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Direct measurement of the electrostatic image force of a levitated charged nanoparticle
close to a surface

George Winstone,1,2 Robert Bennett,3 Markus Rademacher,1 Muddassar Rashid,1 Stefan Buhmann,3,4 and Hendrik Ulbricht1,*

1Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
2School for Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan

3Institute of Physics, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
4Freiburg Institute for Advanced Studies (FRIAS), D-79104 Freiburg, Germany

(Received 19 March 2018; published 19 November 2018)

We report on optical levitation experiments to probe the interaction of a nanoparticle with a surface in vacuum.
The observed interaction-induced effect is a controllable anharmonicity of the particle trapping potential. We
reconstruct the Coulomb image charge interaction potential to be in perfect agreement with the experimental data
for a particle carrying Q = −(11 ± 1)e elementary charges and compare the measured electrostatic interaction
with the weaker dispersive forces from theory. Our experimental results may open the route for a new surface
sensitive scanning probe technique based on the high mechanical sensitivity of levitated nanoparticles.
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I. INTRODUCTION

Weak forces in close proximity to surfaces have important
real-world relevance across a range of settings in the nano
world, from colloids [1] to nanomechanical devices [2,3] and
possibly even protein folding [4–6]. Alongside this, they can
also be used for detection of weak long-range forces, such as
gravity [3,7–9] and hypothetical interactions aiming to solve
the problem of dark energy [10]. There is an assortment of
different forces which can contribute to atom-surface interac-
tions. A particle with nonzero net charge near a surface will
experience an attractive force via Coulomb interaction with
its image. A competing class of effects that persist even for
neutral objects arise from correlations between the fluctua-
tions of atomic dipoles that make up two spatially separated
bodies; these are dispersion forces. A famous example is the
Casimir force [11] between two macroscopic objects, while a
related effect for the case where one object is macroscopic and
the other is microscopic (atom, molecule, nanosphere, etc.) is
known variously as the Casimir-Polder (CP) [12] and the van
der Waals force in the case of two microscopic bodies.

A model system in which weak forces at short distances
can be experimentally studied consists of two closely spaced
objects separated by a variable-width vacuum gap, as depicted
in Fig. 1(a). Over the years a variety of experiments of this
type have been performed with different physical systems
(e.g., torsion pendulums [13], cantilevers, and tip probes [14])
to investigate surface forces. Several experiments that utilize
controllable cold atoms have been performed to measure weak
forces close to an uncharged surface [15–18]. Charged parti-
cles interacting with surfaces have been studied in great detail
by trapped atomic ion experiments, as electric field noise
related to that particle-surface interaction is a limiting factor
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in precision experiments with atomic ions and a common
problem in ion trapping. Still, the fine details of the different
mechanisms that eventually result in the field noise are poorly
understood (see, for example, [19] for a review of this field).

Here we report on experiments with a single electrically
charged glass nanoparticle optically levitated in close prox-
imity to a neutral silicon surface in vacuum, which allows for
direct measurement of electrostatic forces in a distance and
sensitivity regime outperforming most existing force micro-
scopies [20]. However, in our experiments we do not currently
reach the regime necessary to experimentally resolve disper-
sion forces such as CP and van der Waals.

II. EXPERIMENTAL METHODS

The experimental configuration used in this study is de-
picted schematically in Fig. 1(a). A silica nanoparticle is
trapped at a variable distance d away from a silicon surface
in a tiny light spot focused by a parabolic mirror. The vacuum
is low enough that the optically trapped particle is still affected
by stochastic background gas collisions, so that the equation
of motion for its displacement x is

ẍ + γ ẋ + �x = F (t )

m
, (1)

where γ describes the damping of the motional degree of
freedom of the particle, � is the natural frequency of the oscil-
lator, m represents its mass, and F (t ) describes the fluctuating
forces acting on the particle according to random collisions
with background gas particles. The particle’s position is not
stabilized by any feedback and is allowed to move freely
in the trap at different d values. The particle is electrically
charged and we later determine that it carries a net charge
of 11 elementary charges e. Based on our optical detection
of the particle’s position we can measure time traces of
the particle position with the high interferometric resolution

2469-9926/2018/98(5)/053831(10) 053831-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053831&domain=pdf&date_stamp=2018-11-19
https://doi.org/10.1103/PhysRevA.98.053831


GEORGE WINSTONE et al. PHYSICAL REVIEW A 98, 053831 (2018)

FIG. 1. Particle-surface experiment with a levitated nanosphere. (a) Schematic of the experiment. The particle is optically trapped close to
the surface at various distances d . (b) Time trace of the particle position trapped close to and far away from the surface. The amplitude of the
oscillation increases when the particle is closer to the surface. (c) Power spectral densities (PSDs) of z motion of the trapped particle at two
distances; (d) the related spring functions. The spring function shows a nonlinear shape if the particle is close to the surface.

of 1 pm. Typical time-domain data on the trapped particle
are shown in Fig. 1(b), which gives information about the
motion of the particle in all three spatial directions. The
directions can be disentangled in the frequency domain, so
that we are able to concentrate here only on the motion in
the z direction, which is normal to the plane of the trapping
mirror. The power spectral density (PSD) of the z motion is
shown in Fig. 1(c). From such data we can extract the actual
shape of the trapping potential, which is harmonic if the only
significant trapping potential is the optical one. If the particle
is close to the surface the potential becomes anharmonic,
which we can directly extract from the data as shown in
Fig. 4(b). We then reconstruct the surface potential from these
experimental data, which is the basic technique in this paper.
We can also extract the so-called spring function (position-
acceleration trace) of the motion of the particle as shown in
Fig. 1(d). This shows clearly distinguishable behavior for the
two cases where the particle is close to and far away from the
surface.

A. Experimental setup

We optically trap a dielectric SiO2 nanosphere in the focus
of a high-numerical-aperture (NA = 0.9) parabolic mirror.
The nanosphere is positioned a variable distance (4 to 11 μm)
away from a surface consisting of a 200-μm-thick, highly
n-doped Si(100) wafer with a 300-nm SiO2 layer on top. The
trapping laser wavelengths and power are 1550 nm and 1 W,
respectively. All experiments are conducted at a pressure of

10−2 mb, while no active cooling of the center-of-mass motion
of the particle has been implemented, in order to allow for
high oscillation amplitudes of the particle in the trap. The
motion of the particle is still both damped and driven by
collisions with background gas. However, the effect of the
interaction of the particle with the surface already becomes
clearly visible and is measurable as it affects the shape of
the trap. The experimental setup is shown in Fig. 2 and more
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FIG. 2. Experimental setup. The 1550-nm light is focused by
reflection off a parabolic mirror to a spot of waist of about 1 μm.
The light wave Rayleigh scattered by the particle is superposed on a
diverging reference wave, which gives the high position resolution,
1 pm, of the detection. The light is detected by a cooled InGaAs
photodiode. The silicon surface, which is optically transparent at
the trapping laser wavelength, is mounted on a vacuum-compatible
x, y, z stage in order to control the particle-surface distance.
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details about optical trapping using parabolic mirrors can
be found elsewhere [21,22]. Briefly, a three-axis micrometer
stage is used to vary the distance between a 200-μm-thick,
highly n-doped, and double-sided polished silicon planar sur-
face (Si wafer), which is transparent at 1550 nm [23], and
the optically defined nanoparticle trapping site. The surface
is moved in discrete intervals, decreasing the distance to the
levitated particle. At each stage position the nanoparticle’s
motion is recorded by an interferometric detection scheme
with a high spatial resolution utilized in previous studies
[21,22]. At each stage position, the oscillation of the particle
explores a region of several hundred nanometers, with the
exact distance being determined by the potential stiffness.
This allows us to reconstruct the overall surface potential in
piecewise steps.

B. Mass and radius of the trapped particle

In order to extract a potential from time-trace data, we
need to know the mass of the particle. To this end we adopt a
method from Rondin et al. [24], but in one dimension rather
than three. The mass is computed by comparing two poten-
tials, namely, the steady-state potential Ust and the kinematic
potential Ukin, with the mass m as the only free parameter.
The potential Ust computed from the steady-state solution of a
Langevin equation of a particle at thermodynamic equilibrium
with a random background field undergoing a random walk in
a potential

Ust = kBT ln (ρ(x)), (2)

where ρ(x) represents the position distribution of the trapped
particle. The dominant contribution to the damping comes
from random kicks of background gas particles with the
trapped particle at thermal equilibrium with the environment
at 300 K. The potential Ukin is extracted experimentally
from the time trace of the motion of the particle in the trap
according to

Ukin =
∫

F(t ) · dx + C, (3)

where C is a constant of integration and F(t ) is the time-
dependent net force acting on the particle. The latter is
computed by extracting the acceleration from the time trace
and then multiplying by the mass. Thus, on the assumption
that the particle is at thermal equilibrium, we equate the two
potentials, Ust = Ukin, leaving the mass m as the only free
fitting parameter. We then extract the radius r from the mass
on the assumption that the particle is of a spherical shape.
This assumption is supported by the experimental evidence
that the motions in different spatial directions are not coupled.
A comparison of the two potentials, Ustst and Ukin, is shown in
Fig. 3, and we extract a particle radius of r = 60 nm (±5 nm)
for the data reported in this paper. The error bar of the particle
radius is derived from the fitting error.

III. THEORY

At large distances from the surface, where the surface
does not affect the oscillation of the particle, the levitated
nanoparticle is trapped optically in the focus of a Gaussian
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FIG. 3. Mass extraction from potentials. The steady-state, ac-
cording to Eq. (2), and the kinematic, according to Eq. (3), potentials
are fitted to each other, with the mass of the particle as the only
free parameter. In this way the mass of the particle is extracted
from the measured data directly without assumptions otherwise used.
The mass extraction from the potential has been done for large
(d = 11 μm) distances between the trapped particle and the surface.

laser beam in the Rayleigh limit. The optical potential is
harmonic and given by

Uopt(x) = 1

2
kx2, (4)

where x is the spatial displacement of the nanosphere while
oscillating, and k is the spring constant. Since the trap at hand
originates from the optical gradient force, the spring constant
is therefore given by

k = 2αPλ2

πε0cw6
, (5)

with α being the polarizability of the nanoparticle, P the
incident laser power, w the laser waist at focus, and λ its
wavelength. As usual, c is the speed of light and ε0 the
permittivity of free space. Here, we only consider the one-
dimensional z motion of the particle normal to the surface.
More details about the optical trap can be found elsewhere
[21].

If the particle is placed near a surface, the optical potential
may no longer be the only significant component of the total
potential felt by the particle. Since our particle carries a
nonzero net charge, the Coulomb interaction will come into
play. The Coulomb potential UC (d ) of a particle of charge Q

interacting with its image in a dielectric substrate with a layer
of thickness L deposited on top can be calculated by following
the methods of, for example, Ref. [25]. We find

UC (d ) = − Q2

4πε0

1

2

∫ ∞

0
dκ

R01 + R12e
−2κL

1 + R01R12e−2κL
e−2κd , (6)

with R01 = (ε1 − 1)/(ε1 + 1) and R12 = (ε2 − ε1)/(ε2 + ε1),
where ε1 and ε2 are the permittivities of the layer and the
substrate, respectively. d is the distance between the nanopar-
ticle and the vacuum-layer interface. Close to the surface
the particle will explore a total potential Utot(d ) defined by
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(c)(a)

(d)(b)

FIG. 4. Nanoparticle surface probe. (a) Dynamics of the particle in a phase-space representation. Contours represent experimental data
for positions and velocities of the particle close to (blue) and far away from (green) the surface. Clearly visible is the nonspherical shape in
the case of the particle close to the surface, which is due to the interaction with the surface. (b) Reconstructed potential as calculated from
experimental data for the particle at various distances. The potential becomes anharmonic if the particle is closer to the surface. (c) Comparison
of the experimental data taken at seven distances, with theory according to Eq. (6) shown by the red line. The pink region indicates the same
mirror charge interaction with ±1 elementary charge e. Closer to the surface the best fit with −11e deviates from the experimental data. (d)
Comparison of experimental interaction data with different types of potentials, such as the CP potential for particles of different sizes as well
as Eq. (6). The dashed horizontal line is the sensitivity limit of the present experiment.

the superposition of the surface interaction potential and the
optical potential, Utot(d ) = UC (d ) + Uopt(x − d ). This is an
anharmonic potential, with the anharmonicity arising from
the surface interaction that is added to the harmonic trapping
potential. The degree of anharmonicity can then be used to
extract the strength of the surface potential, as detailed in later
sections.

Purely for comparison and without making the claim that
we can actually measure dispersion forces, we now discuss
the effect of CP and van der Waals forces and evaluate
their interaction potential. Aside from the Coulomb potential,
the nanosphere experiences a dispersion force arising from
correlations between the fluctuations of its own atomic dipoles
and those in the surface. Here, the nanosphere is far enough
away from the surface that it can be considered a point
dipole, with the polarizability α(ω) obtained from the well-
known Clausius-Mossotti relation for a sphere of radius R and
permittivity ε(ω):

α(ω) = 4πε0R
3 ε(ω) − 1

ε(ω) + 2
. (7)

In Appendix B, we present numerical results for the CP
potential based on (7) for a wide range of distances; however,
in order to gain a simple and usable formula we note that
the nanosphere-surface distance (4–11 μm) is large compared

to the wavelength of any of the dominant transitions in the
optical response of either of the materials (70 nm for SiO2

and 265 nm for Si). Thus, we are in the retarded regime, in
which the CP potential has the form [26]

UCP(d ) = −C4

d4
, (8)

where C4 is a distance-independent constant defined as [27]

C4 = 3h̄cα(0)

64π2ε0

∫ ∞

1
dv

(
2

v2
− 1

v4

)
ε1(0)v −

√
ε1(0) − 1 + v2

ε1(0)v +
√

ε1(0) − 1 + v2
.

(9)

Using the measured optical data for silicon and silicon
dioxide presented in Appendix B tabulated in [26], we find
a value of C4 = (7.60 × 10−28 J · m) × R3. In the following
we compare the data to the trapping and Coulomb potentials
UC and Uopt.

IV. RESULTS

Our main results for surface-induced potentials are sum-
marized in Fig. 4. First, Fig. 4(a) shows the phase space of
the nanosphere’s center-of-mass motion far away from the
surface (green) and at the closest available position, 4 μm
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(blue), before the surface forces overpower the optical
forces and the particle gets lost from the trap. The position
distribution of the particle is drawn towards the surface and
the motion becomes significantly anharmonic.

In the case of a simple, steady-state, differentiable poten-
tial, it is therefore possible to reconstruct the potential from
the spring functions of the particle’s motion at each distance.
For experimental data, with and without the surface, we show
the reconstructed potentials in Fig. 4(b).

At smaller particle-surface distances d, the trapping po-
tential experiences an increasingly strong perturbation from
the surface interaction. Comparing the reconstructed potential
with different interaction models shows the best agreement if
the nanosphere is taken to carry a charge of Q = −(11 ± 1)e,
found from fitting Eq. (6) to the experimental data, as shown
in Fig. 4(c). The observed particle net charge is in agree-
ment with typical values in recent experiments with trapped
nanoparticles [28,29]. The observed deviation from the model
at small distances could be attributable to electrostatic patch
effects, since charge and electric dipole patch effects have
been shown to contribute in high-sensitivity surface force
measurements [30,31].

To estimate the experimental sensitivity, we perturb a sus-
pended nanoparticle with an electric field [29]. This allows us
to resolve changes to the potential structure of 2 × 10−4kBT .
Encouragingly, applying such a resolution to the distance
ranges scanned in this experiment predicts that we should
be able to resolve CP forces if the same surface-nanoparticle
experiment were to be repeated with a larger particle. We
evaluate for this experiment the force sensitivity to be 8 ±
3 × 10−17 N/

√
Hz, although with an improved signal-to-noise

ratio this can reach as low as ∼10−19 N/
√

Hz [29], while
details of the calculation of force sensitivity are given in
Appendix C. This is in contrast to the original atomic force
microscope paper [20]. This level of force sensitivity allows
for detection of genuine CP interactions for a particle of
radius 1 μm, while with the best sensitivity demonstrated
in this system to date [29], the study of CP forces with
a 300-nm-radius particle appears to be within reach. The
sensitivity limit of the present experiment is indicated by
the dashed line in Fig. 4(d). Similarly promising is that the
lowest particle-surface interaction energies measured here are
of the order of 100 μeV, which is the order of magnitude for
dispersion forces—much lower energies than those typical for
covalent bonds and charge transfer interactions. The spatial
resolution of position detection is given by the parabolic
mirror trap detection technique and has been demonstrated
to reach 200 fm/

√
Hz [22]. This makes the spatial reso-

lution of our surface probe technique much finer than the
size of the trap, which is of the order of several hundred
nanometers.

To probe further the Morse type of the reconstructed
anharmonic potential, we plot a histogram of the particle
potential energy and again compare the two cases for the
particle with and without the surface. The plot is shown in
Fig. 5 and the anharmonic potential energy distribution can
be well understood by numerically solving the equation of
motion; see Appendix A for computational details.

z

FIG. 5. Energy comparison: harmonic vs anharmonic trap. Nor-
malized histogram of the particle’s potential energy for the cases of a
harmonic potential (particle far away from the surface; green) and an
anharmonic Morse-like potential (particle close to the surface; blue).
The former can be found analytically from the normalized result of
Eq. (A3) in Appendix A; this is shown as the solid dark-green line.
Shown in red are the results of numerical simulation of the parti-
cle’s motion for harmonic (dashed curve) and anharmonic (dotted
curve) potentials with 10 000 different realizations with randomized
amplitudes. The Morse-like potential shows a similar behavior in
energy level scaling compared to the harmonic case until diverging
strongly at a high value of n, which is the expected Morse-like
behavior.

A. Potential extraction

1. Spring functions

The potentials governing the particle’s motion both close to
(d = 4 μm) and far away from (d = 11 μm) the surface are
extracted by integrating the spring functions at each distance
between the nanoparticle trap site and the surface. We obtain
the spring function for the particle’s motion by numerically
differentiating the experimentally obtained time trace of the
particle’s motion with respect to time, as shown in Fig. 6.
The frequency of the particle’s motion is of the order of 50
kHz, while the sampling frequency of the oscilloscope is 2.5
MHz, giving us about 50 data points per oscillation period and
therefore a very good phase-space resolution of the particle’s
motion. We can then obtain the potential structure experienced
kinematically by the particle by numerically integrating the
spring function with respect to space.

2. Evaluation of charge Q and distance d from potentials

As the surface-to-particle distance d becomes smaller the
potential experienced by the particle is increasingly perturbed
by both optical backscatter and the increasing surface forces
from the particle. The changes in the optical power, however,
are generally symmetrical and can be calibrated against the
relative frequency drop of the motion in the x and y axis.
To extract the nonsymmetric surface potential from the total
potential Utot we consider the total potential as experienced
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FIG. 6. Acceleration-position spring functions. (a) Spring func-
tion for a particle close to the surface. (b) Spring function for a
particle far away from the surface. In both panels histograms of the
particle’s acceleration and position as it moves in the trap are shown
at the edges of the main plots.

by the particle and consisting of the harmonic optical trap and
the surface interaction UC (d ) shown in Eq. (6):

Utot = 1
2kx2 + UC (d ). (10)

Here k is the spring constant of the optical trap (for a linear
trap), and d is the distance between the center of the optical
trap and the silicon surface. The experimentally obtained

potential Uexp is then used in the equation

1
2knewx2 = Uexp − UC (d ), (11)

where knew is a new spring constant, adjusted to fit the param-
eters Q and d such that the output of the function becomes a
symmetrical potential, which is usually a kx2 function similar
to the original, unperturbed, optical trap potential far away
from the surface but with a weaker spring function k. Our
claim here is that while proximity to the surface does weaken
the optical trap, it weakens it in a predictable symmetrical
way, and this can be calibrated by the x and y motional peaks.
This weakening is not sufficient to explain the anharmonic-
ity experienced by the particle near the surface, whereas a
Coulomb image charge model explains it well.

V. DISCUSSION

The use of a nanoparticle as opposed to an atom for force
detection has the advantage that the dispersion coefficient C4

is much larger, giving a stronger force. For example, taking
the selection of alkali metals (commonly used in atom-surface
experiments) found in [32], one has C4 coefficients of around
10−56 J · m4, but for a nanosphere of radius 60 nm the corre-
sponding value from Eq. (9) is 1.6 × 10−49 J · m4—seven or-
ders of magnitude larger. This difference can be qualitatively
understood by noting that a hypothetical nanosphere with a
radius of 1–2 Å would result in approximately the same C4

as an atom. The 60-nm sphere in the experiment is around
300 times larger than this, so the cubic scaling of C4 with
the radius means that the nanosphere C4 is a factor of around
3006–107 larger, as reflected in the calculation above.

Control of the number of electric charges on the particle
would be a beneficial addition to the experiment, as it might
also allow preparation on demand of an electrically neutral
particle. Recently it has been demonstrated experimentally
that such control of the number of charges can be done on the
single-electric-charge level [28]. Clearly, further understand-
ing of the electric charge distribution across the nanoparticle
and the role of surface patch charges is highly relevant for the
interaction between dielectric particles and surfaces and will
require further intense experimental study.

1. Competing optical effects

In principle, it seems possible that the emergence of the
anharmonic trapping potential is due to an optical effect rather
than being induced by dispersive surface interactions. A tiny
fraction of light incident to the particle and surface is reflected
by the surface in such a way that it reduces the laser power
incident to the trap and therefore lowers the x2 trapping
potential. This effect is, however, separable from the effect of
the surface interactions, as these scale as inverse powers of the
distance from the surface and therefore are always asymmetric
about the particle position, while the optical potential is
composed of symmetric x2 terms for the region of the trap
explored by the particle. Further, when the purely optical
potential dynamics is parametrically driven into its nonlinear
regions as, for instance, for high oscillation amplitudes, x4

and higher-order symmetric Duffing terms appear. This means
that anharmonic terms, which would result in a nonsymmetric
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FIG. 7. Trapping laser power dependency of the spring function
and trapping potential. Despite the change in laser power, the optical
potential remains composed of x2 and higher-order symmetrical
terms. The spring function remains linear. Data have been taken for
large distances between particle and surface.

potential, cannot be generated for a static optical potential
in this geometry. Thus the anharmonic potential we observe
cannot be explained by an optical effect.

We experimentally check the laser power dependence of
the trap potential and observe that the potential as well as the
spring functions remain of the x2 and linear type, respectively
(see Fig. 7). This further reinforces that the observed anhar-
monicity of the trapping potential for the particle close to the
surface is not of optical origin.

Another effect may be caused by the multiple reflections of
light between surface and particle, known as optical binding,
which have a similar scaling with distance as some dispersion
forces. We argue that such multiple reflections will change
the laser power forming the trap and conclude, per the same
rationale given above, that optical binding cannot explain the
observed anharmonicity in these experiments.

2. Laser power dependence of the trapping potential

Studying the change in spring functions for a trapped
particle with different trapping laser powers demonstrates that
the change is always symmetric, as shown in Fig. 7. We
conclude that the observed anharmonicity cannot be explained
by a laser-power-dependent optical effect.

VI. CONCLUSION

In summary, we have presented an experiment where the
surface-induced force on a levitated nanoparticle can be di-
rectly observed. The particle-surface interaction induces an
anharmonic trapping potential in deviation from the harmonic
(x2) behavior and therefore generates a nonlinearity in the mo-
tion of the particle. This nonlinearity affects all trapped states,
while the overall dynamics is still dominated by the linear
term of the optomechanical harmonic oscillator. We associate
the observed anharmonic effect with a particle-surface inter-
action involving electric charge. The current force sensitivity
is three orders of magnitude too small at the particle-surface
distances reached in order to allow for the detection of CP
forces with a levitated nanoparticle. In future the experiment
could be repeated with a particle with zero net, of a larger size,
and closer to the surface to reach such smaller forces. The
careful analysis of the particle position measured in the lateral
directions along the surface may allow for topographic images
in close analogy to scanning probe techniques. A further
advantage of a levitated nanoparticle probe might be that the
measurement can be performed with a very high precision,
while both surface and nanoparticle are at room temperature.
Subject to appropriate limitations concerning optical trans-
parency of the sample, this could be interesting in the context
of biological and physiological samples. As suggested re-
cently, rotation of nonspherical nanoparticles close to surfaces
might be another interesting system for investigation of sur-
face forces [33]. This work may pave the way for cooling [34]
and trapping of nanoparticles in vacuum close to surfaces in
self-induced back-action-type near-field traps [35], invoking
both plasmonic and photonic crystal effects to trap the parti-
cle. The described experiments may also be applied to study
electric field noise effects and their physical origins [19].
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APPENDIX A: MORSE POTENTIAL BEHAVIOR

The acceleration broadening [cf. Fig. 6(a)] of the particle’s
motion close to the surface can be best understood in an
energetic picture. The limitation on the closest approach to
the surface is encountered when the surface potential over-
powers the optical potential well. The overall potential of the
system appears similar to a Morse potential, whose degree of
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anharmonicity can be best understood by constructing a his-
togram of the particle’s energy as its motion in the trap is
sampled.

For the unperturbed case, the particle undergoes harmonic
motion, which can then be used in the potential energy
U = 1

2kx(t )2, and its equation of motion is simply x(t ) =
x0 cos ωt . Making a histogram of the potential felt by the
particle at evenly spaced times results in a two-peak shape,
which can be explained by solving the equation of motion for
t , which gives

t = 1

ω
arccos

[
1

x0

√
2U

k

]
. (A1)

The time spent within any time interval dt will then be
given by

dt = dt

dU
dU = − sgn(x0)

ω
√

2U

√
kx2

0 − 2U

dU, (A2)

which, subject to proper normalization, corresponds to the
likelihood of the particle’s being observed within a potential
energy of between U and U + dU . It is clear that dt has
maxima at U = 0 and U = 1

2kx2
0 , resulting in the two-peak

structure discussed above. However, this is not seen in the
histogram of energies extracted from the experimental data
(cf. Fig. 5); rather, a single peak at U = 0 is found in both the
harmonic and the anharmonic cases.

This difference comes from the fact that the motion of the
particle in the trap is not in fact well described by simple
harmonic motion; the experiment takes place in a vacuum of
10−2 mb, meaning that the particle’s motion is still affected by
collisions with the background gas. We incorporate this into
the description of the system by assuming that the motion may
be taken to be averaged over many trajectories, each with a
different amplitude x0, Gaussian distributed about some mean
value x0 with a standard deviation σ . Thus we calculate

dt = − 1√
2πσ 2

∫ ∞
√

2U/k

dx0e
(x0−x0 )2/(2σ 2 )

× sgn(x0)

ω
√

2U

√
kx2

0 − 2U

dU, (A3)

with x0 being the integration variable and σ being the only fit-
ting parameter. The result for σ = 100 nm is shown in Fig. 5,
alongside the experimental data and a numerical simulation
for both harmonic and anharmonic potentials. In the latter
case the equations of motion cannot be solved analytically,
so there is no equivalent of Eq. (A3) for the anharmonic
potential. It is seen that our modeling of the background gas
collisions by smearing out the amplitude of the oscillations is
consistent with experimental results, especially for a relatively
high energy. All the results display the required behavior of
having a single peak at U = 0, which can be intuitively under-
stood from our averaging procedure; since all the trajectories
pass through U = 0 many times but have different maximum
values, the peak of Eq. (A2) at U = 1

2kx2
0 is suppressed.

APPENDIX B: CASIMIR-POLDER POTENTIAL

The CP potential U (z) of a particle with polarizibility
α(ω) a distance z from a layer of thickness L and relative
permittivity ε1(ω), supported by an infinitely deep substrate
with relative permittivity ε2(ω), is given by [36]

UCP(z) = h̄μ0

8π2

∫ ∞

0
ξ 2α(iξ )

∫ ∞

ξ/c

dκ0 e−2κ0z

[
RTE(κ0, κ1, κ2)

+
(

1 − 2
κ2

0 c2

ξ 2

)
RTM(κ0, κ1κ2)

]
(B1)

where, for either polarization σ (=TE, TM),

Rσ = Rσ
01 + e−2κ1LRσ

12

1 + e−2κ1LRσ
01R

σ
12

, (B2)

with

RTE
ij = κi − κj

κi + κj

, RTM
ij = εj (iξ )κi − εi (iξ )κj

εj (iξ )κi + εi (iξ )κj

(B3)

and

ε0(iξ ) = 1, ε1(iξ ) = εSiO2 (iξ ), ε2(iξ ) = εSi(iξ ),

κi =
√

[εi (iξ ) − 1]ξ 2/c2 + κ2
0 . (B4)

A small sphere of radius R may be modeled via the Clausius-
Mossotti polarizability shown in Eq. (7). Using this relation,
Eq. (B1) is now a formula whose inputs are the dielectric
functions for the media that make up the substrate, layer, and
sphere, which are all known from experiments. As discussed
in the text, we eventually approximate this by its large-
distance limit near a simple half-space of permittivity ε1(ω),
in which case the potential takes the form

UCP(z) = −C4

z4
, (B5)

where C4 is a distance-independent constant defined as [27]

C4 = 3h̄cα(0)

64π2ε0

∫ ∞

1
dv

(
2

v2
− 1

v4

)
ε1(0)v −

√
ε1(0) − 1 + v2

ε1(0)v +
√

ε1(0) − 1 + v2
.

(B6)

In the experiment presented in the text the surface is silicon
and the sphere is silicon dioxide. We model both of these via
an N -resonance Drude-Lorentz permittivity, defined by

ε(ω) = 1 +
N∑

i=1

ω2
p,i

ω2
T ,i − ω2 + iγiω

. (B7)

Here ωp,i is the plasma frequency, ωT,i is the transition
frequency, and γi is the damping frequency, each for the ith
resonance of the dielectric function. For silicon we use a
single-resonance model, and for silicon dioxide we use a two-
resonance model, with parameters from [26] listed in Table I.
Using these parameters in Eq. (B6) we find the dispersion
constant C4 for our particular setup:

C4 = (7.60 × 10−28 J · m)R3. (B8)

As a consistency check we evaluate Eq. (B1) numerically
over both distance regimes; the results of this alongside the
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TABLE I. Drude-Lorentz parameters for silicon and silicon diox-
ide (all values in units of 1015 rad/s).

i ωp,i ωT,i γi

Si 1 23 7.1 0.98

SiO2 1 0.17 0.13 0.043
2 29 27 8.1

asymptotic long-distance result according to Eq. (B8) are
shown in Fig. 8 for a range of sphere sizes.

APPENDIX C: FORCE SENSITIVITY

The particle position is measured in volts at the detector.
By fitting to the PSD (which has units of V/

√
Hz) we can

extract a conversion factor, γc, which is in units of volts per
meter (V/m). From here, we can convert all our measure-
ments to meters. Although the Lorentzian fitting has small
errors (typically <1%.), the error in the conversion factor
is substantially higher due to the 15% error in our pressure
reading. Specifically, we calculate the mass from knowledge
of the fitting to the Lorentzian and the pressure. Thus, the error
propagates into our conversion factor through the error in the
mass (for further details see [22]). The conversion factor is
given by

γc =
√

A

C

πm

kBT0
, (C1)

FIG. 8. Casimir-Polder potential of SiO2 spheres of various radii
near a Si plate. Solid curves are exact results found from numerical
integration of (B1), while dotted curves are from the approximate
form Eq. (B6). We also show with dashed lines the result of eval-
uating Eq. (B6) using instead the permittivity of Si for the half-
space. The absorption wavelengths of the two media involved are
shown as vertical lines (dashed for silicon, dot-dashed for silicon
dioxide), while the experimental region of interest (∼4 to 11 μm)
is shaded gray. It is shown that this experiment is taking place at
distances larger than the dominant transition wavelengths of either
medium involved (the longer-wavelength silicon dioxide transition is
significantly weaker than the shorter-wavelength one, corresponding
to a much smaller value of ωp in Table I). Both half-space approxi-
mations agree well with the full numerical integration of the layered
potential, but in Fig. 9 it is shown that closer agreement is found with
the silicon dioxide version.

1 5 10 50 100
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R
at
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FIG. 9. Ratio of the approximations shown in Fig. 8 to the exact
numerical result (which is independent of the radius of the sphere).
The silicon dioxide result is shown to agree well within the experi-
mental region of interest.

where A is the amplitude of the fitted Lorentzian and C the
width, m is the mass of the particle, and T0 is the environmen-
tal gas temperature, assumed to be 300 K.

Therefore, the error in γc can be obtained from

�γc = γc

√
(�A/A)2 + (�m/m)2 + (�C/C)2. (C2)

This is of the order of ∼34%. Position sensitivity, δx, is
defined as the smallest positional change we can observe in
our system, limited by the most dominant noise source, which
manifests itself in the PSD noise floor. We therefore, extract
the position sensitivity, and its error, from this noise floor, con-
verting from volts to meters, to signify the smallest detectable
signal from the motion of the particle to be

δx = PSDnoise floor/γc, (C3)

�(δx) = δx

√(
�(PSDnoisefloor )

PSDnoisefloor

)2

+ (�γc/γc )2. (C4)

For our experimental parameters this is 1 ± 0.4 nm/
√

Hz. The
force sensitivity can be obtained from

δF = 1

2
mω2

0δx, (C5)

�(δF ) = δF
√

(�m/m)2 + (�(δx)/δx)2, (C6)

where ω0 is the oscillator frequency and we have assumed
the error in the oscillator frequency to be negligible. Hence,
our force sensitivity for the current experiments is 8 ± 3 ×
10−17 N/

√
Hz. This can be substantially improved upon if we

improve the signal-to-noise ratio of our signal, as was the case
in previous work [37], where the force sensitivity was as low
as 10−19 N/

√
Hz [29]. In this case, a higher signal-to-noise

ratio gives rise to a higher position sensitivity in addition to
resonant driving.
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