee and Y. N. Joglekar, Phys. Rev. A 92, 042103 (2015).
[30] A. Jaouadi et al., J. Phys. B: At., Mol. Opt. Phys. 46, 145402

(2013).
[31] A. Lupu, H. Benisty, and A. Degiron, Photonics Nanostruct. 12,

305 (2014).
[32] N. Westerberg, C. Maitland, D. Faccio, K. Wilson, P. Ohberg,

and E. M. Wright, Phys. Rev. A 94, 023805 (2016).

053833-8

https://doi.org/10.1088/0305-4470/36/8/310
https://doi.org/10.1088/0305-4470/36/8/310
https://doi.org/10.1088/0305-4470/36/8/310
https://doi.org/10.1088/0305-4470/36/8/310
https://doi.org/10.1103/PhysRevE.56.1048
https://doi.org/10.1103/PhysRevE.56.1048
https://doi.org/10.1103/PhysRevE.56.1048
https://doi.org/10.1103/PhysRevE.56.1048
https://doi.org/10.1088/1751-8121/aa931f
https://doi.org/10.1088/1751-8121/aa931f
https://doi.org/10.1088/1751-8121/aa931f
https://doi.org/10.1088/1751-8121/aa931f
https://doi.org/10.1088/1751-8113/41/48/485304
https://doi.org/10.1088/1751-8113/41/48/485304
https://doi.org/10.1088/1751-8113/41/48/485304
https://doi.org/10.1088/1751-8113/41/48/485304
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1364/OL.39.006831
https://doi.org/10.1364/OL.39.006831
https://doi.org/10.1364/OL.39.006831
https://doi.org/10.1364/OL.39.006831
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1088/0953-4075/46/14/145402
https://doi.org/10.1088/0953-4075/46/14/145402
https://doi.org/10.1088/0953-4075/46/14/145402
https://doi.org/10.1088/0953-4075/46/14/145402
https://doi.org/10.1016/j.photonics.2014.05.003
https://doi.org/10.1016/j.photonics.2014.05.003
https://doi.org/10.1016/j.photonics.2014.05.003
https://doi.org/10.1016/j.photonics.2014.05.003
https://doi.org/10.1103/PhysRevA.94.023805
https://doi.org/10.1103/PhysRevA.94.023805
https://doi.org/10.1103/PhysRevA.94.023805
https://doi.org/10.1103/PhysRevA.94.023805

